1
|
Sproull M, Camphausen K. Partial-body Models of Radiation Exposure. Radiat Res 2025; 203:129-141. [PMID: 39923796 PMCID: PMC11973700 DOI: 10.1667/rade-24-00189.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
The events of 9/11 sparked a revitalization of civil defense in the U.S. for emergency planning and preparedness for future radiological or nuclear event scenarios and specifically for mass casualty medical management of radiation exposure and injury. Research in medical countermeasure development in the form of novel pharmaceuticals to treat radiation injury and new radiation biodosimetry diagnostics, primarily focused on development of research models of uniform total-body irradiation (TBI). With the success of those models, it was recognized that most radiation exposures in the field will involve non-uniform heterogeneous irradiations and many partial-body or organ-specific irradiation models have been utilized. This review examines partial-body models of irradiations developed in the last decade for heterogeneous radiation exposures and organ-specific radiation exposure patterns. These research models have been used to further our understanding of radiation injury, novel medical countermeasures and biodosimetry diagnostics in development for future radiological and nuclear event scenarios.
Collapse
Affiliation(s)
- M. Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - K. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
2
|
Kiang JG, Cannon G, Singh VK. An Overview of Radiation Countermeasure Development in Radiation Research from 1954 to 2024. Radiat Res 2024; 202:420-431. [PMID: 38964743 PMCID: PMC11385179 DOI: 10.1667/rade-24-00036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.
Collapse
Affiliation(s)
- Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
- Department of Medicine, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Vijay K Singh
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
| |
Collapse
|
3
|
Abston E, Zhou IY, Saenger JA, Shuvaev S, Akam E, Esfahani SA, Hariri LP, Rotile NJ, Crowley E, Montesi SB, Humblet V, Arabasz G, Khandekar M, Catana C, Fintelmann FJ, Caravan P, Lanuti M. Noninvasive Quantification of Radiation-Induced Lung Injury Using a Targeted Molecular Imaging Probe. Int J Radiat Oncol Biol Phys 2024; 118:1228-1239. [PMID: 38072325 PMCID: PMC11184492 DOI: 10.1016/j.ijrobp.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Radiation-induced lung injury (RILI) is a progressive inflammatory process seen after irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Here, we sought to noninvasively quantify RILI using a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. METHODS AND MATERIALS Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe, to characterize the development of RILI and to assess disease mitigation after losartan treatment. The human analog probe 68Ga-CBP8, targeting type 1 collagen, was tested on excised human lung tissue containing RILI and was quantified via autoradiography. 68Ga-CBP8 positron emission tomography was used to assess RILI in vivo in 6 human subjects. RESULTS Murine models demonstrated that probe signal correlated with progressive RILI severity over 6 months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding versus unirradiated control tissue, and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. CONCLUSIONS These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.
Collapse
Affiliation(s)
- Eric Abston
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jonathan A Saenger
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sergey Shuvaev
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Eman Akam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Shadi A Esfahani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Crowley
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Grae Arabasz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Melin Khandekar
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Florian J Fintelmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Abston E, Zhou IY, Saenger JA, Shuvaev S, Akam E, Esfahani SA, Hariri LP, Rotile NJ, Crowley E, Montesi SB, Humblet V, Arabasz G, Catana C, Fintelmann FJ, Caravan P, Lanuti M. Noninvasive Quantification of Radiation-Induced Lung Injury using a Targeted Molecular Imaging Probe. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.25.23295897. [PMID: 37808864 PMCID: PMC10557816 DOI: 10.1101/2023.09.25.23295897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Rationale Radiation-induced lung injury (RILI) is a progressive inflammatory process commonly seen following irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Objective To noninvasively quantify RILI, utilizing a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. Methods Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe to characterize the development of RILI and to assess disease mitigation following losartan treatment. The human analog probe targeted against type 1 collagen, 68Ga-CBP8, was tested on excised human lung tissue containing RILI and quantified via autoradiography. Finally, 68Ga-CBP8 PET was used to assess RILI in vivo in six human subjects. Results Murine models demonstrated that probe signal correlated with progressive RILI severity over six-months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding vs unirradiated control tissue and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. Conclusions These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.Clinical trial registered with www.clinicaltrials.gov (NCT04485286, NCT03535545).
Collapse
Affiliation(s)
- Eric Abston
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
- The Institute for Innovation in Imaging Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jonathan A Saenger
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sergey Shuvaev
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
- The Institute for Innovation in Imaging Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eman Akam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shadi A Esfahani
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
- The Institute for Innovation in Imaging Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth Crowley
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grae Arabasz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- The Institute for Innovation in Imaging Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Florian J Fintelmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
- The Institute for Innovation in Imaging Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Wu T, Orschell CM. The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures. Int J Radiat Biol 2023; 99:1066-1079. [PMID: 36862990 PMCID: PMC10330482 DOI: 10.1080/09553002.2023.2187479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE. CONCLUSIONS Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Groves AM, Paris N, Hernady E, Johnston CJ, Aljitawi O, Lee YF, Kerns SL, Marples B. Prevention of Radiation-Induced Bladder Injury: A Murine Study Using Captopril. Int J Radiat Oncol Biol Phys 2023; 115:972-982. [PMID: 36400304 DOI: 10.1016/j.ijrobp.2022.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Pelvic radiation therapy (RT) can cause debilitating bladder toxicities but few clinical interventions exist to prevent injury or alleviate symptoms. From a large genome-wide association study in patients with prostate cancer it was previously reported that SNPs tagging AGT, part of the renin-angiotensin system (RAS), correlated with patient-reported late hematuria, identifying a potential targetable pathway to prevent RT-induced bladder injury. To investigate this association, we performed a preclinical study to determine whether RAS modulation protected the bladder against RT injury. METHODS AND MATERIALS C57BL/6 male mice were treated with an oral angiotensin converting enzyme inhibitor (ACEi: 0.3g/L captopril) 5 days before focal bladder X-irradiation with either single dose (SD) 30 Gy or 3 fractions of 8 Gy (8 Gy × 3 in 5 days). RT was delivered using XStrahl SARRP Muriplan CT-image guidance with parallel-opposed lateral beams. ACEi was maintained for 20 weeks post RT. Bladder toxicity was assessed using assays to identify local injury that included urinalysis, functional micturition, bladder-released exosomes, and histopathology, as well as an assessment of systemic changes in inflammatory-mediated circulating immune cells. RESULTS SD and fractionated RT increased urinary frequency and reduced the volume of individual voids at >14 weeks, but not at 4 weeks, compared with nonirradiated animals. Urothelial layer width was positively correlated with mean volume of individual voids (P = .0428) and negatively correlated with number of voids (P = .028), relating urothelial thinning to changes in RT-mediated bladder dysfunction. These chronic RT-induced changes in micturition patterns were prevented by captopril treatment. Focal bladder irradiation significantly increased the mean particle count of urine extracellular vesicles and the monocyte and neutrophil chemokines CCL2 and MIP-2, and the proportions of circulating inflammatory-mediated neutrophils and monocytes, which was also prevented by captopril. Exploratory transcriptomic analysis of bladder tissue implicated inflammatory and erythropoietic pathways. CONCLUSIONS This study demonstrated that systemic modulation of the RAS protected against and alleviated RT-induced late bladder injury but larger confirmatory studies are needed.
Collapse
Affiliation(s)
- Angela M Groves
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Nicole Paris
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Eric Hernady
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Carl J Johnston
- Departments of Pediatrics, University of Rochester, Rochester, New York
| | - Omar Aljitawi
- Departments of Medicine, Hematology/Oncology, University of Rochester, Rochester, New York
| | - Yi-Fen Lee
- Departments of Urology, University of Rochester, Rochester, New York
| | - Sarah L Kerns
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Brian Marples
- Departments of Radiation Oncology, University of Rochester, Rochester, New York.
