1
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. In vitro and in vivo induction of ochratoxin A exposure-related micronucleus formation in rat proximal tubular epithelial cells and expression profiling of chromosomal instability-related genes. Food Chem Toxicol 2024; 185:114486. [PMID: 38301995 DOI: 10.1016/j.fct.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Ochratoxin A (OTA) is a renal carcinogen in rats, and repeated administration induces karyomegaly in proximal tubular epithelial cells (PTECs) of the outer stripe of the outer medulla (OSOM) before inducing proliferative lesions. To investigate whether OTA induces micronuclei (MN) in PTECs, we performed an in vitro MN assay using rat renal NRK-52E PTECs after treatment for ≤21 days, and an in vivo OSOM MN assay in rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. The in vitro assay revealed an increased frequency of micronucleated cells from the acceptable dose level for cell viability, even after 21 days of treatment. The in vivo assay also revealed a dose- and treatment period-dependent increase in PTECs with γ-H2AX+ MN. OTA-specific gene expression profiling by OSOM RNA sequencing after week 13 revealed the altered expression of genes related to microtubule-kinetochore binding, the kinesin superfamily, centriole assembly, DNA damage repair, and cell cycle regulation. MN formation was also observed with other renal carcinogens that induce karyomegaly similarly to OTA. These results imply that γ-H2AX+ MN formation by OTA treatment is related to the induction of chromosomal instability accompanying karyomegaly formation before proliferative lesions form, providing a new insight into the carcinogenic mechanism that may be relevant to humans.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
3
|
Kuchi Bhotla H, Balasubramanian B, Rengasamy KRR, Arumugam VA, Alagamuthu KK, Chithravel V, Chaudhary A, Alanazi AM, Pappuswamy M, Meyyazhagan A. Genotoxic repercussion of high-intensity radiation (x-rays) on hospital radiographers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:123-131. [PMID: 36541415 DOI: 10.1002/em.22523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 05/24/2023]
Abstract
Recent technological advances in the medical field have increased the plausibility of exposing humans to high-intensity wavelength radiations like x-rays and gamma rays while diagnosing or treating specific medical maladies. These radiations induce nucleotide changes and chromosomal alterations in the exposed population, intentionally or accidentally. A radiological investigation is regularly used in identifying the disease, especially by the technicians working in intensive care units. The current study observes the genetic damages like chromosomal abnormalities (CA) in clinicians who are occupationally exposed to high-intensity radiations (x-rays) at their workplaces using universal cytogenetic tools like micronucleus assay (MN), sister chromatid exchange and comet assay. The study was conducted between 100 exposed practitioners from the abdominal scanning, chest scanning, cranial and orthopedic or bone scanning department and age-matched healthy controls. We observed a slightly higher rate of MN and CA (p < .05) in orthopedic and chest department practitioners than in other departments concerning increasing age and duration of exposure at work. Our results emphasize taking extra precautionary measures in clinical and hospital radiation laboratories to protect the practitioners.
Collapse
Affiliation(s)
| | | | - Kannan R R Rengasamy
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Karthick Kumar Alagamuthu
- Department of Biotechnology, Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu, India
| | | | - Aditi Chaudhary
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
4
|
Muciño-Hernández G, Acevo-Rodríguez PS, Cabrera-Benitez S, Guerrero AO, Merchant-Larios H, Castro-Obregón S. Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components. J Cell Sci 2023; 136:286548. [PMID: 36633090 PMCID: PMC10112964 DOI: 10.1242/jcs.260563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.
Collapse
Affiliation(s)
- Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Pilar Sarah Acevo-Rodríguez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Sandra Cabrera-Benitez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Adán Oswaldo Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
5
|
Abdisalaam S, Mukherjee S, Bhattacharya S, Kumari S, Sinha D, Ortega J, Li GM, Sadek H, Krishnan S, Asaithamby A. NBS1-CtIP-mediated DNA end resection suppresses cGAS binding to micronuclei. Nucleic Acids Res 2022; 50:2681-2699. [PMID: 35189637 PMCID: PMC8934670 DOI: 10.1093/nar/gkac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is activated in cells with defective DNA damage repair and signaling (DDR) factors, but a direct role for DDR factors in regulating cGAS activation in response to micronuclear DNA is still poorly understood. Here, we provide novel evidence that Nijmegen breakage syndrome 1 (NBS1) protein, a well-studied DNA double-strand break (DSB) sensor-in coordination with Ataxia Telangiectasia Mutated (ATM), a protein kinase, and Carboxy-terminal binding protein 1 interacting protein (CtIP), a DNA end resection factor-functions as an upstream regulator that prevents cGAS from binding micronuclear DNA. When NBS1 binds to micronuclear DNA via its fork-head-associated domain, it recruits CtIP and ATM via its N- and C-terminal domains, respectively. Subsequently, ATM stabilizes NBS1's interaction with micronuclear DNA, and CtIP converts DSB ends into single-strand DNA ends; these two key events prevent cGAS from binding micronuclear DNA. Additionally, by using a cGAS tripartite system, we show that cells lacking NBS1 not only recruit cGAS to a major fraction of micronuclear DNA but also activate cGAS in response to these micronuclear DNA. Collectively, our results underscore how NBS1 and its binding partners prevent cGAS from binding micronuclear DNA, in addition to their classical functions in DDR signaling.
Collapse
Affiliation(s)
- Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shibani Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sharda Kumari
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Debapriya Sinha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hesham A Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32082, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Boniface CT, Spellman PT. Blood, Toil, and Taxoteres: Biological Determinates of Treatment-Induce ctDNA Dynamics for Interpreting Tumor Response. Pathol Oncol Res 2022; 28:1610103. [PMID: 35665409 PMCID: PMC9160182 DOI: 10.3389/pore.2022.1610103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Collection and analysis of circulating tumor DNA (ctDNA) is one of the few methods of liquid biopsy that measures generalizable and tumor specific molecules, and is one of the most promising approaches in assessing the effectiveness of cancer care. Clinical assays that utilize ctDNA are commercially available for the identification of actionable mutations prior to treatment and to assess minimal residual disease after treatment. There is currently no clinical ctDNA assay specifically intended to monitor disease response during treatment, partially due to the complex challenge of understanding the biological sources of ctDNA and the underlying principles that govern its release. Although studies have shown pre- and post-treatment ctDNA levels can be prognostic, there is evidence that early, on-treatment changes in ctDNA levels are more accurate in predicting response. Yet, these results also vary widely among cohorts, cancer type, and treatment, likely due to the driving biology of tumor cell proliferation, cell death, and ctDNA clearance kinetics. To realize the full potential of ctDNA monitoring in cancer care, we may need to reorient our thinking toward the fundamental biological underpinnings of ctDNA release and dissemination from merely seeking convenient clinical correlates.
