1
|
Straume T, Mora AM, Brown JB, Bansal I, Rabin BM, Braby LA, Wyrobek AJ. Non-DNA radiosensitive targets that initiate persistent behavioral deficits in rats exposed to space radiation. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:44-60. [PMID: 40280642 DOI: 10.1016/j.lssr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 04/29/2025]
Abstract
Predicting future CNS risks for astronauts during deep-space missions will rely substantially on ground-based rodent data with space-relevant ions and behaviors. For rats, the accumulated evidence indicates that less densely ionizing radiation, such as 4He and 12C ions, induce behavior deficits at lower doses than densely ionizing ions, such as 48Ti and 56Fe. However, this observation conflicts with standard somatic radiobiology, in which densely ionizing ions are generally more effective than less densely ionizing ions, and where the DNA/nucleus is the accepted target for radiation-induced tumorigenesis, cytogenetic aberrations, genetic mutations, and reproductive cell death. To gain deeper insight into the subcellular nature of the radiation targets for behavior risks, we compared the effects of dose, fluence, and linear energy transfer (LET) of 4He and 56Fe particles using existing datasets for four distinct behavioral outcomes in rats: elevated plus maze (EPM-anxiety), novel object recognition (NOR-memory), operant responding (OR-response to environmental stimuli), and attentional set-shifting (ATSET-cognitive flexibility). We confirmed that less densely ionizing particles (except protons) showed ∼100-fold lower threshold doses than densely ionizing particles for behavioral deficits (0.1-1 cGy for 4He vs. 15-100 cGy for 56Fe). However, when analyzed by fluence the behavioral responses converged, indicating that 4He and 56Fe were equally effective on a per-track basis. When analyzed by LET, there were ∼100-fold differences in the LET for maximum effectiveness for behavioral deficits and DNA endpoints (∼1 vs ∼100 keV/μm, respectively). These unique features of radiation-induced behavioral deficits (high sensitivity to particles in the 1-keV/μm range, insensitivity to protons in the 0.2 keV/μm range, and isofluence dependence for particles with LET>1 keV/μm) provide evidence in support of a new hypothesis of sub-micron sized radiosensitive targets for behavioral effects consistent with the thickness of plasma membranes and/or small subcellular structures, smaller than a whole synapse. Like our behavior findings, mouse immature oocyte killing which is known to have a plasma membrane target was also better explained by fluence, rather than dose. In contrast, fluence analyses for DNA/nuclear endpoints in somatic cells (e.g., tumor induction, chromosome aberrations) showed opposite results, suggesting that behavior targets are not DNA. Our findings raise questions regarding the identity of subcellular targets and the multi-cellular functional unit for behavior risks, low-dose susceptibility, and generalizability from rat to other species and astronauts.
Collapse
Affiliation(s)
- Tore Straume
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA; NASA Ames Research Center (retired affiliation), Moffett Field, CA 94035, USA.
| | - Ana M Mora
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - James B Brown
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ishan Bansal
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | - Andrew J Wyrobek
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Schaeffer EA, Blackwell AA, Oltmanns JRO, Einhaus R, Lake R, Hein CP, Baulch JE, Limoli CL, Ton ST, Kartje GL, Wallace DG. Differential organization of open field behavior in mice following acute or chronic simulated GCR exposure. Behav Brain Res 2022; 416:113577. [PMID: 34506841 DOI: 10.1016/j.bbr.2021.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
Astronauts undertaking deep space travel will receive chronic exposure to the mixed spectrum of particles that comprise Galactic Cosmic Radiation (GCR). Exposure to the different charged particles of varied fluence and energy that characterize GCR may impact neural systems that support performance on mission critical tasks. Indeed, growing evidence derived from years of terrestrial-based simulations of the space radiation environment using rodents has indicated that a variety of exposure scenarios can result in significant and long-lasting decrements to CNS functionality. Many of the behavioral tasks used to quantify radiation effects on the CNS depend on neural systems that support maintaining spatial orientation and organization of rodent open field behavior. The current study examined the effects of acute or chronic exposure to simulated GCR on the organization of open field behavior under conditions with varied access to environmental cues in male and female C57BL/6 J mice. In general, groups exhibited similar organization of open field behavior under dark and light conditions. Two exceptions were noted: the acute exposure group exhibited significantly slower and more circuitous homeward progressions relative to the chronic group under light conditions. These results demonstrate the potential of open field behavior organization to discriminate between the effects of select GCR exposure paradigms.
