1
|
Huang Q, Wang J, Ning H, Liu W, Han X. Integrin β1 in breast cancer: mechanisms of progression and therapy. Breast Cancer 2025; 32:43-59. [PMID: 39343856 DOI: 10.1007/s12282-024-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The therapy for breast cancer (BC), to date, still needs improvement. Apart from traditional therapy methods, biological therapy being explored opens up a novel avenue for BC patients. Integrin β1 (ITGβ1), one of the largest subgroups in integrin family, is a key player in cancer evolution and therapy. Recent researches progress in the relationship of ITGβ1 level and BC, finding that ITGβ1 expression evidently concerns BC progression. In this chapter, we outline diverse ITGβ1-based mechanisms regarding to the promoted effect of ITGβ1 on BC cell structure rearrangement and malignant phenotype behaviors, the unfavorable patient prognosis conferred by ITGβ1, BC therapy tolerance induced by ITGβ1, and lastly novel inhibitors targeting ITGβ1 for BC therapy. As an effective biomarker, ITGβ1 undoubtedly emerges one of targeted-therapy opportunities of BC patients in future. It is a necessity focusing on scientific and large-scale clinical trials on the validation of targeted-ITGβ1 drugs for BC patients.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Paquette B, Oweida A. Combination of radiotherapy and immunotherapy in duality with the protumoral action of radiation. Cancer Radiother 2024; 28:484-492. [PMID: 39304400 DOI: 10.1016/j.canrad.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024]
Abstract
Radiotherapy is widely used to treat various cancers. Its combination with immune checkpoint inhibitors is intensively studied preclinically and clinically. Although the first results were very encouraging, the number of patients who respond positively remains low, and the therapeutic benefit is often temporary. This review summarizes how radiation can stimulate an antitumor immune response and its combination with immunotherapy based on inhibiting immune checkpoints. We will provide an overview of radiotherapy parameters that should be better controlled to avoid downregulating the antitumor immune response. The low response rate of combining radiotherapy and immunotherapy could, at least in part, be caused by the stimulation of cancer cell invasion and metastasis development that occur at similar doses and number of radiation fractions. To end on a positive note, we explore how a targeted inhibition of the inflammatory cytokines induced by radiation with a cyclooxygenase-2 inhibitor could both support an antitumor immune response and block radiation-induced metastasis formation.
Collapse
Affiliation(s)
- Benoît Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Ayman Oweida
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Liu D, Zhang M, Tian J, Gao M, Liu M, Fu X, Jin T, Pan J, Chen F, An F. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. J Hypertens 2022; 40:1666-1681. [PMID: 35881419 DOI: 10.1097/hjh.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The migration, proliferation and apoptosis of vascular smooth muscle cells (VSMCs) are critical for plaque stability. WNT-inducible signalling pathway protein-1 (WISP1), a member of the CCN family of extracellular matrix proteins, can expedite the migration and proliferation of VSMCs. However, its underlying mechanism and relationship with atherosclerosis remain elusive. The relationship between WISP1 and apoptosis of VSMCs has not been determined previously. METHOD In the study, we aimed to investigate the relationship between WISP1 and plaque stability and its related mechanism.ApoE-/- mice were divided following groups: the null lentivirus (NC), lentivirus WISP1 (IvWISP1) and WISP1-shRNA (shWISP1) groups. Immunofluorescence, Oil Red O and Masson's staining of the carotid arteries were performed. Transwell wound healing assay, CCK8 assay, and TdT-mediated dUTP nick-end labeling (TUNEL) staining were performed using VSMCs. The levels of WISP1, P38, C-Jun N-terminal kinase, extracellular signal-regulated kinase (ERK), mitogen-activated extracellular signal-regulated kinase (MEK), focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt (also known as PKB, protein kinase B), mammalian target of rapamycin (mTOR), cleaved caspase3, Bcl2 and Bax were detected by western blotting. RESULTS The relative area of lipids and monocytes/macrophages in the shWISP1 group increased compared with that of the NC group. However, the relative area of smooth muscle cell and collagen in the IvWISP1 group increased compared with that in the NC group. Therefore, WISP1 could stabilize atherosclerotic plaques. Besides, WISP1 accelerate the migration and proliferation of VSMCs via integrin α5β1 and FAK/MEK/ERK signalling