Collapse
Affiliation(s)
- Christopher T. Boniface
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| |
Collapse
|
7
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
8
|
Suzuki K, Amrenova A, Mitsutake N. Recent advances in radiobiology with respect to pleiotropic aspects of tissue reaction. JOURNAL OF RADIATION RESEARCH 2021; 62:i30-i35. [PMID: 33978178 PMCID: PMC8114206 DOI: 10.1093/jrr/rraa086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Indexed: 06/12/2023]
Abstract
DNA double-strand breaks (DSBs) induced by ionizing radiation are the major cause of cell death, leading to tissue/organ injuries, which is a fundamental mechanism underlying the development of tissue reaction. Since unscheduled senescence, predominantly induced among epithelial tissues/organs, is one of the major modes of cell death in response to radiation exposure, its role in tissue reaction has been extensively studied, and it has become clear that senescence-mediated secretion of soluble factors is an indispensable component of the manifestation of tissue reaction. Recently, an unexpected link between cytoplasmic DSBs and innate immunity was discovered. The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) results in the stimulation of the cGAS-stimulator of interferon genes (STING) pathway, which has been shown to regulate the transactivation of a variety of secretory factors that are the same as those secreted from senescent cells. Furthermore, it has been proven that cGAS-STING pathway also mediates execution of the senescence process by itself. Hence, an autocrine/paracrine feedback loop has been discussed in previous literature in relation to its effect on the tissue microenvironment. As the tissue microenvironment plays a crucial role in cancer development, tissue reaction could be involved in the late health effects caused by radiation exposure. In this paper, the novel findings in radiation biology, which should provide a better understanding of the mechanisms underlying radiation-induced carcinogenesis, are overviewed.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Aidana Amrenova
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
9
|
Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int J Mol Sci 2020; 21:ijms21218062. [PMID: 33137955 PMCID: PMC7662960 DOI: 10.3390/ijms21218062] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Through various pathways of cell death, degradation, and regulated extrusion, partial or complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses and microbes) are continuously shed into human body fluids in the form of segmented cell-free DNA (cfDNA) molecules. While the genetic complexity of total cfDNA is vast, the development of progressively efficient extraction, high-throughput sequencing, characterization via bioinformatics procedures, and detection have resulted in increasingly accurate partitioning and profiling of cfDNA subtypes. Not surprisingly, cfDNA analysis is emerging as a powerful clinical tool in many branches of medicine. In addition, the low invasiveness of longitudinal cfDNA sampling provides unprecedented access to study temporal genomic changes in a variety of contexts. However, the genetic diversity of cfDNA is also a great source of ambiguity and poses significant experimental and analytical challenges. For example, the cfDNA population in the bloodstream is heterogeneous and also fluctuates dynamically, differs between individuals, and exhibits numerous overlapping features despite often originating from different sources and processes. Therefore, a deeper understanding of the determining variables that impact the properties of cfDNA is crucial, however, thus far, is largely lacking. In this work we review recent and historical research on active vs. passive release mechanisms and estimate the significance and extent of their contribution to the composition of cfDNA.
Collapse
|
10
|
Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108342. [PMID: 33339572 DOI: 10.1016/j.mrrev.2020.108342] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Micronuclei (MNi) are among the most widely studied biomarkers of DNA damage and chromosomal instability in humans. They originate from chromosome fragments or intact chromosomes that are not included in daughter nuclei during mitosis. The main reasons for their formation are a lack of functional centromere in the chromosome fragments or whole chromosomes or defects in one or more of the proteins of the mitotic system that, consequently, fails to segregate chromosomes properly. Assays have been developed to measure MNi in peripheral blood lymphocytes, red blood cells as well as various types of epithelial cells such as buccal, nasal, urothelial and cervical cells. Some of the assays have been further developed into micronucleus (MN) cytome assays to include additional nuclear anomalies, cell death and nuclear division biomarkers. In addition, the use of molecular probes has been adopted widely for the purpose of understanding the mechanistic origin of MNi. MN assays in humans are used for the purpose of investigating the genotoxic effects of adverse environmental, life-style and occupational factors, genetic susceptibility to DNA damage, and for determining risk of accelerated aging and diseases affected by genomic instability such as developmental defects and cancer. The emerging new knowledge showing that chromosomes trapped in MNi can undergo a high rate of fragmentation and become massively re-arranged have highlighted the possibility that MN formation is not only a biomarker of induced DNA damage but also a mechanism that drives hypermutation. Furthermore, another line of recent research showed that DNA and chromatin leaking from disrupted MNi triggers the innate immune cGAS-STING mechanism that promotes inflammation which can cause a wide-range of age-related diseases if left unresolved. For these reasons, MN assays in humans have become an increasingly important biomarker of disease initiation and progression across all life-stages.
Collapse
|
11
|
Guo X, Dai X, Wu X, Cao N, Wang X. Small but strong: Mutational and functional landscapes of micronuclei in cancer genomes. Int J Cancer 2020; 148:812-824. [PMID: 32949152 DOI: 10.1002/ijc.33300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Micronuclei, small spatially-separated, nucleus-like structures, are a common feature of human cancer cells. There are considerable heterogeneities in the sources, structures and genetic activities of micronuclei. Accumulating evidence suggests that micronuclei and main nuclei represent separate entities with respect to DNA replication, DNA damage sensing and repairing capacity because micronuclei are not monitored by the same checkpoints nor covered by the same nuclear envelope as the main nuclei. Thus, micronuclei are spatially restricted "mutation factories." Several large-scale DNA sequencing and bioinformatics studies over the last few years have revealed that most micronuclei display a mutational signature of chromothripsis immediately after their generation and the underlying molecular mechanisms have been dissected extensively. Clonal expansion of the micronucleated cells is context-dependent and is associated with chromothripsis and several other mutational signatures including extrachromosomal circular DNA, kataegis and chromoanasynthesis. These results suggest what was once thought to be merely a passive indicator of chromosomal instability is now being recognized as a strong mutator phenotype that may drive intratumoral genetic heterogeneity. Herein, we revisit the actionable determinants that contribute to the bursts of mutagenesis in micronuclei and present the growing number of evidence which suggests that micronuclei have distinct short- and long-term mutational and functional effects to cancer genomes. We also pose challenges for studying the long-term effects of micronucleation in the upcoming years.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Society, Kunming, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Society, Kunming, Yunnan, China
| |
Collapse
|
12
|
Sutyagina OI, Kisurina-Evgenieva OP, Onishchenko GE. Micronuclei Elimination in MCF-7 Human Breast Adenocarcinoma Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s1990519x19030106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Siama Z, Zosang-Zuali M, Vanlalruati A, Jagetia GC, Pau KS, Kumar NS. Chronic low dose exposure of hospital workers to ionizing radiation leads to increased micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. Int J Radiat Biol 2019; 95:697-709. [PMID: 30668213 DOI: 10.1080/09553002.2019.1571255] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: The regular low dose occupational exposure to ionizing radiation may induce deleterious health effects, which may be of particular interest to medical radiation workers who daily handle X-ray machines. Human peripheral blood lymphocytes are able to retain the signature of radiation-induced DNA damage, therefore, the present study was undertaken to investigate the DNA damage and antioxidants status in hospital workers occupationally exposed to low doses of X-rays. Materials and methods: The peripheral blood lymphocytes of the occupationally exposed and control groups matched for age, gender, tobacco usage, and alcohol consumption were cultured and micronuclei frequency was determined. Activities of antioxidant enzymes and lipid peroxidation were also estimated in their plasma. Results: The micronuclei frequency in the occupationally exposed group (n = 33), increased significantly (p < .0001) followed by reduced glutathione-s-transferase (p < .01) and catalase (p < .001) activities, and increased lipid peroxidation (p < .05) when compared to the control group (n = 33). Occupational exposure resulted in an effective dose ranging between 3.14 to 144.5 mSv (40.88 ± 39.86mSv) depending on the employment duration of 3-29 years (10.33 ± 7.05 years). A correlation between the micronuclei frequency (p < .05) and catalase activity (p < .05) existed in the occupationally exposed individuals depending on the smoking habit, age, duration of employment, cumulative exposure dose and number of patients handled per day. Conclusions: We have observed that protracted low dose exposure to ionizing radiation is an inevitable occupational hazard leading to persistence of oxidative stress and increased genomic instability in the radiological technicians depending on the time spent with X-rays, cumulative dose received and the number of patients handled daily raising the risk of cancer development.