Collapse
Affiliation(s)
- E A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - A A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - R Einhaus
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - R Lake
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - C Piwowar Hein
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - J E Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - C L Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - S T Ton
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - G L Kartje
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - D G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
4
|
Long-Term Sex- and Genotype-Specific Effects of 56Fe Irradiation on Wild-Type and APPswe/PS1dE9 Transgenic Mice. Int J Mol Sci 2021; 22:ijms222413305. [PMID: 34948098 PMCID: PMC8703695 DOI: 10.3390/ijms222413305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Collapse
|
5
|
Narasimhamurthy RK, Mumbrekar KD, Satish Rao BS. Effects of low dose ionizing radiation on the brain- a functional, cellular, and molecular perspective. Toxicology 2021; 465:153030. [PMID: 34774978 DOI: 10.1016/j.tox.2021.153030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Over the years, the advancement of radio diagnostic imaging tools and techniques has radically improved the diagnosis of different pathophysiological conditions, accompanied by increased exposure to low-dose ionizing radiation. Though the consequences of high dose radiation exposure on humans are very well comprehended, the more publicly relevant effects of low dose radiation (LDR) (≤100 mGy) exposure on the biological system remain ambiguous. The central nervous system, predominantly the developing brain with more neuronal precursor cells, is exceptionally radiosensitive and thus more liable to neurological insult even at low doses, as shown through several rodent studies. Further molecular studies have unraveled the various inflammatory and signaling mechanisms involved in cellular damage and repair that drive these physiological alterations that lead to functional alterations. Interestingly, few studies also claim that LDR exerts therapeutic effects on the brain by initiating an adaptive response. The present review summarizes the current understanding of the effects of low dose radiation at functional, cellular, and molecular levels and the various risks and benefits associated with it based on the evidence available from in vitro, in vivo, and clinical studies. Although the consensus indicates minimum consequences, the overall evidence suggests that LDR can bring about considerable neurological effects in the exposed individual, and hence a re-evaluation of the LDR usage levels and frequency of exposure is required.
Collapse
Affiliation(s)
- Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - B S Satish Rao
- Research Directorate Office, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Arone A, Ivaldi T, Loganovsky K, Palermo S, Parra E, Flamini W, Marazziti D. The Burden of Space Exploration on the Mental Health of Astronauts: A Narrative Review. CLINICAL NEUROPSYCHIATRY 2021; 18:237-246. [PMID: 34984067 PMCID: PMC8696290 DOI: 10.36131/cnfioritieditore20210502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Space travel, a topic of global interest, has always been a fascinating matter, as its potential appears to be infinite. The development of advanced technologies has made it possible to achieve objectives previously considered dreams and to widen more and more the limits that the human species can overcome. The dangers that astronauts may face are not minimal, and the impacts on physical and mental health may be significant. Specifically, symptoms of emotional dysregulation, cognitive dysfunction, disruption of sleep-wake rhythms, visual phenomena and significant changes in body weight, along with morphological brain changes, are some of the most frequently reported occurrences during space missions. Given the renewed interest and investment on space explorations, the aim of this paper was thus to summarize the evidence of the currently available literature, and to offer an overview of the factors that might impair the psychological well-being and mental health of astronauts. To achieve the goal of this paper, the authors accessed some of the main databases of scientific literature and collected evidence from articles that successfully fulfilled the purpose of this work. The results of this review demonstrated how the psychological and psychiatric problems occurring during space missions are manifold and related to a multiplicity of variables, thus requiring further attention from the scientific community as new challenges lie ahead, and prevention of mental health of space travelers should be carefully considered.
Collapse
Affiliation(s)
- Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Konstantin Loganovsky
- Department of Radiation Psychoneurology, Institute for Clinical Radiology, State Institution “National Research Centre for Radiation Medicine, National Academy of Medical Sciences of Ukraine”
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Walter Flamini
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
| |
Collapse
|
7
|
Matar M, Gokoglu SA, Prelich MT, Gallo CA, Iqbal AK, Britten RA, Prabhu RK, Myers JG. Machine Learning Models to Predict Cognitive Impairment of Rodents Subjected to Space Radiation. Front Syst Neurosci 2021; 15:713131. [PMID: 34588962 PMCID: PMC8473791 DOI: 10.3389/fnsys.2021.713131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
This research uses machine-learned computational analyses to predict the cognitive performance impairment of rats induced by irradiation. The experimental data in the analyses is from a rodent model exposed to ≤15 cGy of individual galactic cosmic radiation (GCR) ions: 4He, 16O, 28Si, 48Ti, or 56Fe, expected for a Lunar or Mars mission. This work investigates rats at a subject-based level and uses performance scores taken before irradiation to predict impairment in attentional set-shifting (ATSET) data post-irradiation. Here, the worst performing rats of the control group define the impairment thresholds based on population analyses via cumulative distribution functions, leading to the labeling of impairment for each subject. A significant finding is the exhibition of a dose-dependent increasing probability of impairment for 1 to 10 cGy of 28Si or 56Fe in the simple discrimination (SD) stage of the ATSET, and for 1 to 10 cGy of 56Fe in the compound discrimination (CD) stage. On a subject-based level, implementing machine learning (ML) classifiers such as the Gaussian naïve Bayes, support vector machine, and artificial neural networks identifies rats that have a higher tendency for impairment after GCR exposure. The algorithms employ the experimental prescreen performance scores as multidimensional input features to predict each rodent's susceptibility to cognitive impairment due to space radiation exposure. The receiver operating characteristic and the precision-recall curves of the ML models show a better prediction of impairment when 56Fe is the ion in question in both SD and CD stages. They, however, do not depict impairment due to 4He in SD and 28Si in CD, suggesting no dose-dependent impairment response in these cases. One key finding of our study is that prescreen performance scores can be used to predict the ATSET performance impairments. This result is significant to crewed space missions as it supports the potential of predicting an astronaut's impairment in a specific task before spaceflight through the implementation of appropriately trained ML tools. Future research can focus on constructing ML ensemble methods to integrate the findings from the methodologies implemented in this study for more robust predictions of cognitive decrements due to space radiation exposure.