| |
Collapse
|
7
|
Bansal S, Bansal S, Fish BL, Li Y, Xu X, Fernandez JA, Griffin JH, Himburg HA, Boerma M, Medhora M, Cheema AK. Analysis of the urinary metabolic profiles in irradiated rats treated with Activated Protein C (APC), a potential mitigator of radiation toxicity. Int J Radiat Biol 2023; 99:1109-1118. [PMID: 36827630 PMCID: PMC10330346 DOI: 10.1080/09553002.2023.2182001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations. MATERIALS AND METHODS Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling. Sub-cohorts of rats were treated with three variants of recombinant APC namely, rat wildtype (WT) APC, rat 3K3A mutant form of APC, and human WT APC as two bolus injections at 24 and 48 hours post IR. RESULTS Radiation induced robust changes in the urinary profiles leading to oxidative stress, severe dyslipidemia, and altered biosynthesis of PUFAs, glycerophospholipids, sphingolipids, and steroids. Alterations were observed in multiple metabolic pathways related to energy metabolism, nucleotide biosynthesis and metabolism that were indicative of disrupted mitochondrial function and DNA damage. On the other hand, sub-cohorts of rats that were treated with rat wildtype-APC showed alleviation of radiation toxicities, in part, at the 90-day time point, while rat 3K3A-APC showed partial alleviation of radiation induced metabolic alterations 14 days after irradiation. CONCLUSIONS Taken together, these results show that augmenting the Protein C pathway and activity via administration of recombinant APC may be an effective approach for mitigation of radiation induced normal tissue toxicity.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jose A Fernandez
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
8
|
Fish BL, Hart B, Gasperetti T, Narayanan J, Gao F, Veley D, Pierce L, Himburg HA, MacVittie T, Medhora M. IPW-5371 mitigates the delayed effects of acute radiation exposure in WAG/RijCmcr rats when started 15 days after PBI with bone marrow sparing. Int J Radiat Biol 2023; 99:1119-1129. [PMID: 36794325 PMCID: PMC10330589 DOI: 10.1080/09553002.2023.2173825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE To test IPW-5371 for the mitigation of the delayed effects of acute radiation exposure (DEARE). Survivors of acute radiation exposure are at risk for developing delayed multi-organ toxicities; however, there are no FDA-approved medical countermeasures (MCM) to mitigate DEARE. METHODS WAG/RijCmcr female rat model of partial-body irradiation (PBI), by shielding part of one hind leg, was used to test IPW-5371 (7 and 20 mg kg-1 d-1) for mitigation of lung and kidney DEARE when started 15 d after PBI. Rats were fed known amounts of IPW-5371 using a syringe, instead of delivery by daily oral gavage, sparing exacerbation of esophageal injury by radiation. The primary endpoint, all-cause morbidity was assessed over 215 d. Secondary endpoints: body weight, breathing rate and blood urea nitrogen were also assessed. RESULTS IPW-5371 enhanced survival (primary endpoint) as well as attenuated secondary endpoints of lung and kidney injuries by radiation. CONCLUSION To provide a window for dosimetry and triage, as well as avoid oral delivery during the acute radiation syndrome (ARS), the drug regimen was started at 15 d after 13.5 Gy PBI. The experimental design to test mitigation of DEARE was customized for translation in humans, using an animal model of radiation that was designed to simulate a radiologic attack or accident. The results support advanced development of IPW-5371 to mitigate lethal lung and kidney injuries after irradiation of multiple organs.
Collapse
Affiliation(s)
- Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Barry Hart
- Innovation Pathways, Palo Alto, CA, 94301
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Thomas MacVittie
- Innovation Pathways, Palo Alto, CA, 94301
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
9
|
Gasperetti T, Frei A, Prasad Sharma G, Pierce L, Veley D, Szalewski N, Munjal Mehta S, Fish BL, Pleimes D, Himburg HA. Delayed renal injury in survivors of hematologic acute radiation syndrome. Int J Radiat Biol 2023; 99:1130-1138. [PMID: 36688956 PMCID: PMC10313734 DOI: 10.1080/09553002.2023.2170491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE A mass casualty disaster involving radiological or nuclear agents continues to be a public health concern which requires consideration of both acute and late tissue toxicities in exposed victims. With the advent of advanced treatment options for the mitigation of hematological injuries, there are likely to be survivors of total body irradiation (TBI) exposures as high as 8-10 Gy. These survivors are at risk for a range of delayed multi-organ morbidities including progressive renal failure. MATERIAL AND METHODS Here, we established the WAG/RijCmcr rat as an effective model for the evaluation of medical countermeasures (MCM) for acute hematologic radiation syndrome (H-ARS). The LD50/30 dose for adult and pediatric WAG/RijCmcr rats was determined for both sexes. We then confirmed the FDA-approved MCM pegfilgrastim (peg-GCSF, Neulasta®) mitigates H-ARS in adult male and female rats. Finally, we evaluated survival and renal dysfunction up to 300 d post-TBI in male and female adult rats. RESULTS In the WAG/RijCmcr rat model, 87.5% and 100% of adult rats succumb to lethal hematopoietic acute radiation syndrome (H-ARS) at TBI doses of 8 and 8.5 Gy, respectively. A single dose of the hematopoietic growth factor peg-GCSF administered at 24 h post-TBI improved survival during H-ARS. Peg-GCSF treatment improved 30 d survival from 12.5% to 83% at 8 Gy and from 0% to 63% at 8.5 Gy. We then followed survivors of H-ARS through day 300. Rats exposed to TBI doses greater than 8 Gy had a 26% reduction in survival over days 30-300 compared to rats exposed to 7.75 Gy TBI. Concurrent with the reduction in long-term survival, a dose-dependent impairment of renal function as assessed by blood urea nitrogen (BUN) and urine protein to urine creatinine ratio (UP:UC) was observed. CONCLUSION Together, these data show survivors of H-ARS are at risk for the development of delayed renal toxicity and emphasize the need for the development of medical countermeasures for delayed renal injury.
Collapse
Affiliation(s)
- Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Moulder JE, Cohen EP, Medhora M, Fish BL. Angiotensin converting enzyme (ACE) inhibitors as radiation countermeasures for long-duration space flights. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:60-68. [PMID: 36336371 DOI: 10.1016/j.lssr.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Angiotensin converting enzyme (ACE) inhibitors are effective countermeasures to chronic radiation injuries in rodent models, and there is evidence for similar effects in humans. In rodent models ACE inhibitors are effective mitigators of radiation injury to kidney, lung, central nervous system (CNS) and skin, even when started weeks after irradiation. In humans, the best data for their efficacy as radiation countermeasures comes from retrospective studies of injuries in radiotherapy patients. We propose that ACE inhibitors, at doses approved for human use for other indications, could be used to reduce the risk of chronic radiation injuries from deep-space exploration. Because of the potential interaction of ACE inhibitors and microgravity (due to effects of ACE inhibitors on fluid balance) use might be restricted to post-exposure when/if radiation exposures reached a danger level. A major unresolved issue for this approach is the sparse evidence for the efficacy of ACE inhibitors after low-dose-rate exposure and/or for high-LET radiations (as would occur on long-duration space flights). A second issue is that the lack of a clear mechanism of action of the ACE inhibitors as mitigators makes obtaining an appropriate label under the Food and Drug Administration Animal Rule difficult.
Collapse
Affiliation(s)
- John E Moulder
- Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 United States
| | - Eric P Cohen
- Nephrology, New York University School of Medicine, 550 First Ave, New York, NY 10016 United States.
| | - Meetha Medhora
- Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 United States
| | - Brian L Fish
- Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 United States
| |
Collapse
|
11
|
Mostaghimi S, Mehrvar S, Foomani FH, Narayanan J, Fish B, Camara AKS, Medhora M, Ranji M. Vascular regression in the kidney: changes in 3D vessel structure with time post-irradiation. BIOMEDICAL OPTICS EXPRESS 2022; 13:4338-4352. [PMID: 36032582 PMCID: PMC9408260 DOI: 10.1364/boe.464426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Though angiogenesis has been investigated in depth, vascular regression and rarefaction remain poorly understood. Regression of renal vasculature accompanies many pathological states such as diabetes, hypertension, atherosclerosis, and radiotherapy. Radiation decreases microvessel density in multiple organs, though the mechanism is not known. By using a whole animal (rat) model with a single dose of partial body irradiation to the kidney, changes in the volume of renal vasculature were recorded at two time points, 60 and 90 days after exposure. Next, a novel vascular and metabolic imaging (VMI) technique was used to computationally assess 3D vessel diameter, volume, branch depth, and density over multiple levels of branching down to 70 µm. Four groups of rats were studied, of which two groups received a single dose of 12.5 Gy X-rays. The kidneys were harvested after 60 or 90 days from one irradiated and one non-irradiated group at each time point. Measurements of the 3D vasculature showed that by day-90 post-radiation, when renal function is known to deteriorate, total vessel volume, vessel density, maximum branch depth, and the number of terminal points in the kidneys decreased by 55%, 57%, 28%, and 53%, respectively. Decreases in the same parameters were not statistically significant at 60 days post-irradiation. Smaller vessels with internal diameters of 70-450 µm as well as large vessels of diameter 451-850 µm, both decreased by 90 days post-radiation. Vascular regression in the lungs of the same strain of irradiated rats has been reported to occur before 60 days supporting the hypothesis that this process is regulated in an organ-specific manner and occurs by a concurrent decrease in luminal diameters of small as well as large blood vessels.