Collapse
Affiliation(s)
- Zothan Siama
- a Department of Zoology, Cancer and Radiation Biology Laboratory , Mizoram University , Aizawl , India
| | - Mary Zosang-Zuali
- a Department of Zoology, Cancer and Radiation Biology Laboratory , Mizoram University , Aizawl , India
| | - Annie Vanlalruati
- a Department of Zoology, Cancer and Radiation Biology Laboratory , Mizoram University , Aizawl , India
| | - Ganesh Chandra Jagetia
- a Department of Zoology, Cancer and Radiation Biology Laboratory , Mizoram University , Aizawl , India
| | - Kham Suan Pau
- b Radiation Safety Agency, Directorate of Hospital and Medical Education , Aizawl , India
| | | |
Collapse
|
14
|
Turchick A, Liu Y, Zhao W, Cohen I, Glazer PM. Synthetic lethality of a cell-penetrating anti-RAD51 antibody in PTEN-deficient melanoma and glioma cells. Oncotarget 2019; 10:1272-1283. [PMID: 30863489 PMCID: PMC6407680 DOI: 10.18632/oncotarget.26654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
PTEN is a tumor suppressor that is highly mutated in a variety of human cancers. Recent studies have suggested a link between PTEN loss and deficiency in the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. As a means to achieve synthetic lethality in this context, we tested the effect of 3E10, a cell-penetrating autoantibody that inhibits RAD51, a key factor in the alternative pathway of DSB repair, homology dependent repair (HDR). We report here that treatment of PTEN-deficient glioma cells with 3E10 leads to an accumulation of DNA damage causing decreased proliferation and increased cell death compared to isogenic PTEN proficient controls. Similarly, 3E10 was synthetically lethal to a series of PTEN-deficient, patient-derived primary melanoma cell populations. Further, 3E10 was found to synergize with a small molecule inhibitor of the ataxia telangiectasia and Rad3-related (ATR) protein, a DNA damage checkpoint kinase, in both PTEN-deficient glioma cells and primary melanoma cells. These results point to a targeted synthetic lethal strategy to treat PTEN-deficient cancers through a combination designed to disrupt both DNA repair and DNA damage checkpoint signaling.
Collapse
Affiliation(s)
- Audrey Turchick
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weixi Zhao
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Inessa Cohen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M. Glazer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Ariyoshi K, Miura T, Kasai K, Akifumi N, Fujishima Y, Yoshida MA. Age Dependence of Radiation-Induced Genomic Instability in Mouse Hematopoietic Stem Cells. Radiat Res 2018; 190:623. [PMID: 30311845 DOI: 10.1667/rr15113.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Age at exposure is a critical factor that influences the risk of radiation-induced leukemia. Accumulating evidence suggests that ionizing radiation can induce genomic instability and promote leukemogenesis in hematopoietic stem cells (HSCs); however, the influence of age on this phenomenon has not been elucidated. In this study, infant (1-week-old) or adult (14-week-old) C3H/He mice received sham or 4 Gy whole-body irradiation, and bone marrow cells were transplanted to recipients at day 1 or 60 postirradiation. Twelve days after bone marrow transplant, we analyzed the radiation-induced genomic instability by scoring the frequency of DNA damage and micronucleus formation in colony-forming units-spleen (CFU-Ss). We observed significant increases in DNA damage and micronucleus formation in CFU-Ss of the 4 Gy irradiated adult cells transplanted at day 1 or 60 postirradiation. However, the frequency of DNA damage focus and micronucleus formation in CFU-Ss of 4 Gy irradiated infant cells transplanted at day 1 or 60 postirradiation was relatively decreased. Quantitative differences in the reactive oxygen species and cells expressing inducible nitric oxide synthase in CFU-Ss suggested that age-dependent radiation-induced genomic instability may result from chronic oxidative stress by pro-inflammatory states in HSC descendants after radiation exposure.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- a Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Japan
| | - Tomisato Miura
- b Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan
| | - Kosuke Kasai
- b Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan
| | - Nakata Akifumi
- c Department of Basic Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, Otaru, 047-0264, Japan
| | - Yohei Fujishima
- b Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan
| | - Mitsuaki A Yoshida
- a Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8564, Japan
| |
Collapse
|
16
|
Bronkhorst AJ, Wentzel JF, Ungerer V, Peters DL, Aucamp J, de Villiers EP, Holdenrieder S, Pretorius PJ. Sequence analysis of cell-free DNA derived from cultured human bone osteosarcoma (143B) cells. Tumour Biol 2018; 40:1010428318801190. [PMID: 30261820 DOI: 10.1177/1010428318801190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The true importance of cell-free DNA in human biology, together with the potential scale of its clinical utility, is tarnished by a lack of understanding of its composition and origin. In investigating the cell-free DNA present in the growth medium of cultured 143B cells, we previously demonstrated that the majority of cell-free DNA is neither a product of apoptosis nor necrosis. In the present study, we investigated the composition and origin of this cell-free DNA population using next-generation sequencing. We found that the cell-free DNA comprises mainly of repetitive DNA, including α-satellite DNA, mini satellites, and transposons that are currently active or exhibit the capacity to become reactivated. A significant portion of these cell-free DNA fragments originates from specific chromosomes, especially chromosomes 1 and 9. In healthy adult somatic cells, the centromeric and pericentromeric regions of these chromosomes are normally densely methylated. However, in many cancer types, these regions are preferentially hypomethylated. This can lead to double-stranded DNA breaks or it can directly impair the formation of proper kinetochore structures. This type of chromosomal instability is a precursor to the formation of nuclear anomalies, including lagging chromosomes and anaphase bridges. DNA fragments derived from these structures can recruit their own nuclear envelope and form secondary nuclear structures known as micronuclei, which can localize to the nuclear periphery and bud out from the membrane. We postulate that the majority of cell-free DNA present in the growth medium of cultured 143B cells originates from these micronuclei.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Johannes F Wentzel
- 2 Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, South Africa
| | - Vida Ungerer
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Dimetrie L Peters
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- 4 Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Stefan Holdenrieder
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Piet J Pretorius
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| |
Collapse
|
17
|
Tang Z, Yang J, Wang X, Zeng M, Wang J, Wang A, Zhao M, Guo L, Liu C, Li D, Chen J. Active DNA end processing in micronuclei of ovarian cancer cells. BMC Cancer 2018; 18:426. [PMID: 29661159 PMCID: PMC5902893 DOI: 10.1186/s12885-018-4347-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/08/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ovarian cancer is one of the most deadly gynecological malignancies and inclined to recurrence and drug resistance. Previous studies showed that the tumorigenesis of ovarian cancers and their major histotypes are associated with genomic instability caused by defined sets of pathogenic mutations. In contrast, the mechanism that influences the development of drug resistance and disease recurrence is not well elucidated. Solid tumors are prone to chromosomal instability (CIN) and micronuclei formation (MN). Although MN is traditionally regarded as the outcome of genomic instability, recent investigation on its origin and final consequences reveal that the abnormal DNA metabolism in MN is a driver force for some types of catastrophic genomic rearrangements, accelerating dramatic genetic variation of cancer cells. METHODS We used Indirect Immunofluorescent staining to visualize micronuclei and activation of DNA repair factors in ovarian cancer cell lines and biopsies. RESULTS We show that ovarian cancer cells are disposed to form micronuclei upon genotoxic insults. Double strand DNA breaks (DSBs)-triggered insurgence of micronuclei is associated with unrepaired chromosomes passing through mitosis. According to their morphology and DNA staining, micronuclei compartments are divided into early and late stages that can be further characterized by differential staining of γH2AX and 53BP1. We also show that MN compartments do not halt controlled DNA metabolism as sequestered nuclear repair factors are enriched at DNA breaks in MN compartments and efficiently process DNA ends to generate single-stranded DNA (ssDNA) structures. Interestingly, unknown factors are required for DNA end processing in MN in addition to the nuclear resection machinery. Finally, these hallmarks of micronuclei evolution depicted in cell culture were recapitulated in different stages of ovarian cancer biopsies. CONCLUSIONS In aggregate, our findings demonstrate that ovarian cancer cells are inclined to form micronuclei that undergo robust DNA metabolism and generate ssDNA structures, potentially destabilizing genomic structures and triggering genetic variation.