Collapse
Affiliation(s)
- Mona Matar
- NASA Glenn Research Center, Cleveland, OH, United States
| | | | | | | | - Asad K. Iqbal
- ZIN Technologies, Inc., Cleveland, OH, United States
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - R. K. Prabhu
- Universities Space Research Association, Cleveland, OH, United States
| | - Jerry G. Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| |
Collapse
|
8
|
Tidmore A, Dutta SM, Fesshaye AS, Russell WK, Duncan VD, Britten RA. Space Radiation-Induced Alterations in the Hippocampal Ubiquitin-Proteome System. Int J Mol Sci 2021; 22:ijms22147713. [PMID: 34299332 PMCID: PMC8304141 DOI: 10.3390/ijms22147713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.
Collapse
Affiliation(s)
- Alyssa Tidmore
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Sucharita M. Dutta
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Arriyam S. Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Vania D. Duncan
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Correspondence:
| |
Collapse
|
9
|
Swinton C, Kiffer F, McElroy T, Wang J, Sridharan V, Boerma M, Allen AR. Effects of 16O charged-particle irradiation on cognition, hippocampal morphology and mutagenesis in female mice. Behav Brain Res 2021; 407:113257. [PMID: 33794227 DOI: 10.1016/j.bbr.2021.113257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
The effects of radiation in space on human cognition are a growing concern for NASA scientists and astronauts as the possibility for long-duration missions to Mars becomes more tangible. Oxygen (16O) radiation is of utmost interest considering that astronauts will interact with this radiation frequently. 16O radiation is a class of galactic cosmic ray (GCR) radiation and also present within spacecrafts. Whole-body exposure to high linear energy transfer (LET) radiation has been shown to affect hippocampal-dependent cognition. To assess the effects of high-LET radiation, we gave 6-month-old female C57BL/6 mice whole-body exposure to 16O at 0.25 or 0.1 Gy at NASA's Space Radiation Laboratory. Three months following irradiation, animals were tested for cognitive performance using the Y-maze and Novel Object Recognition paradigms. Our behavioral data shows that 16O radiation significantly impairs object memory but not spatial memory. Also, dendritic morphology characterized by the Sholl analysis showed that 16O radiation significantly decreased dendritic branch points, ends, length, and complexity in 0.1 Gy and 0.25 Gy dosages. Finally, we found no significant effect of radiation on single nucleotide polymorphisms in hippocampal genes related to oxidative stress, inflammation, and immediate early genes. Our data suggest exposure to heavy ion 16O radiation modulates hippocampal neurons and induces behavioral deficits at a time point of three months after exposure in female mice.
Collapse
Affiliation(s)
- Chase Swinton
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| |
Collapse
|
10
|
Keiser AA, Kramár EA, Dong T, Shanur S, Pirodan M, Ru N, Acharya MM, Baulch JE, Limoli CL, Wood MA. Systemic HDAC3 inhibition ameliorates impairments in synaptic plasticity caused by simulated galactic cosmic radiation exposure in male mice. Neurobiol Learn Mem 2021; 178:107367. [PMID: 33359392 PMCID: PMC8456980 DOI: 10.1016/j.nlm.2020.107367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
Deep space travel presents a number of measurable risks including exposure to a spectrum of radiations of varying qualities, termed galactic cosmic radiation (GCR) that are capable of penetrating the spacecraft, traversing through the body and impacting brain function. Using rodents, studies have reported that exposure to simulated GCR leads to cognitive impairments associated with changes in hippocampus function that can persist as long as one-year post exposure with no sign of recovery. Whether memory can be updated to incorporate new information in mice exposed to GCR is unknown. Further, mechanisms underlying long lasting impairments in cognitive function as a result of GCR exposure have yet to be defined. Here, we examined whether whole body exposure to simulated GCR using 6 ions and doses of 5 or 30 cGy interfered with the ability to update an existing memory or impact hippocampal synaptic plasticity, a cellular mechanism believed to underlie memory processes, by examining long term potentiation (LTP) in acute hippocampal slices from middle aged male mice 3.5-5 months after radiation exposure. Using a modified version of the hippocampus-dependent object location memory task developed by our lab termed "Objects in Updated Locations" (OUL) task we find that GCR exposure impaired hippocampus-dependent memory updating and hippocampal LTP 3.5-5 months after exposure. Further, we find that impairments in LTP are reversed through one-time systemic subcutaneous injection of the histone deacetylase 3 inhibitor RGFP 966 (10 mg/kg), suggesting that long lasting impairments in cognitive function may be mediated at least in part, through epigenetic mechanisms.