Collapse
Affiliation(s)
- Soudeh Mostaghimi
- Department of Biomedical Engineering at University of California, Irvine, CA 92697, USA
| | | | - Farnaz H. Foomani
- Department of Electrical Engineering and Computer Science at University of Wisconsin, Milwaukee, WI 53211, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian Fish
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Meetha Medhora
- Department of Radiation Oncology and Cardiovascular Research Center at Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Contributed equally
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science at Florida Atlantic University, Boca Raton, FL 33431, USA
- Contributed equally
| |
Collapse
|
12
|
Gasperetti T, Sharma GP, Frei AC, Pierce L, Veley D, Szalewski N, Narayanan J, Fish BL, Himburg HA. Mitigation of Multi-Organ Radiation Injury with ACE2 Agonist Diminazene Aceturate. Radiat Res 2022; 198:325-335. [PMID: 35904437 DOI: 10.1667/rade-22-00055.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
The renin-angiotensin system (RAS) is known to regulate the pathogenesis of radiation-induced injury as inhibitors of the RAS enzyme angiotensin converting enzyme (ACE) have established function as mitigators of multi-organ radiation injury. To further elucidate the role of RAS signaling during both the acute and delayed syndromes of radiation exposure, we have evaluated whether pharmacologic modulation of alternate RAS enzyme angiotensin converting enzyme 2 (ACE2) reduces the pathogenesis of multi-organ radiation-induced injuries. Here, we demonstrate pharmacologic ACE2 activation with the small molecule ACE2 agonist diminazene aceturate (DIZE) improves survival in rat models of both hematologic acute radiation syndrome (H-ARS) and multi-organ delayed effects of acute radiation exposure (DEARE). In the H-ARS model, DIZE treatment increased 30-day survival by 30% compared to vehicle control rats after a LD50/30 total-body irradiation (TBI) dose of 7.75 Gy. In the mitigation of DEARE, ACE2 agonism with DIZE increased median survival by 30 days, reduced breathing rate, and reduced blood urea nitrogen (BUN) levels compared to control rats after partial-body irradiation (PBI) of 13.5 Gy. DIZE treatment was observed to have systemic effects which may explain the multi-organ benefits observed including mobilization of hematopoietic progenitors to the circulation and a reduction in plasma TGF-beta levels. These data suggest the ACE2 enzyme plays a critical role in the RAS-mediated pathogenesis of radiation injury and may be a potential therapeutic target for the development of medical countermeasures for acute radiation exposure.
Collapse
Affiliation(s)
- Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
14
|
Hinzman CP, Jayatilake M, Bansal S, Fish BL, Li Y, Zhang Y, Bansal S, Girgis M, Iliuk A, Xu X, Fernandez JA, Griffin JH, Ballew EA, Unger K, Boerma M, Medhora M, Cheema AK. An optimized method for the isolation of urinary extracellular vesicles for molecular phenotyping: detection of biomarkers for radiation exposure. J Transl Med 2022; 20:199. [PMID: 35538547 PMCID: PMC9092707 DOI: 10.1186/s12967-022-03414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. Methods 3 EV isolation methods were compared: ultracentrifugation, magnetic bead-based, and size-exclusion chromatography from 0.5 mL or 1 mL of rat and human urine. EV yield and mass spectrometry signals (Q-ToF and Triple Quad) were evaluated from each method. Metabolomic profiling was performed on EVs isolated from the urine of rats exposed to ionizing radiation 1-, 14-, 30- or 90-days post-exposure, and human urine from patients receiving thoracic radiotherapy for the treatment of lung cancer pre- and post-treatment. Results Size-exclusion chromatography is the preferred method for EV isolation from 0.5 mL of urine. Mass spectrometry-based metabolomic analyses of EV cargo identified biochemical changes induced by radiation, including altered nucleotide, folate, and lipid metabolism. We have provided standard operating procedures for implementation of these methods in other laboratories. Conclusions We demonstrate that EVs can be isolated from small volumes of urine and analytically investigated for their biochemical contents to detect radiation induced metabolomic changes. These findings lay a groundwork for future development of methods to monitor response to radiotherapy and can be extended to an array of molecular phenotyping studies aimed at characterizing EV cargo. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03414-7.
Collapse
Affiliation(s)
- Charles P Hinzman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Meth Jayatilake
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Yubo Zhang
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Michael Girgis
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN, 47906, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jose A Fernandez
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Elizabeth A Ballew
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC, 20007, USA
| | - Keith Unger
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC, 20007, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AK, 72205, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amrita K Cheema
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA. .,Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
15
|
Baran M, Yay A, Onder GO, Canturk Tan F, Yalcin B, Balcioglu E, Yıldız OG. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int J Radiat Biol 2022; 98:1473-1483. [PMID: 35171756 DOI: 10.1080/09553002.2022.2033339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Although radiation is one of the basic methods commonly used in cancer treatment, it inevitably enters the field of treatment in healthy tissues and is adversely affected by the acute and chronic side effects of radiation. This study evaluated the possible protective effects of quercetin, an antioxidant agent, against liver and kidney damage in rats exposed to a whole-body single dose of radiation (10 Gy of gamma-ray). MATERIALS AND METHODS The study groups were formed as control, sham, quercetin, radiation, quercetin + radiation and radiation + quercetin using 60 male Wistar albino (200-250 g, 3 months old) rats, including 10 rats in each group. The gamma-ray provided by the Co60 teletherapy machine was given to the whole body as external irradiation. According to the groups, quercetin was administered to rats at 50 mg/kg/day via oral gavage before or after radiation administration. The rats were sacrificed the day after irradiation and the extracted tissue samples from all groups were compared histologically and immunohistochemically. DNA damage was determined by the neutral comet assay technique. Also, malondialdehyde (MDA) and glutathione peroxidase (GSH) were evaluated in liver and kidney tissues by the ELISA method. RESULTS Histopathological changes were observed altered morphology of liver and kidney tissues in the radiation groups. Sinusoidal dilatations, vacuolization, and hepatic parenchyma necrosis in the liver, while in kidneys, glomerular shrinkage, widened Bowman's space, tubular dilatation, and inflammation were evident. TNF-α, IL1-α, HIF1-α, and caspase 3 immunoreactivities in tissues were determined by immunohistochemistry. High caspase 3 positive cell number confirmed apoptosis, the comet parameters were decreased in the quercetin + radiation group. When compared to the control group, the exposure to radiation showed a marked elevation in MDA which was accompanied by high GSH. This damage was reduced in the quercetin + radiation group. CONCLUSIONS With the results obtained from the study; Quercetin is thought to have a protective potential against radiation-induced liver and kidney damage due to its radioprotective effect.
Collapse
Affiliation(s)
- Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Fazile Canturk Tan
- Department of Biophysics, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Betul Yalcin
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Oguz Galip Yıldız
- Department of Radiation Oncology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
16
|
Satyamitra MM, DiCarlo AL, Hollingsworth BA, Winters TA, Taliaferro LP. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat Res 2021; 197:514-532. [PMID: 34879151 DOI: 10.1667/rade-21-00157.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/03/2022]
Abstract
Biomarkers are important indicators of biological processes in health or disease. For this reason, they play a critical role in advanced development of radiation biodosimetry tools and medical countermeasures (MCMs). They can aid in the assessment of radiation exposure level, extent of radiation-induced injury, and/or efficacy of an MCM. This meeting report summarizes the presentations and discussions from the 2020 workshop titled, "Biomarkers in Radiation Biodosimetry and Medical Countermeasures," sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID). The main goals of this meeting were to: 1. Provide an overview on biomarkers and to focus on the state of science with regards to biomarkers specific to radiation biodosimetry and MCMs; 2. Understand developmental challenges unique to the role of biomarkers in the fields of radiation biodosimetry and MCM development; and 3. Identify existing gaps and needs for translational application.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
17
|
Gao F, Dong W, Liu P, Narayanan J, Fish BL, Jacobs ER, Medhora M. Molecular Changes in miRNA in Irradiated Rat Kidneys: Role of miR-34a and its Vascular Targets in the Notch Pathway. Radiat Res 2021; 196:611-622. [PMID: 34330145 PMCID: PMC10416360 DOI: 10.1667/rade-20-00078.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/19/2021] [Indexed: 11/03/2022]
Abstract
The mechanism(s) of vascular regression in adult organs remains an unexplored gap. Irradiation to the kidney results in vascular regression and renal failure. The goal of this work was to determine molecular mechanism(s) of radiation-induced vascular regression and its mitigation by the drug lisinopril. Female WAG/RijCmcr rats received either 13 Gy X-ray irradiation, sparing one leg, or no irradiation, the latter serving as age-matched controls. Some irradiated animals received lisinopril. Kidney miRNA-seq was performed 35 days postirradiation, before symptoms of nephropathy. MicroRNA expression profiles were compared with data from humans. MicroRNA targets were predicted using TargetScan and confirmed by qRT-PCR and Western blot. Renal vascular endothelial cell density was evaluated at 100 days to confirm vascular regression. The normal rat kidney microRNA profile resembled that of humans. MiR-34a was increased >7-fold and emerged as the predominant rat microRNA altered by radiation. Expression of Jagged1, a ligand in the Notch pathway of vascular development and a target of miR-34a-5p was decreased by radiation but not in irradiated rats receiving lisinopril. Radiation decreased endothelial cells in the kidneys at 100 days, confirming vascular regression. In conclusion, the results of this study showed that radiation greatly increased miRNA34-a in rat kidneys, while lisinopril mitigated radiation-induced decrease of the Notch ligand, Jagged1, a molecular target of miRNA34-a.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of College of Dental Medicine - Illinois, Midwestern University, Downers Grove, Illinois
| | - Wei Dong
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pengyuan Liu
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Brian L. Fish
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Elizabeth R. Jacobs