Collapse
Affiliation(s)
- Zizhi Tang
- Department of Pharmacology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Juan Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xin Wang
- Department of Pharmacology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ming Zeng
- Department of Pharmacology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jing Wang
- Department of Laboratory Medicine, Suining Central Hospital, 629000, Suining, People's Republic of China
| | - Ao Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingcai Zhao
- Department of Laboratory Medicine, Suining Central Hospital, 629000, Suining, People's Republic of China
| | - Liandi Guo
- College of Pharmacy, Southwest Minzu University, No.16 South Section 4, Yihuan Road, Chengdu, 610041, People's Republic of China
| | - Cong Liu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Dehua Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Jie Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
18
|
Cao Q, Liu W, Wang J, Cao J, Yang H. A single low dose of Fe ions can cause long-term biological responses in NL20 human bronchial epithelial cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:31-40. [PMID: 29127482 DOI: 10.1007/s00411-017-0719-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Space radiation cancer risk may be a potential obstacle for long-duration spaceflight. Among all types of cancer space radiation may induce, lung cancer has been estimated to be the largest potential risk. Although previous animal study has shown that Fe ions, the most important contributor to the total dose equivalent of space radiation, induced a higher incidence of lung tumorigenesis per dose than X-rays, the underlying mechanisms at cellular level remained unclear. Therefore, in the present study, we investigated long-term biological changes in NL20 human bronchial epithelial cells after exposure to Fe ion or X-ray irradiation. We found that compared with sham control, the progeny of NL20 cells irradiated with 0.1 Gy of Fe ions showed slightly increased micronucleus formation, significantly decreased cell proliferation, disturbed cell cycle distribution, and obviously elevated intracellular ROS levels accompanied by reduced SOD1 and SOD2 expression, but the progeny of NL20 cells irradiated with 0.9 Gy of X-rays did not show any significant changes. More importantly, Fe ion exposure caused much greater soft-agar colony formation than X-rays did in the progeny of irradiated NL20 cells, clearly suggesting higher cell transformation potential of Fe ions compared with X-rays. These data may shed the light on the potential lung tumorigenesis risk from Fe ion exposure. In addition, ATM inhibition by Ku55933 reversed some of the changes in the progeny of Fe ion-irradiated cells but not others such as soft-agar colony formation, suggesting complex processes from DNA damage to carcinogenesis. These data indicate that even a single low dose of Fe ions can induce long-term biological responses such as cell transformation, etc., suggesting unignorable health risk from space radiation to astronauts.
Collapse
Affiliation(s)
- Qianlin Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Liu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital, Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jingdong Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Hatch EM. Nuclear envelope rupture: little holes, big openings. Curr Opin Cell Biol 2018; 52:66-72. [PMID: 29459181 DOI: 10.1016/j.ceb.2018.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
The nuclear envelope (NE), which is a critical barrier between the DNA and the cytosol, is capable of extensive dynamic membrane remodeling events in interphase. One of these events, interphase NE rupture and repair, can occur in both normal and disease states and results in the loss of nucleus compartmentalization. NE rupture is not lethal, but new research indicates that it could have broad impacts on genome stability and activate innate immune responses. These observations suggest a new model for how changes in NE structure could be pathogenic in cancer, laminopathies, and autoinflammatory syndromes, and redefine the functions of nucleus compartmentalization.
Collapse
Affiliation(s)
- Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
20
|
Gravells P, Neale J, Grant E, Nathubhai A, Smith KM, James DI, Bryant HE. Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib. DNA Repair (Amst) 2017; 61:25-36. [PMID: 29179156 PMCID: PMC5765821 DOI: 10.1016/j.dnarep.2017.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
PARG and PARP inhibition both radiosensitize. PARP and PARG inhibition both alter the DNA damage response following irradiation (IR). PARP and PARG inhibition both alter homologous recombination following IR. Only PARG inhibition induces rapid activation of non-homologous end-joining post-IR. Only inhibition of PARG causes accumulation of cells in metaphase post-IR.
Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents.
Collapse
Affiliation(s)
- Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - James Neale
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Emma Grant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Amit Nathubhai
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, Somerset, BA2 7AY, United Kingdom
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
21
|
Kalsbeek D, Golsteyn RM. G2/M-Phase Checkpoint Adaptation and Micronuclei Formation as Mechanisms That Contribute to Genomic Instability in Human Cells. Int J Mol Sci 2017; 18:E2344. [PMID: 29113112 PMCID: PMC5713313 DOI: 10.3390/ijms18112344] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/30/2023] Open
Abstract
One of the most common characteristics of cancer cells is genomic instability. Recent research has revealed that G2/M-phase checkpoint adaptation-entering mitosis with damaged DNA-contributes to genomic changes in experimental models. When cancer cells are treated with pharmacological concentrations of genotoxic agents, they undergo checkpoint adaptation; however, a small number of cells are able to survive and accumulate micronuclei. These micronuclei harbour damaged DNA, and are able to replicate and reincorporate their DNA into the main nucleus. Micronuclei are susceptible to chromothripsis, which is a phenomenon characterised by extensively rearranged chromosomes that reassemble from pulverized chromosomes in one cellular event. These processes contribute to genomic instability in cancer cells that survive a genotoxic anti-cancer treatment. This review provides insight into checkpoint adaptation and its connection to micronuclei and possibly chromothripsis. Knowledge about these mechanisms is needed to improve the poor cancer treatment outcomes that result from genomic instability.
Collapse
Affiliation(s)
- Danî Kalsbeek
- Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Roy M Golsteyn
- Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
22
|
Doukali H, Ben Salah G, Ben Rhouma B, Hajjaji M, Jaouadi A, Belguith-Mahfouth N, Masmoudi ML, Ammar-Keskes L, Kamoun H. Cytogenetic monitoring of hospital staff exposed to ionizing radiation: optimize protocol considering DNA repair genes variability. Int J Radiat Biol 2017; 93:1283-1288. [PMID: 28880740 DOI: 10.1080/09553002.2017.1377361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Chronic occupational exposure to ionizing radiation (IR) induces a wide spectrum of DNA damages. The aim of this study was to assess the frequencies of micronucleus (MN), sister chromatid exchanges (SCE) and to evaluate their association with XRCC1 399 Arg/Gln and XRCC3 241 Thr/Met polymorphisms in Hospital staff occupationally exposed to IR. MATERIALS AND METHODS A questionnaire followed by a cytogenetic analysis was concluded for each subject in our study. The exposed subjects were classified into two groups based on duration of employment (Group I < 15 years; Group II ≥15years). The genotypes of all individuals (subjects and controls) were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS DNA damage frequencies were significantly greater in IR workers compared with controls (p < .05). However, no association arised between XRCC1 399 Arg/Gln and XRCC3 241 Thr/Met polymorphisms, on one hand, and the severity of DNA damages in the studied cohort of Tunisian population, on the other hand. CONCLUSION Our data provide evidence for an obvious genotoxic effect associated with IR exposure and reinforce the high sensitivity of cytogenetic assays for biomonitoring of occupationally exposed populations. These results indicate that workers exposed to IR should have periodic monitoring, along their exposure. The variants, rs25487 and rs861539, of XRCC1 and XRCC3 genes have obvious functional effects. Paradoxically, these variants are not associated with the severity of damages, according to used assays, in the studied cohort of Tunisian population, unlike other studies.