pathways. In addition, WISP1 can inhibit the apoptosis of VSMCs via the PI3K/Akt/mTOR pathway. CONCLUSION WISP1 not only inhibits the apoptosis of VSMCs via the PI3K/Akt/mTOR pathway but also enhances the migration and proliferation of VSMCs via the integrin α5β1 and FAK/MEK/ERK pathways. Therefore, WISP1 could enhance the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Dian Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingjun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingjing Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | | | - Ming Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangrui Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Jin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jinyu Pan
- Department of Cardiology, Shandong Provincial, The First Affiliated Hospital of Shandong First medical University, Jinan
| | - Fangna Chen
- Department of Neurological Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
5
|
Bertoli G, Cava C, Corsi F, Piccotti F, Martelli C, Ottobrini L, Vaira V, Castiglioni I. Triple negative aggressive phenotype controlled by miR-135b and miR-365: new theranostics candidates. Sci Rep 2021; 11:6553. [PMID: 33753785 PMCID: PMC7985188 DOI: 10.1038/s41598-021-85746-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) accounts for about a fifth of all breast cancers and includes a diverse group of cancers. The heterogeneity of TNBC and the lack of target receptors on the cell surface make it difficult to develop specific therapeutic treatments. These aspects cause the high negative prognosis of patients with this type of tumor. The analysis of the molecular profiles of TNBC samples has allowed a better characterization of this tumor, supporting the search for new reliable diagnostic markers. To this end, we have developed a bioinformatic approach to integrate networks of genes differentially expressed in basal breast cancer compared to healthy tissues, with miRNAs able to regulate their expression. We studied the role of these miRNAs in TNBC subtype cell lines. We therefore identified two miRNAs, namely miR-135b and miR-365, with a central role in regulating the altered functional pathways in basal breast cancer. These two miRNAs are differentially expressed in human TNBC immunohistochemistry-selected tissues, and their modulation has been shown to play a role in the proliferation of tumor control and its migratory and invasive capacity in TNBC subtype cell lines. From the perspective of personalized medicine, we managed to modulate the expression of the two miRNAs in organotypic cultures, suggesting their possible use as diagnostic and therapeutic molecules. miR-135b and miR-365 have a key role in TNBC, controlling proliferation and invasion. Their detection could be helpful in TNBC diagnosis, while their modulation could become a new therapeutic tool for TNBC.
Collapse
Affiliation(s)
- Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090, Segrate-Milan, Milan, Italy.
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090, Segrate-Milan, Milan, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy.,Breast Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Piccotti
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Cristina Martelli
- Deparment of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Deparment of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Vaira
- Deparment of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090, Segrate-Milan, Milan, Italy.,University of Milan-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy
| |
Collapse
|
6
|
Zhou H, He Y, Li L, Wu C, Hu G. Identification novel prognostic signatures for Head and Neck Squamous Cell Carcinoma based on ceRNA network construction and immune infiltration analysis. Int J Med Sci 2021; 18:1297-1311. [PMID: 33526991 PMCID: PMC7847625 DOI: 10.7150/ijms.53531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high mortality and morbidity worldwide, but the underlying biological mechanisms of molecules and tumor infiltrating-immune cells (TIICs) are still unknown. Methods and Results: We obtained mRNAs, lncRNAs, and miRNAs expression profiles of 546 HNSCC from The Cancer Genome Atlas (TCGA) database to develop a ceRNA network. CIBERSORT was employed to estimate the fraction of 22 types of TIICs in HNSCC. Univariate and multivariate Cox regression and lasso regression analyses were used to develop prognostic signatures. Then, two novel risk signatures were constructed respectively based on six ceRNAs (ANLN, KIT, PRKAA2, NFIA, PTX3 and has-miR-148a-3p) and three immune cells (naïve B cells, regulatory T cells and Neutrophils). Kaplan-Meier (K-M) analysis and Cox regression analysis further proved that these two signatures were significant prognostic factors independent of multiple clinicopathological characteristics. Two nomograms were built based on ceRNAs-riskScore and TIICs-riskScore that could be used to predict the prognosis of HNSCC. Co-expression analysis showed significant correlations between miR-148a-3p and naive B cells, naive B cells and plasmas cells. Conclusion: Through construction of the ceRNA network and estimation of TIICs, we established two risk signatures and their nomograms with excellent utility, which indicated the potential molecular and cellular mechanisms, and predicted the prognosis of HNSCC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