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Taliaferro LP, Cassatt DR, Horta ZP, Satyamitra MM. Meeting Report: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome. Radiat Res 2021; 196:436-446. [PMID: 34237144 PMCID: PMC8532024 DOI: 10.1667/rade-21-00048.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/03/2022]
Abstract
The National Institute of Allergy and Infectious Diseases, Radiation and Nuclear Countermeasures Program, was tasked by the United States Congress and the U.S. Department of Health and Human Services to identify and fund early-to-mid-stage development of medical countermeasures (MCMs) to treat radiation-induced injuries. In developing MCMs to treat various sub-syndromes (e.g., hematopoietic, gastrointestinal, lung), it is important to investigate whether a poly-pharmacy approach (i.e., drug cocktails) can provide additive benefits to mitigate injuries arising from the acute radiation syndrome (ARS). In addition, potential drug-drug interactions must be examined. For this reason, a workshop was held, which centered on understanding the current state of research investigating poly-pharmacy approaches to treat radiation injuries. The first session set the stage with an introduction to the concept of operations or support available for the response to a nuclear incident, as this is the key to any emergency response, including MCM availability and distribution. The second session followed the natural history of ARS in both humans and animal models to underscore the complexity of ARS and why a poly-pharmacy approach may be necessary. The third session featured talks from investigators conducting current MCM poly-pharmacy research. The meeting closed with a focus on regulatory considerations for the development of poly-pharmacy approaches or combination treatments for ARS.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | | | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
19
|
Fish BL, MacVittie TJ, Gao F, Narayanan J, Gasperetti T, Scholler D, Sheinin Y, Himburg HA, Hart B, Medhora M. Rat Models of Partial-body Irradiation with Bone Marrow-sparing (Leg-out PBI) Designed for FDA Approval of Countermeasures for Mitigation of Acute and Delayed Injuries by Radiation. HEALTH PHYSICS 2021; 121:419-433. [PMID: 34546222 PMCID: PMC8577554 DOI: 10.1097/hp.0000000000001444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
ABSTRACT The goal of this study was to develop rat models of partial body irradiation with bone-marrow sparing (leg-out PBI) to test medical countermeasures (MCM) of both acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE) under the FDA animal rule. The leg-out PBI models were developed in female and male WAG/RijCmcr rats at doses of 12.5-14.5 Gy. Rats received supportive care consisting of fluids and antibiotics. Gastrointestinal ARS (GI-ARS) was assessed by lethality to d 7 and diarrhea scoring to d 10. Differential blood counts were analyzed between d 1-42 for the natural history of hematopoietic ARS (H-ARS). Lethality and breathing intervals (BI) were measured between d 28-110 to assess delayed injury to the lung (L-DEARE). Kidney injury (K-DEARE) was evaluated by measuring elevation of blood urea nitrogen (BUN) between d 90-180. The LD50/30, including both lethality from GI-ARS and H-ARS, for female and male rats are 14.0 Gy and 13.5 Gy, respectively, while the LD50/7 for only GI-ARS are 14.3 Gy and 13.6 Gy, respectively. The all-cause mortalities, including ARS and L-DEARE, through 120 d (LD50/120) are 13.5 Gy and 12.9 Gy, respectively. Secondary end points confirmed occurrence of four distinct sequelae representing GI, hematopoietic, lung, and kidney toxicities after leg-out PBI. Adult rat models of leg-out PBI showed the acute and long-term sequelae of radiation damage that has been reported in human radiation exposure case studies. Sex-specific differences were observed in the DRR between females and males. These rat models are among the most useful for the development and approval of countermeasures for mitigation of radiation injuries under the FDA animal rule.
Collapse
Affiliation(s)
- Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yuri Sheinin
- Department of Pathology, Medical College of Wisconsin, 9200 Watertown Plank Road, Milwaukee, WI 53226
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Barry Hart
- Innovation Pathways, Palo Alto, CA. 94301
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
20
|
Satyamitra MM, Cassatt DR, Taliaferro LP. Meeting Commentary: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome (ARS). Radiat Res 2021; 196:423-428. [PMID: 34270773 PMCID: PMC8522554 DOI: 10.1667/rade-21-00053.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
21
|
DiCarlo AL. Scientific research and product development in the United States to address injuries from a radiation public health emergency. JOURNAL OF RADIATION RESEARCH 2021; 62:752-763. [PMID: 34308479 PMCID: PMC8438480 DOI: 10.1093/jrr/rrab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The USA has experienced one large-scale nuclear incident in its history. Lessons learned during the Three-Mile Island nuclear accident provided government planners with insight into property damage resulting from a low-level release of radiation, and an awareness concerning how to prepare for future occurrences. However, if there is an incident resulting from detonation of an improvised nuclear device or state-sponsored device/weapon, resulting casualties and the need for medical treatment could overwhelm the nation's public health system. After the Cold War ended, government investments in radiation preparedness declined; however, the attacks on 9/11 led to re-establishment of research programs to plan for the possibility of a nuclear incident. Funding began in earnest in 2004, to address unmet research needs for radiation biomarkers, devices and products to triage and treat potentially large numbers of injured civilians. There are many biodosimetry approaches and medical countermeasures (MCMs) under study and in advanced development, including those to address radiation-induced injuries to organ systems including bone marrow, the gastrointestinal (GI) tract, lungs, skin, vasculature and kidneys. Biomarkers of interest in determining level of radiation exposure and susceptibility of injury include cytogenetic changes, 'omics' technologies and other approaches. Four drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of acute radiation syndrome (ARS), with other licensures being sought; however, there are still no cleared devices to identify radiation-exposed individuals in need of treatment. Although many breakthroughs have been made in the efforts to expand availability of medical products, there is still work to be done.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Corresponding author. Radiation and Nuclear Countermeasures Program, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Room 7B13, Rockville, MD, USA. Office Phone: 1-240-627-3492; Office Fax: 1-240-627-3113;
| |
Collapse
|
22
|
Mehrvar S, Mostaghimi S, Camara AKS, Foomani FH, Narayanan J, Fish B, Medhora M, Ranji M. Three-dimensional vascular and metabolic imaging using inverted autofluorescence. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210064R. [PMID: 34240589 PMCID: PMC8265174 DOI: 10.1117/1.jbo.26.7.076002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/15/2021] [Indexed: 05/27/2023]
Abstract
SIGNIFICANCE Three-dimensional (3D) vascular and metabolic imaging (VMI) of whole organs in rodents provides critical and important (patho)physiological information in studying animal models of vascular network. AIM Autofluorescence metabolic imaging has been used to evaluate mitochondrial metabolites such as nicotinamide adenine dinucleotide (NADH) and flavine adenine dinucleotide (FAD). Leveraging these autofluorescence images of whole organs of rodents, we have developed a 3D vascular segmentation technique to delineate the anatomy of the vasculature as well as mitochondrial metabolic distribution. APPROACH By measuring fluorescence from naturally occurring mitochondrial metabolites combined with light-absorbing properties of hemoglobin, we detected the 3D structure of the vascular tree of rodent lungs, kidneys, hearts, and livers using VMI. For lung VMI, an exogenous fluorescent dye was injected into the trachea for inflation and to separate the airways, confirming no overlap between the segmented vessels and airways. RESULTS The kidney vasculature from genetically engineered rats expressing endothelial-specific red fluorescent protein TdTomato confirmed a significant overlap with VMI. This approach abided by the "minimum work" hypothesis of the vascular network fitting to Murray's law. Finally, the vascular segmentation approach confirmed the vascular regression in rats, induced by ionizing radiation. CONCLUSIONS Simultaneous vascular and metabolic information extracted from the VMI provides quantitative diagnostic markers without the confounding effects of vascular stains, fillers, or contrast agents.
Collapse
Affiliation(s)
- Shima Mehrvar
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Soudeh Mostaghimi
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Amadou K. S. Camara
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Anesthesiology, Milwaukee, Wisconsin, United States
| | - Farnaz H. Foomani
- University of Wisconsin–Milwaukee, Biophotonics Laboratory, Department of Electrical Engineering, Milwaukee, Wisconsin, United States
| | - Jayashree Narayanan
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Brian Fish
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Meetha Medhora
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, United States
- Medical College of Wisconsin, Cardiovascular Research Center, Department of Radiation Oncology, Milwaukee, Wisconsin, United States
| | - Mahsa Ranji
- Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, Boca Raton, Florida, United States
| |
Collapse
|
23
|
Gasperetti T, Miller T, Gao F, Narayanan J, Jacobs ER, Szabo A, Cox GN, Orschell CM, Fish BL, Medhora M. Polypharmacy to Mitigate Acute and Delayed Radiation Syndromes. Front Pharmacol 2021; 12:634477. [PMID: 34079456 PMCID: PMC8165380 DOI: 10.3389/fphar.2021.634477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
There is a need for countermeasures to mitigate lethal acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE). In WAG/RijCmcr rats, ARS occurs by 30-days following total body irradiation (TBI), and manifests as potentially lethal gastrointestinal (GI) and hematopoietic (H-ARS) toxicities after >12.5 and >7 Gy, respectively. DEARE, which includes potentially lethal lung and kidney injuries, is observed after partial body irradiation >12.5 Gy, with one hind limb shielded (leg-out PBI). The goal of this study is to enhance survival from ARS and DEARE by polypharmacy, since no monotherapy has demonstrated efficacy to mitigate both sets of injuries. For mitigation of ARS following 7.5 Gy TBI, a combination of three hematopoietic growth factors (polyethylene glycol (PEG) human granulocyte colony-stimulating factor (hG-CSF), PEG murine granulocyte-macrophage-CSF (mGM-CSF), and PEG human Interleukin (hIL)-11), which have shown survival efficacy in murine models of H-ARS were tested. This triple combination (TC) enhanced survival by 30-days from ∼25% to >60%. The TC was then combined with proven medical countermeasures for GI-ARS and DEARE, namely enrofloxacin, saline and the angiotensin converting enzyme inhibitor, lisinopril. This combination of ARS and DEARE mitigators improved survival from GI-ARS, H-ARS, and DEARE after 7.5 Gy TBI or 13 Gy PBI. Circulating blood cell recovery as well as lung and kidney function were also improved by TC + lisinopril. Taken together these results demonstrate an efficacious polypharmacy to mitigate radiation-induced ARS and DEARE in rats.