Collapse
Affiliation(s)
- Hajer Doukali
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | - Ghada Ben Salah
- b Unaizah College of Pharmacy , Qassim University , Alqassim , Saudi Arabia
| | - Bochra Ben Rhouma
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | - Mounira Hajjaji
- d Department of Occupational Medicine , Hedi Chaker University Hospital , Sfax , Tunisia
| | - Amel Jaouadi
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | | | - Mohamed-Larbi Masmoudi
- d Department of Occupational Medicine , Hedi Chaker University Hospital , Sfax , Tunisia
| | - Leila Ammar-Keskes
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia
| | - Hassen Kamoun
- a Laboratory of Human Molecular Genetics, Faculty of Medicine , Sfax University , Sfax , Tunisia.,c Department of Medical Genetics , Hedi Chaker University Hospital , Sfax , Tunisia
| |
Collapse
|
23
|
Hintzsche H, Hemmann U, Poth A, Utesch D, Lott J, Stopper H. Fate of micronuclei and micronucleated cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:85-98. [PMID: 28342454 DOI: 10.1016/j.mrrev.2017.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 01/24/2023]
Abstract
The present review describes available evidence about the fate of micronuclei and micronucleated cells. Micronuclei are small, extranuclear chromatin bodies surrounded by a nuclear envelope. The mechanisms underlying the formation of micronuclei are well understood but not much is known about the potential fate of micronuclei and micronucleated cells. Many studies with different experimental approaches addressed the various aspects of the post-mitotic fate of micronuclei and micronucleated cells. These studies are reviewed here considering four basic possibilities for potential fates of micronuclei: degradation of the micronucleus or the micronucleated cell, reincorporation into the main nucleus, extrusion from the cell, and persistence in the cytoplasm. Two additional fates need to be considered: premature chromosome condensation/chromothripsis and the elimination of micronucleated cells by apoptosis, yielding six potential fates for micronuclei and/or micronucleated cells. The available data is still limited, but it can be concluded that degradation and extrusion of micronuclei might occur in rare cases under specific conditions, reincorporation during the next mitosis occurs more frequently, and the majority of the micronuclei persist without alteration at least until the next mitosis, possibly much longer. Overall, the consequences of micronucleus formation on the cellular level are still far from clear, but they should be investigated further because micronucleus formation may contribute to the initial and later steps of malignant cell transformation, by causing gain or loss of genetic material in the daughter cells and by the possibility of massive chromosome rearrangement in chromosomes entrapped within a micronucleus by the mechanisms of chromothripsis and chromoanagenesis.
Collapse
Affiliation(s)
- Henning Hintzsche
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany; Bavarian Health and Food Safety Authority, Erlangen, Germany.
| | - Ulrike Hemmann
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | - Jasmin Lott
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Helga Stopper
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | | |
Collapse
|
24
|
Kisurina-Evgenieva OP, Sutiagina OI, Onishchenko GE. Biogenesis of Micronuclei. BIOCHEMISTRY (MOSCOW) 2017; 81:453-64. [PMID: 27297896 DOI: 10.1134/s0006297916050035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of micronuclei in a cell is an indicator of DNA damage and genetic instability. In this review, mechanisms of emergence of micronuclei, their functional activity, and pathways of elimination are discussed. It is supposed that morphological and functional varieties of micronuclei as well as their degradation pathways can be determined by the chromosomal material localized inside these cell structures.
Collapse
|
25
|
Rode A, Maass KK, Willmund KV, Lichter P, Ernst A. Chromothripsis in cancer cells: An update. Int J Cancer 2015; 138:2322-33. [PMID: 26455580 DOI: 10.1002/ijc.29888] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022]
Abstract
In 2011, a novel form of genome instability was reported by Stephens et al., characterized by tens to hundreds of locally clustered rearrangements affecting one or a few chromosome(s) in cancer cells. This phenomenon, termed chromothripsis, is likely due to a single catastrophic event leading to the simultaneous formation of multiple double-strand breaks, which are repaired by error-prone mechanisms. Since then, the occurrence of chromothripsis was detected in a wide range of tumor entities. In this review, we will discuss potential mechanisms of chromothripsis initiation in cancer and outline the prevalence of chromothripsis across entities. Furthermore, we will examine how chromothriptic events may promote cancer development and how they may affect cancer therapy.
Collapse
Affiliation(s)
- Agata Rode
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra Korinna Maass
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurélie Ernst
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Thompson CM, Wolf JC, Elbekai RH, Paranjpe MG, Seiter JM, Chappell MA, Tappero RV, Suh M, Proctor DM, Bichteler A, Haws LC, Harris MA. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 789-790:61-6. [PMID: 26232259 DOI: 10.1016/j.mrgentox.2015.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/18/2022]
Abstract
Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.
Collapse
Affiliation(s)
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Sterling, VA 20166, USA.
| | | | | | - Jennifer M Seiter
- U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA.
| | - Mark A Chappell
- U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA.
| | - Ryan V Tappero
- Photon Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Mina Suh
- ToxStrategies, Inc., Mission Viejo, CA 92692, USA.