Collapse
Affiliation(s)
- A A Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - E A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - T Dong
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - S Shanur
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - M Pirodan
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - N Ru
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - M M Acharya
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - J E Baulch
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - C L Limoli
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States.
| | - M A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States.
| |
Collapse
|
11
|
Davis CM, Allen AR, Bowles DE. Consequences of space radiation on the brain and cardiovascular system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:180-218. [PMID: 33902387 DOI: 10.1080/26896583.2021.1891825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Staying longer in outer space will inevitably increase the health risks of astronauts due to the exposures to galactic cosmic rays and solar particle events. Exposure may pose a significant hazard to space flight crews not only during the mission but also later, when slow-developing adverse effects could finally become apparent. The body of literature examining ground-based outcomes in response to high-energy charged-particle radiation suggests differential effects in response to different particles and energies. Numerous animal and cellular models have repeatedly demonstrated the negative effects of high-energy charged-particle on the brain and cognitive function. However, research on the role of space radiation in potentiating cardiovascular dysfunction is still in its early stages. This review summarizes the available data from studies using ground-based animal models to evaluate the response of the brain and heart to the high-energy charged particles of GCR and SPE, addresses potential sex differences in these effects, and aims to highlight gaps in the current literature for future study.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neurosci Biobehav Rev 2020; 119:294-319. [PMID: 32937115 PMCID: PMC8361862 DOI: 10.1016/j.neubiorev.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts' health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods - including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) - to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - G Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Ruffini
- Neuroelectrics Corporation, Cambridge, MA, USA
| | - K Seyedmadani
- University Space Research Association NASA Johnson Space Center, Houston, TX, USA; Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Limoli C. Can a comparison of clinical and deep space irradiation scenarios shed light on the radiation response of the brain? Br J Radiol 2020; 93:20200245. [PMID: 32970457 DOI: 10.1259/bjr.20200245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Not surprisingly, our knowledge of the impact of radiation on the brain has evolved considerably. Decades of work have struggled with identifying the critical cellular targets in the brain, the latency of functional change and understanding how irradiation alters the balance between excitatory and inhibitory circuits. Radiation-induced cell kill following clinical fractionation paradigms pointed to both stromal and parenchymal targets but also defined an exquisite sensitivity of neurogenic populations of newly born cells in the brain. It became more and more apparent too, that acute (days) events transpiring after exposure were poorly prognostic of the late (months-years) waves of radiation injury believed to underlie neurocognitive deficits. Much of these gaps in knowledge persisted as NASA became interested in how exposure to much different radiation types, doses and dose rates that characterize the space radiation environment might impair central nervous system functionality, with possibly negative implications for deep space travel. Now emerging evidence from researchers engaged in clinical, translational and environmental radiation sciences have begun to fill these gaps and have uncovered some surprising similarities in the response of the brain to seemingly disparate exposure scenarios. This article highlights many of the commonalities between the vastly different irradiation paradigms that distinguish clinical treatments from occupational exposures in deep space.
Collapse
Affiliation(s)
- Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, United States
| |
Collapse
|
14
|
Cahoon DS, Shukitt-Hale B, Bielinski DF, Hawkins EM, Cacioppo AM, Rabin BM. Effects of partial- or whole-body exposures to 56Fe particles on brain function and cognitive performance in rats. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:56-63. [PMID: 34756230 DOI: 10.1016/j.lssr.2020.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
On exploratory class missions, such as a mission to Mars, astronauts will be exposed to particles of high energy and charge (HZE particles). Exposure to HZE particles produces changes in neuronal function and can disrupt cognitive performance. Cells throughout the entire body, not just the brain, will be impacted by these particles. To determine the possible effects that irradiation of the body might have on neuronal function and cognitive performance, rats were given head-only, body-only or whole-body exposures to 56Fe particles. Cognitive performance (novel object recognition, operant responding) was tested in one set of animals; changes in brain function (oxidative stress, neuroinflammation) was tested in a second set of rats. The results indicated that there were no consistent differences in either behavioral or neurochemical endpoints as a function of the location of the irradiation. These results suggest that radiation to the body can impact the brain, therefore it may be necessary to re-evaluate the estimates of the risk of HZE particle-induced changes in neuronal function and cognitive performance.
Collapse
Affiliation(s)
- Danielle S Cahoon
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, USA
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, USA
| | - Donna F Bielinski
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
15
|
Parihar VK, Angulo MC, Allen BD, Syage A, Usmani MT, Passerat de la Chapelle E, Amin AN, Flores L, Lin X, Giedzinski E, Limoli CL. Sex-Specific Cognitive Deficits Following Space Radiation Exposure. Front Behav Neurosci 2020; 14:535885. [PMID: 33192361 PMCID: PMC7525092 DOI: 10.3389/fnbeh.2020.535885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The radiation fields in space define tangible risks to the health of astronauts, and significant work in rodent models has clearly shown a variety of exposure paradigms to compromise central nervous system (CNS) functionality. Despite our current knowledge, sex differences regarding the risks of space radiation exposure on cognitive function remain poorly understood, which is potentially problematic given that 30% of astronauts are women. While work from us and others have demonstrated pronounced cognitive decrements in male mice exposed to charged particle irradiation, here we show that female mice exhibit significant resistance to adverse neurocognitive effects of space radiation. The present findings indicate that male mice exposed to low doses (≤30 cGy) of energetic (400 MeV/n) helium ions (4He) show significantly higher levels of neuroinflammation and more extensive cognitive deficits than females. Twelve weeks following 4He ion exposure, irradiated male mice demonstrated significant deficits in object and place recognition memory accompanied by activation of microglia, marked upregulation of hippocampal Toll-like receptor 4 (TLR4), and increased expression of the pro-inflammatory marker high mobility group box 1 protein (HMGB1). Additionally, we determined that exposure to 4He ions caused a significant decline in the number of dendritic branch points and total dendritic length along with the hippocampus neurons in female mice. Interestingly, only male mice showed a significant decline of dendritic spine density following irradiation. These data indicate that fundamental differences in inflammatory cascades between male and female mice may drive divergent CNS radiation responses that differentially impact the structural plasticity of neurons and neurocognitive outcomes following cosmic radiation exposure.