Collapse
Affiliation(s)
- Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tessa Miller
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Veterans Affairs, Research Service, Zablocki VAMC, Milwaukee, WI, United States
| | - Aniko Szabo
- Institute for Health and Equity, Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - George N Cox
- Bolder BioTechnology Inc., Boulder, CO, United States
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Veterans Affairs, Research Service, Zablocki VAMC, Milwaukee, WI, United States
| |
Collapse
|
24
|
Singh VK, Seed TM. Repurposing Pharmaceuticals Previously Approved by Regulatory Agencies to Medically Counter Injuries Arising Either Early or Late Following Radiation Exposure. Front Pharmacol 2021; 12:624844. [PMID: 34040517 PMCID: PMC8141805 DOI: 10.3389/fphar.2021.624844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available. Approval of drugs that are already in clinical use for one indication and are being repurposed for another indication is inherently faster and more cost effective than for new agents that lack regulatory approval of any sort. There are four known growth factors which have been repurposed in the recent past as radiomitigators following the FDA Animal Rule: Neupogen, Neulasta, Leukine, and Nplate. These four drugs were in clinic for several decades for other indications and were repurposed. A large number of additional agents approved by various regulatory authorities for given indications are currently under investigation for dual use for acute radiation syndrome or for delayed pathological effects of acute radiation exposure. The process of drug repurposing, however, is not without its own set of challenges and limitations.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
25
|
Medhora M, Phadnis P, Narayanan J, Gasperetti T, Zielonka J, Moulder JE, Fish BL, Szabo A. Radiation Increases Bioavailability of Lisinopril, a Mitigator of Radiation-Induced Toxicities. Front Pharmacol 2021; 12:646076. [PMID: 33986677 PMCID: PMC8111401 DOI: 10.3389/fphar.2021.646076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
There are no FDA-approved drugs to mitigate the delayed effects of radiation exposure that may occur after a radiological attack or nuclear accident. To date, angiotensin-converting enzyme inhibitors are one of the most successful candidates for mitigation of hematopoietic, lung, kidney, and brain injuries in rodent models and may mitigate delayed radiation injuries after radiotherapy. Rat models of partial body irradiation sparing part of one hind leg (leg-out PBI) have been developed to simultaneously expose multiple organs to high doses of ionizing radiation and avoid lethal hematological toxicity to study the late effects of radiation. Exposures between 9 and 14 Gy damage the gut and bone marrow (acute radiation syndrome), followed by delayed injuries to the lung, heart, and kidney. The goal of the current study is to compare the pharmacokinetics (PK) of a lead angiotensin converting enzyme (ACE) inhibitor, lisinopril, in irradiated vs. nonirradiated rats, as a step toward licensure by the FDA. Methods: Female WAG/RijCmcr rats were irradiated with 12.5–13 Gy leg-out PBI. At day 35 after irradiation, during a latent period for injury, irradiated and nonirradiated siblings received a single gavage (0.3 mg, 0.6 mg) or intravenous injection (0.06 mg) of lisinopril. Plasma, urine, lung, liver and kidney levels of lisinopril were measured at different times. PK modeling (R package) was performed to track distribution of lisinopril in different compartments. Results: A two-compartment (central plasma and periphery) PK model best fit lisinopril measurements, with two additional components, the gavage and urine. The absorption and renal clearance rates were similar between nonirradiated and irradiated animals (respectively: ratios 0.883, p = 0.527; 0.943, p = 0.605). Inter-compartmental clearance (from plasma to periphery) for the irradiated rats was lower than for the nonirradiated rats (ratio 0.615, p = 0.003), while the bioavailability of the drug was 33% higher (ratio = 1.326, p < 0.001). Interpretation: Since receptors for lisinopril are present in endothelial cells lining blood vessels, and radiation induces vascular regression, it is possible that less lisinopril remains bound in irradiated rats, increasing circulating levels of the drug. However, this study cannot rule out changes in total amount of lisinopril absorbed or excreted long-term, after irradiation in rats.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States.,Department of Medicine, Medical College of WI, Milwaukee, WI, United States.,Department of Physiology, Medical College of WI, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of WI, Milwaukee, WI, United States.,Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI, United States
| | | | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Jacek Zielonka
- Department of Biophysics, Medical College of WI, Milwaukee, WI, United States.,Cancer Center Redox and Bioenergetics Shared Resource, Medical College of WI, Milwaukee, WI, United States
| | - John E Moulder
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of WI, Milwaukee, WI, United States
| | - Aniko Szabo
- Institute for Health and Equity, Division of Biostatistics, Medical College of WI, Milwaukee, WI, United States
| |
Collapse
|
26
|
Rios CI, Cassatt DR, Hollingsworth BA, Satyamitra MM, Tadesse YS, Taliaferro LP, Winters TA, DiCarlo AL. Commonalities Between COVID-19 and Radiation Injury. Radiat Res 2021; 195:1-24. [PMID: 33064832 PMCID: PMC7861125 DOI: 10.1667/rade-20-00188.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023]
Abstract
As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., "COVID toes," suggestive of microvessel damage). Still others alarm healthcare providers with extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. Researchers are quickly refocusing their science to address this enigmatic virus that seems to unveil itself in new ways without discrimination. As investigators begin to identify early markers of disease, identification of common threads with other pathologies may provide some clues. Interestingly, years of research in the field of radiation biology documents the complex multiorgan nature of another disease state that occurs after exposure to high doses of radiation: the acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, and drives the multi-system damage that dramatically alters biological homeostasis. Both conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a demonstrably higher health impact in patients having underlying medical conditions. The potentially dramatic human impact of ARS has guided the science that has identified many biomarkers of radiation exposure, established medical management strategies for ARS, and led to the development of medical countermeasures for use in the event of a radiation public health emergency. These efforts can now be leveraged to help elucidate mechanisms of action of COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to approaches that could accelerate the discovery of treatments for both.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Yeabsera S. Tadesse
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
27
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
28
|
Zhang G, Du Y, Sun N, Sun Y, Zhang L, Li X, Li X. Ulinastatin enhances autophagy against radiation-induced lung injury in mice. Transl Cancer Res 2020; 9:4162-4172. [PMID: 35117785 PMCID: PMC8798660 DOI: 10.21037/tcr-19-3018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/12/2020] [Indexed: 01/09/2023]
Abstract
Background To investigate the enhancement of autophagy by ulinastatin for protecting against radiation-induced lung injury (RILI) in mice. Methods Forty C57BL/6 mice were equally divided into (I) control (C), (II) irradiation (R), (III) ulinastatin (U), (IV) 3-methyladenine (3-MA) (M), and (V) ulinastatin plus 3-MA (U+M) groups. Three mice in each group were infected with adeno-associated virus (AAV) carrying green fluorescent protein (GFP)-1A/1B-light chain 3 (GFP-LC3) in the lung for the marker of autophagy. All mice in R, U, M and U+M groups were given chest irradiation (1 Gy/min, 12 min), following injection with normal saline in C and U groups, ulinastatin (500,000 IU/kg·d, i.p., 7 d) in U group, 3-MA (10 mg/kg·d, i.p., 7 d) in M group, and ulinastatin plus 3-MA in U+M group. The effects of ulinastatin on lung injury and autophagy were evaluated by electron microscope (EM), immunohistochemistry, mRNA expression levels of collagen alpha-1 (COL1A1), collagen alpha-2 (COL1A2), α-smooth muscle actin (α-SMA) and transforming growth factor β1 (TGF-β1), and protein levels of LC3, α-SMA, COL1A2, TGF-β1, matrix metalloproteinase-2 (MMP-2) and MMP-9. Results EM observation revealed that the radiation caused the injury of type I and II alveolar epithelial cells, which was improved by ulinastatin treatment associated with increased the numbers of autophagosomes. GFP-LC3 signals was significantly enhanced by ulinastatin detected by immune histochemical tests. At transcriptional and/or translational levels, ulinastatin significantly enhanced the expression levels of TGF-β1 and LC3 but reduced COL1A1, COL1A2, α-SMA, MMP-2 and MMP-9 after radiation-induced RILI. Conclusions Ulinastatin reduces RILI by enhancing autophagy, which might be a potential therapeutic drug in the protection against RILI.