| | | | | | | | | |
Collapse
|
27
|
Vellingiri B, Shanmugam S, Subramaniam MD, Balasubramanian B, Meyyazhagan A, Alagamuthu K, Prakash V, Shafiahammedkhan M, Kathannan S, Pappuswamy M, Raviganesh B, Anand S, Shahnaz N D, Cho SG, Keshavarao S. Cytogenetic endpoints and Xenobiotic gene polymorphism in lymphocytes of hospital workers chronically exposed to ionizing radiation in Cardiology, Radiology and Orthopedic Laboratories. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:266-274. [PMID: 24290889 DOI: 10.1016/j.ecoenv.2013.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/21/2013] [Accepted: 09/28/2013] [Indexed: 06/02/2023]
Abstract
Ionizing radiation (IR) is known as a classical mutagen capable of inducing various kinds of stable and unstable chromosomal aberrations (CA) including the possibility of increasing the incidence of DNA damage. This study aims to assess occupationally induced CA in workers chronically exposed to low doses of IR in Radiology (RL), Cardiology (CL) and Orthopedic (OL) Laboratories in hospitals of Tamil Nadu. We performed the analysis of CA by trypsin G-banding, micronucleus (MN) assay, Comet assay and Xenobiotic-metabolizing gene polymorphisms (GSTM1, GSTT1 and GSTP1) in 56 exposed and 56 control subjects who were matched for gender and age (± 2 years). Higher degree of CA and MN frequencies were observed in exposed groups, especially in CL subjects compared to other exposed groups and controls (p<0.05). Higher frequency of DNA tail length and tail moment was observed in the CL exposed subjects compared to the RL and OL subjects. The frequencies of GSTM1 and GSTT1 null genotypes were 39.3 percent and 14.3 percent, respectively. No significant difference in allele frequencies between exposed subjects and controls were observed (p=0.0128). Using multiple linear regression analysis, statistical significance was determined for work duration and age for the CL, RL and OL workers and the examination of the possible impact by confounding factors showed few significant influences on the radiation exposure, as a specific biomarker. However, the findings from the present study suggest that, awareness should be created among the personnel exposed to radiations in hospital laboratories, highlighting the necessity of applying radiation protection principles against medical radiation exposure.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Sureshkumar Shanmugam
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Arun Meyyazhagan
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karthickkumar Alagamuthu
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Varsha Prakash
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Sankar Kathannan
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Banu Raviganesh
- PG and Research Center, Department of Biotechnology, Hindustan College, India
| | | | | | - Ssang-Goo Cho
- Molecular Cell Biology and Stem Cell Laboratory, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143 701, South Korea
| | - Sasikala Keshavarao
- Human Molecular Genetics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
28
|
Replication stress and mitotic dysfunction in cells expressing simian virus 40 large T antigen. J Virol 2013; 87:13179-92. [PMID: 24067972 DOI: 10.1128/jvi.02224-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that simian virus 40 (SV40) large T antigen (LT) binds to the Bub1 kinase, a key regulator of the spindle checkpoint and chromosome segregation. Bub1 mutations or altered expression patterns are linked to chromosome missegregation and are considered to be a driving force in some human cancers. Here we report that LT, dependent on Bub1 binding, causes micronuclei, lagging chromatin, and anaphase bridges, which are hallmarks of chromosomal instability (CIN) and Bub1 insufficiency. Using time-lapse microscopy, we demonstrate that LT imposes a Bub1 binding-dependent delay in the metaphase-to-anaphase transition. Kinetochore fibers reveal that LT, via Bub1 binding, causes aberrant kinetochore (KT)-microtubule (MT) attachments and a shortened interkinetochore distance, consistent with a lack of tension. Previously, we showed that LT also induces the DNA damage response (DDR) via Bub1 binding. Using inducible LT cell lines, we show that an activated DDR was observed before the appearance of anaphase bridges and micronuclei. Furthermore, LT induction in serum-starved cells demonstrated γ-H2AX accumulation in cells that had not yet entered mitosis. Thus, DDR activation can occur independently of chromosome segregation defects. Replication stress pathways may be responsible, because signatures of replication stress were observed, which were attenuated by exogenous supplementation with nucleosides. Our observations allow us to propose a model that explains and integrates the diverse manifestations of genomic instability induced by LT.
Collapse
|
29
|
Effect of blueberries (BB) on micronuclei induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 7,12-dimethylbenz(a)anthracene (DMBA) in mammalian cells, assessed in in vitro and in vivo assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 758:6-11. [PMID: 24060508 DOI: 10.1016/j.mrgentox.2013.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 06/16/2013] [Accepted: 07/08/2013] [Indexed: 11/22/2022]
Abstract
The protective effect of blueberry (BB) on the clastogenic effects of MNNG and DMBA was evaluated with the induced micronucleus (MN) frequency as a biomarker, both in vitro and in vivo. Human hepatoma HepG2 cells, which contain most of the metabolic activating enzymes was used for the in vitro test. MN frequencies were determined in binucleated cells generated by blocking cytokinesis by use of cytochalasin-B. The MN frequency in vivo was determined in polychromatic erythrocytes (PCEs) from the bone marrow of treated mice. BB by itself was not toxic both in vivo and in vitro. There was no evidence of a potential physico-chemical interaction between BB and the test carcinogens in vitro. Pre-treatment with BB reduced the MN frequency induced by MNNG. But, simultaneous treatment and post-treatment with BB did not affect the frequency of MNNG-induced MN. BB did not affect the frequency of DMBA-induced MN in vitro under any test condition. Under in vivo conditions, BB reduced the frequencies of MNNG- and DMBA-induced MN in PCEs, but in the case of the protective effect of BB against DMBA a dramatic reduction in the percentage of PCEs was observed, suggesting increased cytotoxicity.
Collapse
|
30
|
Wang M, Saha J, Cucinotta FA. Smad7 foci are present in micronuclei induced by heavy particle radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:108-14. [DOI: 10.1016/j.mrgentox.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
|
31
|
Luzhna L, Kathiria P, Kovalchuk O. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 2013; 4:131. [PMID: 23874352 PMCID: PMC3708156 DOI: 10.3389/fgene.2013.00131] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 06/19/2013] [Indexed: 12/11/2022] Open
Abstract
Micronuclei (MN) are extra-nuclear bodies that contain damaged chromosome fragments and/or whole chromosomes that were not incorporated into the nucleus after cell division. MN can be induced by defects in the cell repair machinery and accumulation of DNA damages and chromosomal aberrations. A variety of genotoxic agents may induce MN formation leading to cell death, genomic instability, or cancer development. In this review, the genetic and epigenetic mechanisms of MN formation after various clastogenic and aneugenic effects on cell division and cell cycle are described. The knowledge accumulated in literature on cytotoxicity of various genotoxins is precisely reflected and individual sensitivity to MN formation due to single gene polymorphisms is discussed. The importance of rapid MN scoring with respect to the cytokinesis-block micronucleus assay is also evaluated.
Collapse
Affiliation(s)
- Lidiya Luzhna
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | | | | |
Collapse
|
32
|
Bhatia A, Kumar Y. Cancer cell micronucleus: an update on clinical and diagnostic applications. APMIS 2012; 121:569-81. [PMID: 23278233 DOI: 10.1111/apm.12033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Micronucleus (MN) is the small nucleus that forms whenever a chromosome or its fragment is not incorporated into one of the daughter nuclei during cell division. Any form of genotoxic stress due to extraneous or internal factors leads to formation of a MN, which serves as an indicator of chromosomal instability. Chromosomal damage and formation of MN are believed to play a significant role in the pathogenesis of many malignancies. Studies have shown that MN assay can be used as a tool for risk prediction, screening, diagnosis, prognosis and as a treatment-response indicator in cancers. With the advancements in technology, greater details are becoming available regarding the molecular events in carcinogenesis. The micronuclei (MNi) in the cancer cells are now being used as tools to understand the pathogenetics of the malignancies. However, despite large number of studies on MNi in lymphocytes or exfoliated cells of cancer patients, the data regarding a cancer cell MN remain scarce. This review article tries to unleash some of the mysteries related to the formation of MN inside the cancer cell. Also, it discusses the possible effects and the events post MN formation in the cancer cell.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| | | |
Collapse
|
33
|
Terradas M, Martín M, Hernández L, Tusell L, Genescà A. Is DNA damage response ready for action anywhere? Int J Mol Sci 2012; 13:11569-11583. [PMID: 23109871 PMCID: PMC3472763 DOI: 10.3390/ijms130911569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/16/2022] Open
Abstract
Organisms are continuously exposed to DNA damaging agents, consequently, cells have developed an intricate system known as the DNA damage response (DDR) in order to detect and repair DNA lesions. This response has to be rapid and accurate in order to keep genome integrity. It has been observed that the condensation state of chromatin hinders a proper DDR. However, the condensation state of chromatin is not the only barrier to DDR. In this review, we have collected data regarding the presence of DDR factors on micronuclear DNA lesions that indicate that micronuclei are almost incapable of generating an effective DDR because of defects in their nuclear envelope. Finally, considering the recent observations about the reincorporation of micronuclei to the main bulk of chromosomes, we suggest that, under certain circumstances, micronuclei carrying DNA damage might be a source of chromosome instability.