Collapse
Affiliation(s)
- Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Amber Syage
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Manal T Usmani
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | | | - Amal Nayan Amin
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Lidia Flores
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Xiaomeng Lin
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Liu B, Hinshaw RG, Le KX, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Shi Q, Holton P, Trojanczyk L, Reiser V, Jones PA, Trigg W, Di Carli MF, Lorello P, Caldarone BJ, Williams JP, O'Banion MK, Lemere CA. Space-like 56Fe irradiation manifests mild, early sex-specific behavioral and neuropathological changes in wildtype and Alzheimer's-like transgenic mice. Sci Rep 2019; 9:12118. [PMID: 31431669 PMCID: PMC6702228 DOI: 10.1038/s41598-019-48615-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer’s disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-β levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Robert G Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin X Le
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shuyan Wang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shipra Dubey
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey L Frost
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Qiaoqiao Shi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Holton
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lee Trojanczyk
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Paul A Jones
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - William Trigg
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - Marcelo F Di Carli
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Paul Lorello
- Harvard Medical School Mouse Behavior Core, Boston, MA, 02115, USA
| | | | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: A comprehensive review of animal studies. LIFE SCIENCES IN SPACE RESEARCH 2019; 21:1-21. [PMID: 31101151 PMCID: PMC7150604 DOI: 10.1016/j.lssr.2019.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/04/2023]
Abstract
As NASA prepares for the first manned mission to Mars in the next 20 years, close attention has been placed on the cognitive welfare of astronauts, who will likely endure extended durations in confinement and microgravity and be subjected to the radioactive charged particles travelling at relativistic speeds in interplanetary space. The future of long-duration manned spaceflight, thus, depends on understanding the individual hazards associated with the environment beyond Earth's protective magnetosphere. Ground-based single-particle studies of exposed mice and rats have, in the last 30 years, overwhelmingly reported deficits in their cognitive behaviors. However, as particle-accelerator technologies at NASA's Space Radiation Laboratory continue to progress, more realistic representations of space radiation are materializing, including multiple-particle exposures and, eventually, at multiple energy distributions. These advancements help determine how to best mitigate possible hazards due to space radiation. However, risk models will depend on delineating which particles are most responsible for specific behavioral outcomes and whether multiple-particle exposures produce synergistic effects. Here, we review the literature on animal exposures by particle, energy, and behavioral assay to inform future mixed-field radiation studies of possible behavioral outcomes.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Antiño Allen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
18
|
Short and Long-Term Changes in Social Odor Recognition and Plasma Cytokine Levels Following Oxygen ( 16O) Ion Radiation Exposure. Int J Mol Sci 2019; 20:ijms20020339. [PMID: 30650610 PMCID: PMC6359552 DOI: 10.3390/ijms20020339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Future long-duration space missions will involve travel outside of the Earth’s magnetosphere protection and will result in astronauts being exposed to high energy and charge (HZE) ions and protons. Exposure to this type of radiation can result in damage to the central nervous system and deficits in numerous cognitive domains that can jeopardize mission success. Social processing is a cognitive domain that is important for people living and working in groups, such as astronauts, but it has received little attention in terms of HZE ion exposure. In the current study, we assessed the effects of whole-body oxygen ion (16O; 1000 MeV/n) exposure (1 or 10 cGy) on social odor recognition memory in male Long-Evans rats at one and six months following exposure. Radiation exposure did not affect rats’ preferences for a novel social odor experienced during Habituation at either time point. However, rats exposed to 10 cGy displayed short and long-term deficits in 24-h social recognition. In contrast, rats exposed to 1 cGy only displayed long-term deficits in 24-h social recognition. While an age-related decrease in Ki67+ staining (a marker of cell proliferation) was found in the subventricular zone, it was unaffected by radiation exposure. At one month following exposure, plasma KC/GRO (CXCL1) levels were elevated in the 1 cGy rats, but not in the 10 cGy rats, suggesting that peripheral levels of this cytokine could be associated with intact social recognition at earlier time points following radiation exposure. These results have important implications for long-duration missions and demonstrate that behaviors related to social processing could be negatively affected by HZE ion exposure.