Collapse
Affiliation(s)
- Guoxing Zhang
- Department of Intensive Care Unit, Jilin Cancer Hospital, Changchun, China
| | - Yujun Du
- Department of Kidney, The First Hospital of Jilin University, Changchun, China
| | - Ni Sun
- Department of Intensive Care Unit, Jilin Cancer Hospital, Changchun, China
| | - Yu Sun
- Department of Intensive Care Unit, Jilin Cancer Hospital, Changchun, China
| | - Liying Zhang
- Department of Intensive Care Unit, Jilin Cancer Hospital, Changchun, China
| | - Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiujiang Li
- Department of Intensive Care Unit, Jilin Cancer Hospital, Changchun, China
| |
Collapse
|
29
|
Medhora M, Gasperetti T, Schamerhorn A, Gao F, Narayanan J, Lazarova Z, Jacobs ER, Tarima S, Fish BL. Wound Trauma Exacerbates Acute, but not Delayed, Effects of Radiation in Rats: Mitigation by Lisinopril. Int J Mol Sci 2020; 21:ijms21113908. [PMID: 32486174 PMCID: PMC7312718 DOI: 10.3390/ijms21113908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
The goal of this study is to understand and mitigate the effects of wounds on acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), for preparedness against a radiological attack or accident. Combined injuries from concomitant trauma and radiation are likely in these scenarios. Either exacerbation or mitigation of radiation damage by wound trauma has been previously reported in preclinical studies. Female WAG/RijCmcr rats received 13 Gy X-rays, with partial-body shielding of one leg. Within 2 h, irradiated rats and non-irradiated controls were given full-thickness skin wounds with or without lisinopril, started orally 7 days after irradiation. Morbidity, skin wound area, breathing interval and blood urea nitrogen were measured up to 160 days post-irradiation to independently evaluate wound trauma and DEARE. Wounding exacerbated morbidity in irradiated rats between 5 and 14 days post-irradiation (during the ARS phase), and irradiation delayed wound healing. Wounding did not alter delayed morbidities from radiation pneumonitis or nephropathy after 30 days post-irradiation. Lisinopril did not mitigate wound healing, but markedly decreased morbidity during DEARE from 31 through 160 days. The results derived from this unique model of combined injuries suggest different molecular mechanisms of injury and healing of ARS and DEARE after radiation exposure.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI 53295, USA
- Correspondence: ; Tel.: +1-414-955-5612; Fax: +1-414-955-6459
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Ashley Schamerhorn
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Zelmira Lazarova
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Elizabeth R. Jacobs
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI 53295, USA
| | - Sergey Tarima
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| |
Collapse
|
30
|
Abstract
Renal dysfunction because of radiation exposure was recognized decades ago. The incidence declined when more effective chemotherapeutic agents became available. However, there appears to be a resurgence with the advent of total body irradiation used prior to hematopoietic stem cell transplantation. Several chemotherapeutic drugs used prior to total body irradiation have some ionizing radiation potentiating effects. Chronic kidney disease that occurs after hematopoietic stem cell transplantation is known to occur due to nephrotoxicity from medications, graft-versus-host disease, and the currently under-recognized radiation exposure. The clinical features vary depending on the dose of radiation and the volume of single or bilateral kidneys exposed. The usual symptoms of fatigue, edema, anemia, malignant hypertension, azotemia, and shortness of breath appear in 6–12 months of exposure. Since this is an under-recognized entity, there are no large controlled trials to guide therapy. This review highlights some of the experimental data that have shown some promising results for treatment. There is need for further studies on the current incidence and prevalence and clinical trials to guide treatment, based on the experimental data available.
Collapse
|
31
|
Groves AM, Williams JP. Saving normal tissues - a goal for the ages. Int J Radiat Biol 2019; 95:920-935. [PMID: 30822213 PMCID: PMC7183326 DOI: 10.1080/09553002.2019.1589654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Almost since the earliest utilization of ionizing radiation, many within the radiation community have worked toward either preventing (i.e. protecting) normal tissues from unwanted radiation injury or rescuing them from the downstream consequences of exposure. However, despite over a century of such investigations, only incremental gains have been made toward this goal and, with certainty, no outright panacea having been found. In celebration of the 60th anniversary of the International Journal of Radiation Biology and to chronicle the efforts that have been made to date, we undertook a non-rigorous survey of the articles published by normal tissue researchers in this area, using those that have appeared in the aforementioned journal as a road map. Three 'snapshots' of publications on normal tissue countermeasures were taken: the earliest (1959-1963) and most recent (2013-2018) 5-year of issues, as well as a 5-year intermediate span (1987-1991). Limiting the survey solely to articles appearing within International Journal of Radiation Biology likely reduced the number of translational studies interrogated given the basic science tenor of this particular publication. In addition, by taking 'snapshots' rather than considering the entire breadth of the journal's history in this field, important papers that were published during the interim periods were omitted, for which we apologize. Nonetheless, since the journal's inception, we observed that, during the chosen periods, the majority of studies undertaken in the field of normal tissue countermeasures, whether investigating radiation protectants, mitigators or treatments, have focused on agents that interfere with the physical, chemical and/or biological effects known to occur during the acute period following whole body/high single dose exposures. This relatively narrow approach to the reduction of normal tissue effects, especially those that can take months, if not years, to develop, seems to contradict our growing understanding of the progressive complexities of the microenvironmental disruption that follows the initial radiation injury. Given the analytical tools now at our disposal and the enormous benefits that may be reaped in terms of improving patient outcomes, as well as the potential for offering countermeasures to those affected by accidental or mass casualty exposures, it appears time to broaden our approaches to developing normal tissue countermeasures. We have no doubt that the contributors and readership of the International Journal of Radiation Biology will continue to contribute to this effort for the foreseeable future.
Collapse
Affiliation(s)
- Angela M. Groves
- Departments of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, USA
| | - Jacqueline P. Williams
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, USA
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
32
|
Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril. Ann Biomed Eng 2019; 47:1564-1574. [PMID: 30963380 DOI: 10.1007/s10439-019-02255-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
The kidney is one of the most radiosensitive organs; it is the primary dose-limiting organ in radiotherapies for upper abdominal cancers. The role of mitochondrial redox state in the development and treatment of renal radiation injury, however, remains ill-defined. This study utilizes 3D optical cryo-imaging to quantify renal mitochondrial bioenergetics dysfunction after 13 Gy leg-out partial body irradiation (PBI). Furthermore, the mitigating effects of lisinopril (lisino), an anti-hypertensive angiotensin converting enzyme inhibitor, is assessed in renal radiation-induced injuries. Around day 150 post-irradiation, kidneys are harvested for cryo-imaging. The 3D images of the metabolic indices (NADH, nicotinamide adenine dinucleotide, and FAD, flavin adenine dinucleotide) are acquired, and the mitochondrial redox states of the irradiated and irradiated + lisino kidneys are quantified by calculating the volumetric mean redox ratio (NADH/FAD). PBI oxidized renal mitochondrial redox state by 78%. The kidneys from the irradiated + lisino rats showed mitigation of mitochondrial redox state by 93% compared to the PBI group. The study provides evidence for an altered bioenergetics and energy metabolism in the rat model of irradiation-induced kidney damage. In addition, the results suggest that lisinopril mitigates irradiation damage by attenuating the oxidation of mitochondria leading to increase redox ratio.
Collapse
|
33
|
Jacobs ER, Narayanan J, Fish BL, Gao F, Harmann LM, Bergom C, Gasperetti T, Strande JL, Medhora M. Cardiac Remodeling and Reversible Pulmonary Hypertension During Pneumonitis in Rats after 13-Gy Partial-Body Irradiation with Minimal Bone Marrow Sparing: Effect of Lisinopril. HEALTH PHYSICS 2019; 116:558-565. [PMID: 30624347 PMCID: PMC6384144 DOI: 10.1097/hp.0000000000000919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Total-body irradiation causes acute and delayed toxicity to hematopoietic, pulmonary, cardiac, gastrointestinal, renal, and other organ systems. Angiotensin-converting enzyme inhibitors mitigate many of the delayed injuries to these systems. The purpose of this study was to define echocardiographic features in rats at two times after irradiation, the first before lethal radiation pneumonitis (50 d) and the second after recovery from pneumonitis but before lethal radiation nephropathy (100 d), and to determine the actions of the angiotensin-converting enzyme inhibitor lisinopril. Four groups of female WAG/RijCmcr rats at 11-12 wk of age were studied: nonirradiated, nonirradiated plus lisinopril, 13-Gy partial-body irradiation sparing one hind leg (leg-out partial-body irradiation), and 13-Gy leg-out partial-body irradiation plus lisinopril. Lisinopril was started 7 d after radiation. Echocardiograms were obtained at 50 and 100 d, and cardiac histology was assessed after 100 d. Irradiation without lisinopril demonstrated echocardiographic transient pulmonary hypertension by 50 d which was largely resolved by 100 d in survivors. Irradiated rats given lisinopril showed no increase in pulmonary artery pressures at 50 d but exhibited left ventricular remodeling. By 100 d these rats showed some signs of pulmonary hypertension. Lisinopril alone had no impact on echocardiographic end points at either time point in nonirradiated rats. Mild increases in mast cells and fibrosis in the heart were observed after 100 d following 13-Gy leg-out partial-body irradiation. These data demonstrate irradiation-induced pulmonary hypertension which was reversed in survivors of pneumonitis. Lisinopril modified cardiovascular remodeling to enhance survival in this model from 41% to 86% (p = 0.0013).