Collapse
Affiliation(s)
- Mariona Terradas
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-935-811-498; Fax: +34-935-812-295
| | | | | | | | | |
Collapse
|
34
|
Audebert M, Zeman F, Beaudoin R, Péry A, Cravedi JP. Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 2012; 260:58-64. [DOI: 10.1016/j.taap.2012.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/18/2012] [Accepted: 01/21/2012] [Indexed: 11/27/2022]
|
35
|
Okada T, Kashino G, Nishiura H, Tano K, Watanabe M. Micronuclei formation induced by X-ray irradiation does not always result from DNA double-strand breaks. JOURNAL OF RADIATION RESEARCH 2012; 53:93-100. [PMID: 22240940 DOI: 10.1269/jrr.11147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
X-ray induced formation of micronuclei is generally thought to result from DNA double-strand breaks (DSBs). However, DNA DSBs inhibit the cell cycle progression that is required for micronucleus formation. In order to reconcile this apparent discrepancy, we investigated whether DNA DSBs induced during the G1 phase could lead to micronucleus formation. We irradiated human embryonic (HE17) cells that had been treated with a radical scavenger, either DMSO or ascorbic acid (AsA), and determined the level of suppression of DNA DSBs or micronuclei. When DNA DSBs were evaluated using 53BP1 foci, treatment with 5 mM AsA did not inhibit the numbers of foci at various intervals after X-ray irradiation; however, treatment with 5 mM or 256 mM DMSO did have a significant inhibitory effect. By contrast, an assay of micronucleus numbers showed that treatment with 5 mM or 256 mM DMSO before X-ray irradiation resulted in almost no inhibition of micronucleus formation, but treatment with 5 mM AsA did have a significant inhibitory effect. These results clearly showed that AsA could suppress micronucleus formation, although it was not effective for suppression of DNA DSBs. Therefore, we conclude that DNA DSBs induced in the G1 phase do not directly lead to micronucleus formation.
Collapse
Affiliation(s)
- Takuya Okada
- Laboratory of Radiation Biology, Research Reactor Institute, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
36
|
Terradas M, Martín M, Hernández L, Tusell L, Genescà A. Nuclear envelope defects impede a proper response to micronuclear DNA lesions. Mutat Res 2011; 729:35-40. [PMID: 21945242 DOI: 10.1016/j.mrfmmm.2011.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 01/23/2023]
Abstract
When damage is inflicted in nuclear DNA, cells activate a hierarchical plethora of proteins that constitute the DNA damage response machinery. In contrast to the cell nucleus, the ability of micronuclear DNA lesions to activate this complex network is controversial. In order to determine whether the DNA contained in micronuclei is protected by the cellular damage response system, we studied the recruitment of excision repair factors to photolesions inflicted in the DNA of radiation-induced micronuclei. To perform this analysis, primary human dermal fibroblasts were exposed to UV-C light to induce photolesions in nuclear and micronuclear DNA. By means of immunofluorescence techniques, we observed that most micronuclei were devoid of NER factors. We conclude that UV photoproducts in micronuclei are mostly unable to generate an effective DNA damage response. We observed that the micronuclear envelope structure is a determinant factor that influences the repair of the DNA lesions inside micronuclei. Therefore, our results allow us to conclude that photolesions in radiation-induced micronuclei are poorly processed because the repair factors are unable to reach the micronuclear chromatin when a micronucleus is formed or after a genotoxic insult.
Collapse
Affiliation(s)
- Mariona Terradas
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
37
|
Retention of γH2AX foci as an indication of lethal DNA damage. Radiother Oncol 2011; 101:18-23. [PMID: 21704409 DOI: 10.1016/j.radonc.2011.05.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 01/09/2023]
Abstract
The application of biological responses of tumours to predict clinical responses to treatment represents a challenging goal with the potential to inform treatment decisions and improve outcome. If tumour cell death is the result of the inability of a cell to repair complex DNA damage, and if γH2AX foci mark sites of unrepaired double-strand breaks, then it may be possible to use residual γH2AX foci to identify treatment-resistant tumour cells early in the course of therapy. This review will highlight some of the evidence that supports the idea that residual γH2AX foci, within certain limitations, may be useful as an early indicator of tumour response to radiotherapy in situ, either alone or in combination with chemotherapy.
Collapse
|
38
|
Huang Y, Hou H, Yi Q, Zhang Y, Chen D, Jiang E, Xia Y, Fenech M, Shi Q. The fate of micronucleated cells post X-irradiation detected by live cell imaging. DNA Repair (Amst) 2011; 10:629-38. [DOI: 10.1016/j.dnarep.2011.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
|
39
|
Goodarzi AA, Jeggo PA. Irradiation induced foci (IRIF) as a biomarker for radiosensitivity. Mutat Res 2011; 736:39-47. [PMID: 21651917 DOI: 10.1016/j.mrfmmm.2011.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/19/2011] [Accepted: 05/24/2011] [Indexed: 12/13/2022]
Abstract
It has long been known that the level of radiosensitivity between individuals covers a considerable range. This range is reflected in analysis of patient cell lines with some cell lines showing significantly reduced sensitivity to in vitro radiation exposure. Our increased exposure to radiation from diagnostic medical procedures and other life style changes has raised concerns that there may be individuals who are at an elevated risk from the harmful impact of acute or chronic low dose radiation exposure. Additionally, a subset of patients show an enhanced normal tissue response following radiotherapy, which can cause significant discomfort and, at the extreme, be life threatening. It has long been realised that the ability to identify sensitive individuals and to understand the mechanistic basis underlying the range of sensitivity within the population is important. A reduced ability to efficiently repair DNA double strand breaks (DSB) and/or activate the DSB damage response underlies some, although not necessarily all, of this sensitivity. In this article, we consider the utility of the recently developed γH2AX foci analysis to provide insight into radiation sensitivity within the population. We consider the nature of sensitivity including the impact of radiation on cell survival, tissue responses and carcinogenesis and the range of responses within the population. We overview the current utility of the γH2AX assay for assessing the efficacy of the DNA damage response to low and high dose radiation and its potential future exploitation.
Collapse
Affiliation(s)
- Aaron A Goodarzi
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
40
|
Kirsch-Volders M, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, Vande Loock K, Decordier I. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 2011; 85:873-99. [PMID: 21537955 DOI: 10.1007/s00204-011-0691-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/01/2011] [Indexed: 12/13/2022]
Abstract
Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
41
|
Markovà E, Malmgren LO, Belyaev IY. Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:394-399. [PMID: 20064781 PMCID: PMC2854769 DOI: 10.1289/ehp.0900781] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 10/22/2009] [Indexed: 05/26/2023]
Abstract
BACKGROUND It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemias and tumors, including gliomas. OBJECTIVES We studied whether microwaves from mobile telephones of the Global System for Mobile Communication (GSM) and the Universal Global Telecommunications System (UMTS) induce DSBs or affect DSB repair in stem cells. METHODS We analyzed tumor suppressor TP53 binding protein 1 (53BP1) foci that are typically formed at the sites of DSB location (referred to as DNA repair foci) by laser confocal microscopy. RESULTS Microwaves from mobile phones inhibited formation of 53BP1 foci in human primary fibroblasts and mesenchymal stem cells. These data parallel our previous findings for human lymphocytes. Importantly, the same GSM carrier frequency (915 MHz) and UMTS frequency band (1947.4 MHz) were effective for all cell types. Exposure at 905 MHz did not inhibit 53BP1 foci in differentiated cells, either fibroblasts or lymphocytes, whereas some effects were seen in stem cells at 905 MHz. Contrary to fibroblasts, stem cells did not adapt to chronic exposure during 2 weeks. CONCLUSIONS The strongest microwave effects were always observed in stem cells. This result may suggest both significant misbalance in DSB repair and severe stress response. Our findings that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells may be important for cancer risk assessment and indicate that stem cells are the most relevant cellular model for validating safe mobile communication signals.