7
|
Fan QC, Tian H, Wang Y, Liu XB. Integrin-α5 promoted the progression of oral squamous cell carcinoma and modulated PI3K/AKT signaling pathway. Arch Oral Biol 2019; 101:85-91. [PMID: 30909080 DOI: 10.1016/j.archoralbio.2019.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Integrin-α5 (ITGA5) gene has been reported to be critical for the progression of several cancers. However, the effects of ITGA5 in oral squamous cell carcinoma (OSCC) remain unclear. METHODS We firstly used bioinformatics methods to analyze the ITGA5 gene expression based on the public dataset. HO1-N-1 and SCC-9 cells with silenced ITGA5 were constructed using siRNA. Then, we determined the biological functions of ITGA5 in OSCC cells using cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and transwell assays. The expression of PI3K, p-PI3K, AKT, p-AKT, ERK and pERK were determined by western blot. RESULTS Our results revealed that ITGA5 expression was up-regulated in OSCC. The biological experiments further confirmed that ITGA5 expression was higher in OSCC cell lines. Moreover, we found that knockdown of ITGA5 inhibited the proliferation, migration and invasion of OSCC cells. The expression of phosphorylated-(p) PI3K, p-AKT and p-ERK obviously decreased after knockdown of ITGA5 in OSCC cells. CONCLUSION In summary, ITGA5 could promote the progression of OSCC via activating the PI3K/AKT signaling pathway, and it can be regarded as a potential biomarker for OSCC treatment.
Collapse
Affiliation(s)
- Qing-Chun Fan
- Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, China
| | - Hua Tian
- The Eighth Department of Neurology, Liaocheng Third People's Hospital, Liaocheng, China
| | - Yan Wang
- Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Xian-Bin Liu
- Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, China.
| |
Collapse
|
8
|
The increased adhesion of tumor cells to endothelial cells after irradiation can be reduced by FAK-inhibition. Radiat Oncol 2019; 14:25. [PMID: 30717801 PMCID: PMC6360706 DOI: 10.1186/s13014-019-1230-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background Radiotherapy is administered in more than 60% of all solid tumors. Most patients are cured but a significant number develops local recurrences or distant metastases. The question arises if irradiation might influence the metastatic process. In the present study we examined whether the adhesion of glioblastoma or breast cancer cells to endothelial cells, an important step in metastasis, is affected by photon irradiation. Methods U-87 MG, U-373 MG and MDA-MB-231 cancer cells as well as primary human endothelial cells were irradiated with 0, 2, 4, or 8 Gy photons at a dose rate of 5 Gy/min. The adhesion of cancer cells to endothelial cells was tested either with the Vybrant based assay via fluorescent labelling or with an ibidi pump system able to mimic the physiological blood flow in vitro. In addition, the impact of FAK (focal adhesion kinase) inhibitor PF-573, 228 on the adhesion of non-irradiated and irradiated tumor cells was analyzed. Adhesion related and regulated proteins were analyzed by Western blotting. Results The cellular adhesion was increased after irradiation regardless of which cell type was irradiated. The FAK-inhibitor was able to reduce the adhesion of non-irradiated cells but also the irradiation-induced increase in adhesion of tumor cells to endothelium. Adhesion related proteins were enhanced after irradiation with 4 Gy or 8 Gy in both cells types. The increased adhesion after irradiation is accompanied by the phosphorylation of src (Y416), FAK (Y397) and increased expression of paxillin. Conclusion Irradiation with photons in therapeutic doses is able to enhance the interaction between tumor cells and endothelial cells and by that might influence important steps of the metastatic process.
Collapse
|
9
|
Blyth BJ, Cole AJ, MacManus MP, Martin OA. Radiation therapy-induced metastasis: radiobiology and clinical implications. Clin Exp Metastasis 2017; 35:223-236. [PMID: 29159430 DOI: 10.1007/s10585-017-9867-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.