Collapse
Affiliation(s)
- Elizabeth R. Jacobs
- Department of Pulmonary Medicine, Zablocki VAMC, Milwaukee
- Department of Physiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee
| | | | - Brian L. Fish
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
| | - Feng Gao
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
| | - Leanne M. Harmann
- Department of Cardiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
| | - Carmen Bergom
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
| | | | - Jennifer L. Strande
- Department of Cardiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
| | - Meetha Medhora
- Department of Radiation Oncology, Zablocki VAMC, Milwaukee
- Department of Pulmonary Medicine, Zablocki VAMC, Milwaukee
- Department of Physiology, Zablocki VAMC, Milwaukee
- Cardiovascular Center, Medical College of Wisconsin, Zablocki VAMC, Milwaukee
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee
| |
Collapse
|
34
|
Medhora M, Gao F, Gasperetti T, Narayanan J, Hye Khan MA, Jacobs ER, Fish BL. Delayed Effects of Acute Radiation Exposure (Deare) in Juvenile and Old Rats: Mitigation by Lisinopril. HEALTH PHYSICS 2019; 116:529-545. [PMID: 30624354 PMCID: PMC6384142 DOI: 10.1097/hp.0000000000000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Our goal is to develop lisinopril as a mitigator of delayed effects of acute radiation exposure in the National Institute of Allergy and Infectious Diseases program for radiation countermeasures. Published studies demonstrated mitigation of delayed effects of acute radiation exposure by lisinopril in adult rats. However, juvenile or old rats beyond their reproductive lifespans have never been tested. Since no preclinical models of delayed effects of acute radiation exposure were available in these special populations, appropriate rat models were developed to test lisinopril after irradiation. Juvenile (42-d-old, prepubertal) female and male WAG/RijCmcr (Wistar) rats were given 13-Gy partial-body irradiation with only part of one hind limb shielded. Lethality from lung injury between 39-58 d and radiation nephropathy between 106-114 d were recorded. All irradiated-only juvenile rats were morbid from delayed effects of acute radiation exposure by 114 d, while lisinopril (24 mg m d) started 7 d after irradiation and continued improved survival to 88% (p = 0.0015, n ≥ 8/group). Old rats (>483-d-old, reproductively senescent) were irradiated with 13-Gy partial-body irradiation keeping part of one leg shielded and additionally shielding the head in some animals. Irradiated old females developed lethal nephropathy, and all became morbid by 170 d after irradiation, though no rats displayed lethal radiation pneumonitis. Similar results were observed for irradiated geriatric males, though 33% of rats remained alive at 180 d after irradiation. Lisinopril mitigated radiation nephropathy in old rats of both sexes. Finally, comparison of delayed effects of acute radiation exposure between irradiated juvenile, adult, and old rats showed younger rats were more sensitive to delayed effects of acute radiation exposure with earlier manifestation of injuries to some organs.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Feng Gao
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Tracy Gasperetti
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Md. Abdul Hye Khan
- Department of Pharmacology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Elizabeth R. Jacobs
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Brian L. Fish
- Department of Radiation Oncology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
35
|
Fish BL, MacVittie TJ, Szabo A, Moulder JE, Medhora M. WAG/RijCmcr rat models for injuries to multiple organs by single high dose ionizing radiation: similarities to nonhuman primates (NHP). Int J Radiat Biol 2019; 96:81-92. [PMID: 30575429 DOI: 10.1080/09553002.2018.1554921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Defined animal models are needed to pursue the FDA Animal Rule for approval of medical countermeasure for radiation injuries. This study compares WAG/RijCmcr rat and nonhuman primate (NHP) models for acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE).Materials and methods: Irradiation models include total body irradiation, partial body irradiation with bone marrow sparing and whole thorax lung irradiations. Organ-specific sequelae of radiation injuries were compared using dose-response relationships.Results and conclusions: Rats and NHP manifest similar organ dysfunctions after radiation, starting with acute gastrointestinal (GI-ARS) and hematopoietic (H-ARS) syndromes followed by lung, heart and kidney toxicities. Humans also manifest these sequelae. Latencies for injury were earlier in rats than in NHP. After whole thorax lung irradiations (WTLI) up to 13 Gy, there was recovery of lung function from pneumonitis in rats. This has not been evaluated in NHP. The latency, incidence, severity and progression of radiation pneumonitis was not influenced by early multi-organ injury from ARS in rats or NHP. Rats developed more severe radiation nephropathy than NHP, and also progressed more rapidly. Dosimetry, anesthesia, environment, supportive care, euthanasia criteria etc., may account for the alterations in radiation sensitivity observed between species.
Collapse
Affiliation(s)
- Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA.,Charles River Laboratories, Durham, NC, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Department of Pulmonary Medicine, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cardiovascular Research Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| |
Collapse
|
36
|
Patyar RR, Patyar S. Role of drugs in the prevention and amelioration of radiation induced toxic effects. Eur J Pharmacol 2017; 819:207-216. [PMID: 29221951 DOI: 10.1016/j.ejphar.2017.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
As the use of radiation technology for nuclear warfare or for the benefits of mankind (e.g. in radiotherapy or radio-diagnosis) is increasing tremendously, the risk of associated side effects is becoming a cause of concern. These effects, ranging from nausea/vomiting to death, may result from accidental or deliberate exposure and begin in seconds. Through this review paper, efforts have been done to critically review different compounds which have been investigated as radioprotectors and radiation mitigators. Radioprotectors are compounds which are administered just before or at the time of irradiation so as to minimize the radiation induced damage to normal tissues. And radiation mitigators are the compounds which can even minimize or ameliorate post irradiaion-toxicity provided they are administered before the onset of toxic symptoms. A variety of agents have been investigated for their preventive and ameliorative potential against radiation induced toxic effects. This review article has focused on various aspects of the promising representative agents belonging to different classes of radioprotectors and mitigators. Many compounds have shown promising results, but till date only amifostine and palifermin are clinically approved by FDA. To fill this void in pharmacological armamentarium, focus should be shifted towards novel approaches.
Collapse
Affiliation(s)
| | - Sazal Patyar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. RECENT FINDINGS Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. SUMMARY High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.
Collapse
|
38
|
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Koumenis C, Segal R. Radiation Mitigating Properties of Intranasally Administered KL 4 Surfactant in a Murine Model of Radiation-Induced Lung Damage. Radiat Res 2017; 188:491-504. [PMID: 28877030 DOI: 10.1667/rr14686.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The threat of exposure to ionizing radiation from a nuclear reactor accident or deliberate terrorist actions is a significant public health concern. The lung is particularly susceptible to radiation-induced injury from external sources or inhalation of radioactive particles from radioactive fallout. Radiation-induced lung disease can manifest with an acute radiation pneumonitis and/or delayed effects leading to pulmonary fibrosis. As prior warning of radiation exposure is unlikely, medical countermeasures (MCMs) to mitigate radiation-induced lung disease that can be given in mass-casualty situations many hours or days postirradiation are needed to prevent both early and late lung damage. In this study, KL4 surfactant (lucinactant) was evaluated as a radiation mitigator in a well-characterized mouse model of targeted thoracic radiation exposure, for its effect on both early (several weeks) and late (18 weeks) lung damage. Here, 120 mg/kg total phospholipid of KL4 surfactant was administered twice daily intranasally, (enabling intrapulmonary inhalation of drug) to C57BL/6 mice 24 h after a single 13.5 Gy dose of thoracic irradiation (LD50 dose). Both early and chronic phase (2 and 4 weeks and 18 weeks postirradiation, respectively) assessments were performed. Mice were evaluated for evidence of reduced arterial blood oxygenation and early and chronic lung and systemic inflammation, lung fibrosis and oxidative stress. Analysis was done by performing lung function/respiration dynamics and measuring cellular protein content of bronchoalveolar lavage fluid (BALF), and levels of cytokines, 8-iso-prostaglandin F2α, hydroxyproline in lung and plasma, along with evaluating lung histology. The results of this study showed that intranasal delivery of KL4 surfactant was able to preserve lung function as evidenced by adequate arterial oxygen saturation and reduced lung inflammation and oxidative stress; total white count and absolute neutrophil count was decreased in BALF, as were plasma pro-inflammatory cytokine levels and biomarker of oxidative stress. KL4 surfactant is a promising MCM for mitigation of lung tissue damage after targeted, thoracic irradiation and has the potential to be developed as a broad-spectrum, multi-use MCM against chemical, biological, radiological or nuclear threat agents with potential to cause lung injury.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- a Division of Pulmonary, Allergy, and Critical Care Medicine and the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Ralph A Pietrofesa
- a Division of Pulmonary, Allergy, and Critical Care Medicine and the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Evguenia Arguiri
- a Division of Pulmonary, Allergy, and Critical Care Medicine and the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Constantinos Koumenis
- b Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Robert Segal
- c Windtree Therapeutics, Inc., Warrington, Pennsylvania, 18976
| |
Collapse
|
39
|
Micewicz ED, Kim K, Iwamoto KS, Ratikan JA, Cheng G, Boxx GM, Damoiseaux RD, Whitelegge JP, Ruchala P, Nguyen C, Purbey P, Loo J, Deng G, Jung ME, Sayre JW, Norris AJ, Schaue D, McBride WH. 4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS One 2017; 12:e0181577. [PMID: 28732024 PMCID: PMC5521796 DOI: 10.1371/journal.pone.0181577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023] Open
Abstract
Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Kwanghee Kim
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gayle M. Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Robert D. Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Prabhat Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Joseph Loo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James W. Sayre
- School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Norris
- BCN Biosciences, LLC, Pasadena, California, United States of America
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
40
|
McLaughlin MF, Donoviel DB, Jones JA. Novel Indications for Commonly Used Medications as Radiation Protectants in Spaceflight. Aerosp Med Hum Perform 2017. [PMID: 28641684 DOI: 10.3357/amhp.4735.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the space environment, the traditional radioprotective principles of time, distance, and shielding become difficult to implement. Additionally, the complex radiation environment inherent in space, the chronic exposure timeframe, and the presence of numerous confounding variables complicate the process of creating appropriate risk models for astronaut exposure. Pharmaceutical options hold tremendous promise to attenuate acute and late effects of radiation exposure in the astronaut population. Pharmaceuticals currently approved for other indications may also offer radiation protection, modulation, or mitigation properties along with a well-established safety profile. Currently there are only three agents which have been clinically approved to be employed for radiation exposure, and these only for very narrow indications. This review identifies a number of agents currently approved by the U.S. Food and Drug Administration (FDA) which could warrant further investigation for use in astronauts. Specifically, we examine preclinical and clinical evidence for statins, nonsteroidal anti-inflammatory drugs (NSAIDs), angiotensin converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), metformin, calcium channel blockers, β adrenergic receptor blockers, fingolimod, N-acetylcysteine, and pentoxifylline as potential radiation countermeasures.McLaughlin MF, Donoviel DB, Jones JA. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp Med Hum Perform. 2017; 88(7):665-676.