Collapse
Affiliation(s)
- Eva Markovà
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | - Igor Y. Belyaev
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
- Laboratory of Radiobiology, General Physics Institute, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
42
|
Belyaev IY. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res 2010; 704:132-41. [PMID: 20096808 DOI: 10.1016/j.mrrev.2010.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/26/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Several proteins involved in DNA repair and DNA damage signaling have been shown to produce discrete foci in response to ionizing radiation. These foci are believed to co-localize to DSB and referred to as ionizing radiation-induced foci (IRIF) or DNA repair foci. Recent studies have revealed that some residual IRIF remain in cells for a relatively long time after irradiation, and have indicated a possible correlation between radiosensitivity of cells and residual IRIF. Remarkably, residual foci are significantly larger in size than the initial foci. Increase in the size of IRIF with time upon irradiation has been found in various cell types and has partially been correlated with dynamics and fusion of initial foci. Although it is admitted that the number of IRIF reflect that of DSB, several studies report a lack of correlation between kinetics for IRIF and DSB and a lack of co-localization between DSB repair proteins. These studies suggest that some proportion of residual IRIF that depend on cell type, dose, and post-irradiation time may represent alternations in chromatin structure after DSB have been repaired or misrepaired. While precise functions of residual foci are presently unknown, their possible link to remaining chromatin alternations, nuclear matrix, apoptosis, delayed repair and misrejoining of DSB, activity of several kinases, phosphatases, and checkpoint signaling has been suggested. Another intriguing possibility is that some of DNA repair foci may mark break-points at chromosomal aberrations (CA). While this possibility has not been confirmed substantially, the residual foci seem to be useful for biological dosimetry and estimation of individual radiosensitivity in radiotherapy of cancer.
Collapse
Affiliation(s)
- I Y Belyaev
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic.
| |
Collapse
|
43
|
DNA lesions sequestered in micronuclei induce a local defective-damage response. DNA Repair (Amst) 2009; 8:1225-34. [PMID: 19683478 DOI: 10.1016/j.dnarep.2009.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 01/17/2023]
Abstract
Micronuclei are good markers of chromosome instability and, among other disturbances, are closely related to double-strand break induction. The ability of DNA lesions sequestered in the micronuclear bodies to activate the complex damage-signalling network is highly controversial since some repair factors have not been consistently detected inside micronuclei. In order to better understand the efficiency of the response induced by micronuclear DNA damage, we have analyzed the presence of DNA damage-response factors and DNA degradation markers in these structures. Radiation-induced DNA double-strand breaks produce a modification of chromatin structural proteins, such as the H2AX histone, which is rapidly phosphorylated around the break site. Strikingly, we have been able to distinguish two different phosphoH2AX (gammaH2AX) labelling patterns in micronuclei: discrete foci, indicating DSB presence, and uniform labelling affecting the whole micronucleus, pointing to genomic DNA fragmentation. At early post-irradiation times we observed a high fraction of micronuclei displaying gammaH2AX foci. Co-localization experiments showed that only a small fraction of the DSBs in micronuclei were able to properly recruit the p53 binding protein 1 (53BP1) and the meiotic recombination 11 (MRE11). We suggest that trafficking defects through the micronuclear envelope compromise the recruitment of DNA damage-response factors. In contrast to micronuclei displaying gammaH2AX foci, we observed that micronuclei showing a gammaH2AX extensive-uniform labelling were more frequently observed at substantial post-irradiation times. By means of TUNEL assay, we proved that DNA degradation was carried out inside these micronuclei. Given this scenario, we propose that micronuclei carrying a non-repaired DSB are conduced to their elimination, thus favouring chromosome instability in terms of allele loss.
Collapse
|
44
|
Andreassi MG, Foffa I, Manfredi S, Botto N, Cioppa A, Picano E. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res 2009; 666:57-63. [PMID: 19393248 DOI: 10.1016/j.mrfmmm.2009.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 05/27/2023]
Abstract
Interventional cardiologists working in high-volume cardiac catheterization laboratory are exposed to significant occupational radiation risks. Common single-nucleotide polymorphisms (SNPs) in DNA repair genes are thought to modify the effects of low-dose radiation exposure on DNA damage, the main initiating event in the development of cancer and hereditary disease. The aim of this study was to determine the relationship between XRCC1 (Arg194Trp and Arg399Gln), OGG1 (Ser326Cys), APE1 (Asp148Glu) and XRCC3 (Thr241Met) SNPs and chromosomal DNA damage. We enrolled 77 subjects: 40 interventional cardiologists (27 male, 41.3+/-9.4 years and 13 female, 37.8+/-8.4 years) and 37 clinical cardiologists (26 male, 39.4+/-9.5 years and 11 female, 35.0+/-9.8 years) without radiation exposure as the control group. Micronucleus (MN) assay was performed as biomarker of chromosomal DNA damage and an early predictor of cancer. MN frequency was significantly higher in interventional cardiologists than in clinical physicians (19.7+/-7.8 per thousand vs. 13.5+/-6.3 per thousand, p=0.0003). Within the exposed group, individuals carrying a XRCC3 Met241 allele had higher frequency than homozygous XRCC3 Thr241 (21.2+/-7.8 per thousand vs. 16.6+/-7.1 per thousand, p=0.03). Individuals with two or more risk alleles showed a higher MN frequency when compared to subjects with one or no risk allele (18.4+/-6.6 per thousand vs. 14.4+/-6.1 per thousand, p=0.02). An interactive effect was found between smoking, exposure >10 years and the presence of the two or more risk alleles on the MN frequency (F=6.3, p=0.02). XRCC3 241Met alleles, particularly in combination with multiple risk alleles of DNA repair genes, contribute to chromosomal DNA damage levels in interventional cardiologists.
Collapse
|
45
|
Bañuelos CA, Banáth JP, Kim JY, Aquino-Parsons C, Olive PL. γH2AX Expression in Tumors Exposed to Cisplatin and Fractionated Irradiation. Clin Cancer Res 2009; 15:3344-53. [DOI: 10.1158/1078-0432.ccr-08-3114] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Lu C, Shi Y, Wang Z, Song Z, Zhu M, Cai Q, Chen T. Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway. FEBS Lett 2008; 582:2703-8. [PMID: 18619440 DOI: 10.1016/j.febslet.2008.06.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 05/29/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Phosphorylation of H2AX is believed to be associated with the repair of damaged DNA. Recent findings suggest a novel function of H2AX in cellular apoptosis. Specifically, it was shown that ultraviolet A-activated JNK phosphorylates H2AX to regulate apoptosis. Here we show that serum starvation induces H2AX phosphorylation and apoptosis independent of the JNK pathway. Serum starvation induced p38 phosphorylation, whereas it did not affect the phosphorylation of ERK or JNK. Inhibition of p38 reduced H2AX phosphorylation and apoptosis. Furthermore, p38 was found to phosphorylate H2AX directly in vitro and was colocalized with H2AX in vivo. Finally, we demonstrate that H2AX phosphorylation is required for serum starvation-induced apoptosis. Taken together, these data elucidate a novel signaling pathway (p38/H2AX) to regulate apoptosis.
Collapse
Affiliation(s)
- Chengrong Lu
- The Aviation Medicine Research Lab, General Hospital of Air Force, Fucheng Road 30, Beijing 100036, China.
| | | | | | | | | | | | | |
Collapse
|