Collapse
|
19
|
Dickstein DL, Talty R, Bresnahan E, Varghese M, Perry B, Janssen WGM, Sowa A, Giedzinski E, Apodaca L, Baulch J, Acharya M, Parihar V, Limoli CL. Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. J Comp Neurol 2018; 526:2845-2855. [PMID: 30198564 DOI: 10.1002/cne.24530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
High-energy charged particles are considered particularly hazardous components of the space radiation environment. Such particles include fully ionized energetic nuclei of helium, silicon, and oxygen, among others. Exposure to charged particles causes reactive oxygen species production, which has been shown to result in neuronal dysfunction and myelin degeneration. Here we demonstrate that mice exposed to high-energy charged particles exhibited alterations in dendritic spine density in the hippocampus, with a significant decrease of thin spines in mice exposed to helium, oxygen, and silicon, compared to sham-irradiated controls. Electron microscopy confirmed these findings and revealed a significant decrease in overall synapse density and in nonperforated synapse density, with helium and silicon exhibiting more detrimental effects than oxygen. Degeneration of myelin was also evident in exposed mice with significant changes in the percentage of myelinated axons and g-ratios. Our data demonstrate that exposure to all types of high-energy charged particles have a detrimental effect, with helium and silicon having more synaptotoxic effects than oxygen. These results have important implications for the integrity of the central nervous system and the cognitive health of astronauts after prolonged periods of space exploration.
Collapse
Affiliation(s)
- Dara L Dickstein
- Uniformed Services University of Health Sciences, Bethesda, Maryland.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronan Talty
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bayley Perry
- Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - William G M Janssen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Allison Sowa
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, California
| | - Lauren Apodaca
- Department of Radiation Oncology, University of California, Irvine, California
| | - Janet Baulch
- Department of Radiation Oncology, University of California, Irvine, California
| | - Munjal Acharya
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vipan Parihar
- Department of Radiation Oncology, University of California, Irvine, California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|
20
|
Female mice are protected from space radiation-induced maladaptive responses. Brain Behav Immun 2018; 74:106-120. [PMID: 30107198 PMCID: PMC8715721 DOI: 10.1016/j.bbi.2018.08.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/15/2023] Open
Abstract
Interplanetary exploration will be humankind's most ambitious expedition and the journey required to do so, is as intimidating as it is intrepid. One major obstacle for successful deep space travel is the possible negative effects of galactic cosmic radiation (GCR) exposure. Here, we investigate for the first time how combined GCR impacts long-term behavioral and cellular responses in male and female mice. We find that a single exposure to simulated GCR induces long-term cognitive and behavioral deficits only in the male cohorts. GCR exposed male animals have diminished social interaction, increased anxiety-like phenotype and impaired recognition memory. Remarkably, we find that the female cohorts did not display any cognitive or behavioral deficits after GCR exposure. Mechanistically, the maladaptive behavioral responses observed only in the male cohorts correspond with microglia activation and synaptic loss in the hippocampus, a brain region involved in the cognitive domains reported here. Furthermore, we measured reductions in AMPA expressing synaptic terminals in the hippocampus. No changes in any of the molecular markers measured here are observed in the females. Taken together these findings suggest that GCR exposure can regulate microglia activity and alter synaptic architecture, which in turn leads to a range of cognitive alterations in a sex dependent manner. These results identify sex-dependent differences in behavioral and cognitive domains revealing promising cellular and molecular intervention targets to reduce GCR-induced chronic cognitive deficits thereby boosting chances of success for humans in deep space missions such as the upcoming Mars voyage.
Collapse
|
21
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
22
|
Rosi S. The final frontier: Transient microglia reduction after cosmic radiation exposure mitigates cognitive impairments and modulates phagocytic activity. Brain Circ 2018; 4:109-113. [PMID: 30450416 PMCID: PMC6187945 DOI: 10.4103/bc.bc_24_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are the primary immune element within the brain, which are responsible for monitoring synapse function and neuron health. Exposure to cosmic radiation has the potential to cause long-term cognitive deficits in rodent models and therefore indicates a difficult challenge for future astronauts piloting interplanetary travel. Here, we discuss the potential of transient microglia depletion after the injury to ameliorate the harsh microenvironment of the brain and eliminate any potential long-term cognitive effects. Repopulation of microglia enables phagocytic phenotypes to be circumvented, via the reduction of Phagocytic and lysosomal markers, potentially being responsible for increased neuroprotection. Brief depletion of microglia after irradiation mitigated the development of any long-term memory deficits, comparable to healthy animals. Chronically, microglial levels were not affected by cosmic radiation followed by temporary microglia depletion. Following repopulation, improved recognition memory was paralleled by downregulated complement receptor C5aR. Preserved synapse function also demonstrated the therapeutic ability of microglia depletion as it corresponded with fewer phagocytic microglia phenotypes. The understanding of long-term radiation-induced cognitive impairments is vital for the protection of future astronauts and equally as important for current cancer patients. Temporary microglia depletion showed promise in preventing any deleterious cognitive impairments following exposure to elements of cosmic radiation, such as helium and high-charge nuclei.