| | - Aidan J Cole
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, UK
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
10
|
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget 2017; 8:86947-86968. [PMID: 29156849 PMCID: PMC5689739 DOI: 10.18632/oncotarget.20372] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Laure Malric
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | - Sabrina Boyrie
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie Sesen
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Radiotherapy, IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Laboratory of Oncogenetic, IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
11
|
Wang M, Liu G, Shan GP, Wang BB. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells. Cancer Biother Radiopharm 2017; 32:193-203. [PMID: 28820634 DOI: 10.1089/cbr.2017.2212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ming Wang
- Department of Otolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Gang Liu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Huanhu Hospital, Tianjin, People's Republic of China
| | - Guo-Ping Shan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, People's Republic of China
| | - Bing-Bing Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Yoo HI, Kim BK, Yoon SK. MicroRNA-330-5p negatively regulates ITGA5 expression in human colorectal cancer. Oncol Rep 2016; 36:3023-3029. [DOI: 10.3892/or.2016.5092] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
|
13
|
Zhao T, Wang H, Ma H, Wang H, Chen B, Deng Y. Starvation after Cobalt-60 γ-Ray Radiation Enhances Metastasis in U251 Glioma Cells by Regulating the Transcription Factor SP1. Int J Mol Sci 2016; 17:386. [PMID: 27058528 PMCID: PMC4848883 DOI: 10.3390/ijms17040386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/15/2023] Open
Abstract
Radiation is of clinical importance during glioma therapy; however, vasculature damage is observed over the treatment course. This type of tissue damage might lead to starvation conditions, affecting tumor metastasis. To test this possibility, we compared starvation conditions in conjunction with radiation treatment to monitor metastatic ability in the U251 glioma cell line. Transcriptome, western blot, and immunofluorescence analyses were used to measure the RNA and protein expression changes of the U251 cells after various treatments. We found that starvation combined with radiation treatment yielded the most significant expression changes in metastasis-related factors compared to that in the control groups. In addition, a metastasis assay was used to directly measure the metastatic ability of the treated cells, which confirmed that the U251 cells treated with starvation combined with radiation possessed the highest metastatic ability. Furthermore, bioinformatics analysis demonstrated that SP1 represented a common transcription factor associated with changes in metastasis-related factors. Blocking SP1 activity by an inhibitor suppressed the starvation-plus-radiation treatment-mediated enhancement of U251 cell metastasis. Our study provides the first evidence that starvation caused by radiation might play a significant role in enhancing the ability of the glioma cell line U251 to metastasize via regulation of the transcription factor SP1.
Collapse
Affiliation(s)
- Tuo Zhao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hailong Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hao Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bo Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
14
|
Wang J, Chen J, Zhu Y, Zheng N, Liu J, Xiao Y, Lu Y, Dong H, Xie J, Yu S, Shao J, Jia L. In vitro and in vivo efficacy and safety evaluation of metapristone and mifepristone as cancer metastatic chemopreventive agents. Biomed Pharmacother 2016; 78:291-300. [DOI: 10.1016/j.biopha.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/26/2022] Open
|
15
|
Yuan Y, Wu L, Shen S, Wu S, Burdick MM. Effect of alpha 2,6 sialylation on integrin-mediated adhesion of breast cancer cells to fibronectin and collagen IV. Life Sci 2016; 149:138-45. [PMID: 26903292 DOI: 10.1016/j.lfs.2016.02.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
AIMS To determine the role of sialylation on α5β1 and α2β1 integrins in the regulation of adhesion between breast cancer cells and extracellular matrix (ECM). MAIN METHODS Static cell adhesion assays were performed to quantify avidity of breast cancer cells to ECM. The effects of sialidases on α2,6 sialylation was assessed by flow cytometry using biotin conjugated Sambucus nigra lectin. Lectin affinity assays were used to determine expression of α2,6 sialylated integrins. Cell migration and invasion were investigated by wound healing and transwell invasion assays. KEY FINDINGS α2, α5 and β1 integrins had considerable α2,6 sialylation on MDA-MB-231 cells, whereas signals from MCF-7 cells were undetectable. Cleavage of α2,6 sialylation increased adhesion of MDA-MB-231 cells to ECM, while adhesion of MCF-7 cells was unaffected, consistent with the latter's lack of endogenous α2,6 sialylated surface integrins. Neither surface expression of α2β1 and α5β1 integrins, nor activated β1 integrin, changed in MDA-MB-231 cells after sialidase treatment. However, sialidase treatment did not have significant impact on migration or invasion of MDA-MB-231 cells. SIGNIFICANCE Cell adhesion is an important early step of cancer metastasis, yet the roles of sialylation in regulating integrin-mediated breast cancer cell adhesion in comparison to migration and invasion are not well-understood. Our data suggest desialylation of α2,6-sialylated integrins increases adhesion, but not migration or invasion, of MDA-MB-231 cells to ECM without altering integrin expression. It should be considered that α2,6 sialylation may play different roles in regulating cell adhesion of different cancer cells when developing potential therapeutics targeting α2,6 sialylation.