Collapse
|
41
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
42
|
Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol 2017. [PMID: 28650707 DOI: 10.1080/09553002.2017.1332438] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The increasing global risk of nuclear and radiological accidents or attacks has driven renewed research interest in developing medical countermeasures to potentially injurious exposures to acute irradiation. Clinical symptoms and signs of a developing acute radiation injury, i.e. the acute radiation syndrome, are grouped into three sub-syndromes named after the dominant organ system affected, namely the hematopoietic, gastrointestinal, and neurovascular systems. The availability of safe and effective countermeasures against the above threats currently represents a significant unmet medical need. This is the first article within a three-part series covering the nature of the radiation sub-syndromes, various animal models for radiation countermeasure development, and the agents currently approved by the United States Food and Drug Administration for countering the medical consequences of several of these prominent radiation exposure-associated syndromes. CONCLUSIONS From the U.S. and global perspectives, biomedical research concerning medical countermeasure development is quite robust, largely due to increased government funding following the 9/11 incidence and subsequent rise of terrorist-associated threats. A wide spectrum of radiation countermeasures for specific types of radiation injuries is currently under investigation. However, only a few radiation countermeasures have been fully approved by regulatory agencies for human use during radiological/nuclear contingencies. Additional research effort, with additional funding, clearly will be needed in order to fill this significant, unmet medical health problem.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
43
|
Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int J Radiat Oncol Biol Phys 2017; 98:662-682. [PMID: 28581409 DOI: 10.1016/j.ijrobp.2017.02.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
As more cancer patients survive their disease, concerns about radiation therapy-induced side effects have increased. The concept of radioprotection and radiation injury mitigation and treatment offers the possibility to enhance the therapeutic ratio of radiation therapy by limiting radiation therapy-induced normal tissue injury without compromising its antitumor effect. Advances in the understanding of the underlying mechanisms of radiation toxicity have stimulated radiation oncologists to target these pathways across different organ systems. These generalized radiation injury mechanisms include production of free radicals such as superoxides, activation of inflammatory pathways, and vascular endothelial dysfunction leading to tissue hypoxia. There is a significant body of literature evaluating the effectiveness of various treatments in preventing, mitigating, or treating radiation-induced normal tissue injury. Whereas some reviews have focused on a specific disease site or agent, this critical review focuses on a mechanistic classification of activity and assesses multiple agents across different disease sites. The classification of agents used herein further offers a useful framework to organize the multitude of treatments that have been studied. Many commonly available treatments have demonstrated benefit in prevention, mitigation, and/or treatment of radiation toxicity and warrant further investigation. These drug-based approaches to radioprotection and radiation injury mitigation and treatment represent an important method of making radiation therapy safer.
Collapse
|
44
|
Radioprotection as a Method to Enhance the Therapeutic Ratio of Radiotherapy. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-40854-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Fish BL, Gao F, Narayanan J, Bergom C, Jacobs ER, Cohen EP, Moulder JE, Orschell CM, Medhora M. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs. HEALTH PHYSICS 2016; 111:410-9. [PMID: 27682899 PMCID: PMC5065284 DOI: 10.1097/hp.0000000000000554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.
Collapse
Affiliation(s)
- Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Elizabeth R. Jacobs
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295
| | - Eric P. Cohen
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - John E. Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Christie M. Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
46
|
Sun Y, Du YJ, Zhao H, Zhang GX, Sun N, Li XJ. Protective effects of ulinastatin and methylprednisolone against radiation-induced lung injury in mice. JOURNAL OF RADIATION RESEARCH 2016; 57:505-511. [PMID: 27342837 PMCID: PMC5045072 DOI: 10.1093/jrr/rrw036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/29/2015] [Accepted: 02/19/2016] [Indexed: 06/06/2023]
Abstract
The effectiveness of ulinastatin and methylprednisolone in treating pathological changes in mice with radiation-induced lung injury (RILI) was evaluated. Forty C57BL/6 female mice received whole-chest radiation (1.5 Gy/min for 12 min) and were randomly allocated into Group R (single radiation, n = 10), Group U (ulinastatin treatment, n = 10), Group M (methylprednisolone treatment, n = 10), or Group UM (ulinastatin and methylprednisolone treatment, n = 10). Another 10 untreated mice served as controls (Group C). Pathological changes in lung tissue, pulmonary interstitial area density (PIAD) and expression levels of transforming growth factor β1 (TGF-β1) and tumor necrosis factor α (TNF-α) in lung tissue, serum and bronchoalveolar lavage fluid were determined. Alleviation of pathological changes in lung tissue was observed in Groups U, M and UM. Treatment with ulinastatin, methylprednisolone or both effectively delayed the development of fibrosis at 12 weeks after radiation. Ulinastatin, methylprednisolone or both could alleviate the radiation-induced increase in the PIAD (P < 0.05 or P < 0.01). Treatment with ulinastatin, methylprednisolone or both significantly reduced the expression of TNF-α, but not TGF-β1, at 9 weeks after radiation compared with Group R (P < 0.01). Ulinastatin and /: or methylprednisolone effectively decreased the level of TNF-α in lung tissue after RILI and inhibited both the inflammatory response and the development of fibrosis.
Collapse
Affiliation(s)
- Yu Sun
- Intensive Care Unit, Cancer Hospital of Jilin Province, Changchun 130021, China
| | - Yu-Jun Du
- Department of Nephrology, Bethune First Hospital of Jilin University, Changchun 130021, China
| | - Hui Zhao
- Intensive Care Unit, Cancer Hospital of Jilin Province, Changchun 130021, China
| | - Guo-Xing Zhang
- Intensive Care Unit, Cancer Hospital of Jilin Province, Changchun 130021, China
| | - Ni Sun
- Intensive Care Unit, Cancer Hospital of Jilin Province, Changchun 130021, China
| | - Xiu-Jiang Li
- Intensive Care Unit, Cancer Hospital of Jilin Province, Changchun 130021, China
| |
Collapse
|
47
|
Williams JP, Calvi L, Chakkalakal JV, Finkelstein JN, O’Banion MK, Puzas E. Addressing the Symptoms or Fixing the Problem? Developing Countermeasures against Normal Tissue Radiation Injury. Radiat Res 2016; 186:1-16. [PMID: 27332954 PMCID: PMC4991354 DOI: 10.1667/rr14473.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laura Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joe V. Chakkalakal
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - M. Kerry O’Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Edward Puzas
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
48
|
Cohen EP, Fish BL, Imig JD, Moulder JE. Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0222-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Moulder JE. 2013 Dade W. Moeller lecture: medical countermeasures against radiological terrorism. HEALTH PHYSICS 2014; 107:164-71. [PMID: 24978287 PMCID: PMC4076685 DOI: 10.1097/hp.0000000000000082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Soon after the 9-11 attacks, politicians and scientists began to question our ability to cope with a large-scale radiological terrorism incident. The outline of what was needed was fairly obvious: the ability to prevent such an attack, methods to cope with the medical consequences, the ability to clean up afterward, and the tools to figure out who perpetrated the attack and bring them to justice. The medical response needed three components: the technology to determine rapidly the radiation doses received by a large number of people, methods for alleviating acute hematological radiation injuries, and therapies for mitigation and treatment of chronic radiation injuries. Research done to date has shown that a realistic medical response plan is scientifically possible, but the regulatory and financial barriers to achieving this may currently be insurmountable.
Collapse
Affiliation(s)
- John E. Moulder
- Center for Medical Countermeasures Against Radiological Terrorism, Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 U. S. A
| |
Collapse
|