Collapse
Affiliation(s)
- Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA.,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA.,Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Parihar VK, Maroso M, Syage A, Allen BD, Angulo MC, Soltesz I, Limoli CL. Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice. Exp Neurol 2018. [DOI: 10.1016/j.expneurol.2018.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Krukowski K, Jones T, Campbell-Beachler M, Nelson G, Rosi S. Peripheral T Cells as a Biomarker for Oxygen-Ion-Radiation-Induced Social Impairments. Radiat Res 2018; 190:186-193. [DOI: 10.1667/rr15046.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California
| | - Mary Campbell-Beachler
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science
| |
Collapse
|
25
|
Krukowski K, Feng X, Paladini MS, Chou A, Sacramento K, Grue K, Riparip LK, Jones T, Campbell-Beachler M, Nelson G, Rosi S. Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits. Sci Rep 2018; 8:7857. [PMID: 29777152 PMCID: PMC5959907 DOI: 10.1038/s41598-018-26039-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Microglia are the main immune component in the brain that can regulate neuronal health and synapse function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary microglia depletion, one week after cosmic radiation, prevents the development of long-term memory deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory response to cosmic radiation. The repopulated microglia present a modified functional phenotype with reduced expression of scavenger receptors, lysosome membrane protein and complement receptor, all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic radiation exposure.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Maria Serena Paladini
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Austin Chou
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Kristen Sacramento
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Lara-Kirstie Riparip
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Mary Campbell-Beachler
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA. .,Kavli Institute of Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Jandial R, Hoshide R, Waters JD, Limoli CL. Space-brain: The negative effects of space exposure on the central nervous system. Surg Neurol Int 2018; 9:9. [PMID: 29416906 PMCID: PMC5791508 DOI: 10.4103/sni.sni_250_17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 01/31/2023] Open
Abstract
Journey to Mars will be a large milestone for all humankind. Throughout history, we have learned lessons about the health dangers associated with exploratory voyages to expand our frontiers. Travelling through deep space, the final frontier, is planned for the 2030s by NASA. The lessons learned from the adverse health effects of space exposure have been encountered from previous, less-lengthy missions. Prolonged multiyear deep space travel to Mars could be encumbered by significant adverse health effects, which could critically affect the safety of the mission and its voyagers. In this review, we discuss the health effects of the central nervous system by space exposure. The negative effects from space radiation and microgravity have been detailed. Future aims and recommendations for the safety of the voyagers have been discussed. With proper planning and anticipation, the mission to Mars can be done safely and securely.
Collapse
Affiliation(s)
- Rahul Jandial
- Division of Neurosurgery, City of Hope, Los Angeles, USA
| | - Reid Hoshide
- Department of Neurosurgery, University of California - San Diego, San Diego, USA
| | - J Dawn Waters
- Department of Neurosurgery, Stanford University, Palo Alto, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California - Irvine, Irvine, California, USA
| |
Collapse
|
27
|
Dutta SM, Hadley MM, Peterman S, Jewell JS, Duncan VD, Britten RA. Quantitative Proteomic Analysis of the Hippocampus of Rats with GCR-Induced Spatial Memory Impairment. Radiat Res 2017; 189:136-145. [PMID: 29206597 DOI: 10.1667/rr14822.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
NASA is planning future missions to Mars, which will result in astronauts being exposed to ∼13 cGy/year of galactic cosmic radiation (GCR). Previous ground-based experiments have demonstrated that low (15 cGy) doses of 1 GeV/n 56Fe ions impair hippocampus-dependent spatial memory in rats. However, some irradiated rats maintain a spatial memory performance comparable to that seen in the sham-irradiated rats, suggesting that some of these animals are able to ameliorate the deleterious effects of the GCR, while others are not. This rat model provides a unique opportunity to increase our understanding of how GCR affects neurophysiology, what adaptive responses can be invoked to prevent the emergence of GCR-induced spatial memory impairment, as well as the pathways that are altered when spatial memory impairment occurs. A label-free, unbiased proteomic profiling approach involving quantitative protein/peptide profiling followed by Cytoscape analysis has established the composition of the hippocampal proteome in male Wistar rats after exposure to 15 cGy of 1 GeV/n 56Fe, and identified proteins whose expression is altered with respect to: 1. radiation exposure and 2. impaired spatial memory performance. We identified 30 proteins that were classified as "GCR exposure marker" (GEM) proteins (expressed solely or at higher levels in the irradiated rats but not related to spatial memory performance), most notably CD98, Cadps and GMFB. Conversely, there were 252 proteins that were detected only in the sham-irradiated samples, i.e., they were not detected in either of the irradiated cohorts; of these 10% have well-documented roles in neurotransmission. The second aspect of our data mining was to identify proteins whose expression was associated with either impaired or functional spatial memory. While there are multiple changes in the hippocampal proteome in the irradiated rats that have impaired spatial memory performance, with 203 proteins being detected (or upregulated) only in these rats, it would appear that spatial memory impairment may also arise from an inability of these rats to express "good spatial memory" (GSM) proteins, many of which play an important role in neuronal homeostasis and function, axonogenesis, presynaptic membrane organization and G-protein coupled receptor (GCPR) signaling. It may be possible to use this knowledge to develop two alternative countermeasure strategies, one that preserves critical pathways prophylactically and one that invokes restorative pathways after GCR exposure.