Collapse
Affiliation(s)
- Ye Yuan
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Larry Wu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, United States
| | - Siqi Shen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States.
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, United States.
| |
Collapse
|
16
|
Yang W, Zou L, Huang C, Lei Y. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities. Drug Dev Res 2015; 75:331-41. [PMID: 25160073 DOI: 10.1002/ddr.21216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer metastasis is the major cause of cancer-related mortality. Accumulated evidence has shown that high-metastasis potential cancer cells have more reactive oxygen species (ROS) accumulation compared with low-metastasis potential cancer cells. ROS can function as second messengers to regulate multiple cancer metastasis-related signaling pathways via reversible oxidative posttranslational modifications of cysteine in key redox-sensitive proteins, which leads to the structural and functional change of these proteins. Because ROS can promote cancer metastasis, therapeutic strategies aiming at inducing/reducing cellular ROS level or targeting redox sensors involved in metastasis hold great potential in developing new efficient approaches for anticancer therapy. In this review, we summarize recent findings on regulation of tumor metastasis by key redox sensors and describe the potential of targeting redox signaling pathways for cancer therapy.
Collapse
Affiliation(s)
- Wenyong Yang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; College of Life Sciences, Sichuan University, Chengdu, 610065, China; The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | |
Collapse
|
17
|
Yuan W, Yuan Y, Zhang T, Wu S. Role of Bmi-1 in regulation of ionizing irradiation-induced epithelial-mesenchymal transition and migration of breast cancer cells. PLoS One 2015; 10:e0118799. [PMID: 25734775 PMCID: PMC4348174 DOI: 10.1371/journal.pone.0118799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy is a widely used treatment for cancer. However, recent studies suggest that ionizing radiation (IR) can promote tumor invasion and metastasis. Bmi-1, a member of the polycomb group protein family, has been observed as a regulator of oxidative stress and promotes metastasis in some tumors. But, its potential role in the metastasis induced by IR of breast cancer has not been explored. In our study, we found that increased levels of Bmi-1 were correlated to EMT of breast cancer cells. Through analyzing the EMT state and metastasis of breast cancer induced by IR, we found the metastatic potential of breast cancer cells can either be inhibited or accelerated by IR following a time-dependent pattern. Silencing Bmi-1 completely abolished the ability of the IR to alter, reduce or increase, the migration of breast cancer cells. Also, when Bmi-1 was knocked down, the effect of inhibition of PI3K/AKT signaling on EMT affected by IR was blocked. These results suggest that Bmi-1 is a key gene in regulation of EMT and migration of breast cancer cells induced by IR through activation of PI3K/AKT signaling; therefore, Bmi-1 could be a new target for inhibiting metastasis caused by IR.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Oncology, the General Hospital of Chengdu Military District, Chengdu, Sichuan, P. R. China
- Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio, 45701, United States of America
| | - Ye Yuan
- Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio, 45701, United States of America
| | - Tao Zhang
- Department of Oncology, the General Hospital of Chengdu Military District, Chengdu, Sichuan, P. R. China
- * E-mail: (TZ); (SW)
| | - Shiyong Wu
- Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio, 45701, United States of America
- * E-mail: (TZ); (SW)
| |
Collapse
|
18
|
Farooqi AA, Attar R, Arslan BA, Romero MA, ul Haq MF, Qadir MI. Recently emerging signaling landscape of ataxia-telangiectasia mutated (ATM) kinase. Asian Pac J Cancer Prev 2014; 15:6485-8. [PMID: 25169474 DOI: 10.7314/apjcp.2014.15.16.6485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an interlaced signaling network. There is rapidly growing scientific evidence emphasizing newly emerging paradigms in ATM biology. In this review, we provide latest information regarding how oxidative stress induced activation of ATM can be utilized as a therapeutic target in different cancer cell lines and in xenografted mice. Moreover, crosstalk between autophagy and ATM is also discussed with focus on how autophagy inhibition induces apoptosis in cancer cells.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan E-mail :
| | | | | | | | | | | |
Collapse
|