Collapse
Affiliation(s)
- Sucharita M Dutta
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and
| | - Melissa M Hadley
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Scott Peterman
- d BRIMS, Thermo Fisher Scientific, Cambridge, Massachusetts 02139
| | - Jessica S Jewell
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Vania D Duncan
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Richard A Britten
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and.,c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| |
Collapse
|
28
|
Rudobeck E, Bellone JA, Szücs A, Bonnick K, Mehrotra-Carter S, Badaut J, Nelson GA, Hartman RE, Vlkolinský R. Low-dose proton radiation effects in a transgenic mouse model of Alzheimer's disease - Implications for space travel. PLoS One 2017; 12:e0186168. [PMID: 29186131 PMCID: PMC5706673 DOI: 10.1371/journal.pone.0186168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Space radiation represents a significant health risk for astronauts. Ground-based animal studies indicate that space radiation affects neuronal functions such as excitability, synaptic transmission, and plasticity, and it may accelerate the onset of Alzheimer's disease (AD). Although protons represent the main constituent in the space radiation spectrum, their effects on AD-related pathology have not been tested. We irradiated 3 month-old APP/PSEN1 transgenic (TG) and wild type (WT) mice with protons (150 MeV; 0.1-1.0 Gy; whole body) and evaluated functional and biochemical hallmarks of AD. We performed behavioral tests in the water maze (WM) before irradiation and in the WM and Barnes maze at 3 and 6 months post-irradiation to evaluate spatial learning and memory. We also performed electrophysiological recordings in vitro in hippocampal slices prepared 6 and 9 months post-irradiation to evaluate excitatory synaptic transmission and plasticity. Next, we evaluated amyloid β (Aβ) deposition in the contralateral hippocampus and adjacent cortex using immunohistochemistry. In cortical homogenates, we analyzed the levels of the presynaptic marker synaptophysin by Western blotting and measured pro-inflammatory cytokine levels (TNFα, IL-1β, IL-6, CXCL10 and CCL2) by bead-based multiplex assay. TG mice performed significantly worse than WT mice in the WM. Irradiation of TG mice did not affect their behavioral performance, but reduced the amplitudes of population spikes and inhibited paired-pulse facilitation in CA1 neurons. These electrophysiological alterations in the TG mice were qualitatively different from those observed in WT mice, in which irradiation increased excitability and synaptic efficacy. Irradiation increased Aβ deposition in the cortex of TG mice without affecting cytokine levels and increased synaptophysin expression in WT mice (but not in the TG mice). Although irradiation with protons increased Aβ deposition, the complex functional and biochemical results indicate that irradiation effects are not synergistic to AD pathology.
Collapse
Affiliation(s)
- Emil Rudobeck
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - John A. Bellone
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States of America
| | - Attila Szücs
- BioCircuits Institute, University of California San Diego, La Jolla, CA, United States of America
| | - Kristine Bonnick
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Shalini Mehrotra-Carter
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Jerome Badaut
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Gregory A. Nelson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Richard E. Hartman
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States of America
| | - Roman Vlkolinský
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| |
Collapse
|
29
|
Epigenetic determinants of space radiation-induced cognitive dysfunction. Sci Rep 2017; 7:42885. [PMID: 28220892 PMCID: PMC5318883 DOI: 10.1038/srep42885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition.
Collapse
|
30
|
Britten RA, Jewell JS, Davis LK, Miller VD, Hadley MM, Semmes OJ, Lonart G, Dutta SM. Changes in the Hippocampal Proteome Associated with Spatial Memory Impairment after Exposure to Low (20 cGy) Doses of 1 GeV/n 56Fe Radiation. Radiat Res 2017; 187:287-297. [PMID: 28156212 DOI: 10.1667/rr14067.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.
Collapse
Affiliation(s)
- Richard A Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Leslie K Davis
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D Miller
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - O John Semmes
- b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507.,d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - György Lonart
- d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Sucharita M Dutta
- c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
31
|
Britten RA, Jewell JS, Duncan VD, Davis LK, Hadley MM, Wyrobek AJ. Spatial Memory Performance of Socially Mature Wistar Rats is Impaired after Exposure to Low (5 cGy) Doses of 1 GeV/n48Ti Particles. Radiat Res 2017; 187:60-65. [DOI: 10.1667/rr14550.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Britten RA, Miller VD, Hadley MM, Jewell JS, Macadat E. Performance in hippocampus- and PFC-dependent cognitive domains are not concomitantly impaired in rats exposed to 20cGy of 1GeV/n (56)Fe particles. LIFE SCIENCES IN SPACE RESEARCH 2016; 10:17-22. [PMID: 27662783 DOI: 10.1016/j.lssr.2016.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20cGy 1GeV/n (56)Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States ; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States ; Leroy T Canoles Jr. Cancer Center; Eastern Virginia Medical School, Norfolk, VA 23507, United States .
| | - Vania D Miller
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| | - Melissa M Hadley
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| | - Jessica S Jewell
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| | - Evangeline Macadat
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| |
Collapse
|
33
|
Wyrobek AJ, Britten RA. Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of (56) Fe particles. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:331-340. [PMID: 27237589 DOI: 10.1002/em.22018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew J Wyrobek
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Richard A Britten
- Department of Radiation Oncology, and the Leroy T. Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|