1
|
Ruysscher DD, Wauters E, Jendrossek V, Filippi AR, Revel MP, Faivre-Finn C, Naidoo J, Ramella S, Guckenberger M, Ricardi U, Khalil A, Schor M, Bartolomeo V, Putora PM. Diagnosis and treatment of radiation induced pneumonitis in patients with lung cancer: An ESTRO clinical practice guideline. Radiother Oncol 2025; 207:110837. [PMID: 40185160 DOI: 10.1016/j.radonc.2025.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/07/2025]
Abstract
The incidence of radiation pneumonitis (RP) has decreased significantly compared to historical series, mainly due to improved radiotherapy techniques and patient selection. Nevertheless, some patients still develop RP. This guideline provides user-friendly flowcharts to address common clinical practice questions regarding RP. We summarize the current state of the art regarding the mechanisms, risk factors, diagnosis and treatment of RP. Dosimetric constraints to minimize the incidence of RP, as well as risk factors for developing RP, such as idiopathic pulmonary fibrosis (IPF) were identified. The combination of radiotherapy and medication as a risk factor for the development of RP was reviewed. RP remains a diagnosis of exclusion, but an algorithm for reaching the diagnosis has been proposed. Finally, practical approaches to the treatment of RP are outlined.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands; Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Els Wauters
- Department of Respiratory Diseases, Respiratory Oncology Unit, University Hospital KU Leuven, Leuven, Belgium
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, West German Cancer Center Essen, Essen, Germany
| | - Andrea Riccardo Filippi
- Department of Oncology, University of Milan, Milan, Italy; Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marie-Pierre Revel
- Université Paris Cité, Paris 75006, France; Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, University of Manchester and The Christie NHS Foundation, Manchester, UK
| | - Jarushka Naidoo
- Beaumont Hospital and RCSI University of Health Sciences, Dublin, Ireland; Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins University, Baltimore, USA
| | - Sara Ramella
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Umberto Ricardi
- Department of Oncology, Radiation Oncology, University of Turin, Turin, Italy
| | - Azza Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marieke Schor
- UB Education, Content & Support, Maastricht University, Maastricht 6211 LK, the Netherlands
| | - Valentina Bartolomeo
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands; Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; Department of Clinical Surgical, Diagnostic and Pediatric Sciences, Pavia University, 27100 Pavia, Italy
| | - Paul Martin Putora
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland; Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
2
|
Kim HB, Kim H, Oh SH, Kang MJ, Park JH, Lee SB, Shim S, Lee HJ, Yoo KC, Jang H. Bixin alleviates radiation-induced intestinal damage via inflammation regulation and barrier recovery. Int J Radiat Biol 2025:1-10. [PMID: 40397619 DOI: 10.1080/09553002.2025.2505523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Radiotherapy for cancer treatment or unintentional exposure to ionizing radiation causes severe damage to the unaffected tissues of the digestive system, including gastrointestinal (GI) tract. Radiation exposure leads to an inflammatory response, and uncontrolled inflammation exacerbates radiation-induced tissue injury. Bixin is a liposoluble apocarotenoid isolated from Bixa orrellana seeds, which effectively attenuates several inflammatory diseases. In this study, we investigated whether bixin mitigated radiation-induced intestinal damage through an examination of its role in inflammation and the protection of the epithelial barrier. MATERIALS AND METHODS To determine the therapeutic effects of bixin in treating radiation-induced intestinal damage, we carried out histological analyses, inflammatory response examinations, and barrier function assessments using a mouse model of radiation-induced enteropathy. RESULTS We uncovered that bixin effectively mitigates radiation-induced enteropathy by suppressing the inflammatory response, reducing inflammatory cell accumulation, and limiting cytokine expression in the radiation-induced intestinal injury. In a mouse model of acute radiation-induced intestinal injury, treatment with bixin enhanced nuclear factor erythroid-2-related factor 2 (NRF2) activation and promoted tight junction expression in the epithelium, while also hindering bacterial translocation to the mesenteric lymph nodes. CONCLUSION Bixin represents a potential therapeutic candidate for the treatment of radiation-induced enteropathy.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyewon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Su-Hyun Oh
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Min-Ji Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Jung Hwan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Seung Bum Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Sehwan Shim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hae-June Lee
- College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Ki-Chun Yoo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyosun Jang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| |
Collapse
|
3
|
Kwon S, Chung EJ, Kc S, White AO, Chung SI, Horton JA, Yun HS, Ahn H, Shankavaram U, Chung JY, Song JS, Citrin DE. Interleukin-13 Receptor Subunit Alpha 2 Induces Chemokine Expression and Macrophage Polarization to Promote Inflammation and Fibrosis. Int J Radiat Oncol Biol Phys 2025; 121:1258-1270. [PMID: 39672516 DOI: 10.1016/j.ijrobp.2024.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
PURPOSE Interleukin-13 (IL-13) is a known mediator of radiation-induced lung injury (RILI). IL-13Rα2 has an accepted role in antagonizing IL-13 signaling by acting as a decoy receptor. We sought to understand the role of IL-13Rα2 in the progression of RILI. METHODS AND MATERIALS Mice deficient in IL-13Rα2 (Ra2 KO) and wild-type (WT) mice were exposed to thoracic irradiation (IR) in 5 daily fractions of 6 Gy and followed for survival (n > 15 per group) and tissue collection (n > 5 per group). Collagen accumulation in the lung was evaluated with Masson's trichrome staining and hydroxyproline content. Gene expression was evaluated by RNA sequencing. Expression of IL-13Rα2 and macrophage markers in murine lung and human lung tissue (n = 63) was assessed with immunohistochemistry. The role of IL-13Rα2 in IL-13-mediated macrophage polarization was determined in primary macrophage cultures from Ra2 KO mice and after RNA silencing of a human monocyte cell line (THP-1). RESULTS Membrane-bound IL-13Rα2 expression in murine lung was increased after IR and localized to macrophages. Irradiated Ra2 KO mice exhibited reduced sensitivity to thoracic IR compared with WT mice as measured by median survival (19 vs. 21 weeks, P < .05), histology, hydroxyproline content, transforming growth factor-β expression, and macrophage accumulation. Gene sets linked to cytokine signaling and macrophage recruitment were enriched in irradiated WT compared with Ra2 KO lung tissue. IL-13-mediated expression of CCL2 and M2 markers was reduced in murine and human macrophages deficient in IL-13Rα2. Increased expression of in IL-13Rα2 and co-localization with CD163 was confirmed in irradiated fibrotic human lung. CONCLUSIONS IL-13Rα2 is predominantly expressed in macrophages within irradiated lung and plays a crucial role in CCL2 expression, macrophage polarization, and transforming growth factor-β expression in response to IL-13. These studies demonstrate an unexpected profibrotic role of IL-13Rα2 in RILI and suggest that strategies targeting IL-13Rα2 may ameliorate chronic inflammation and fibrosis.
Collapse
Affiliation(s)
- Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Santwana Kc
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Su I Chung
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Jason A Horton
- Department of Orthopedic Surgery, Upstate Medical University, Syracuse, New York
| | - Hong Shik Yun
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Heesu Ahn
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland.
| |
Collapse
|
4
|
Braga-Cohen S, Lavigne J, Dos Santos M, Tarlet G, Buard V, Baijer J, Guipaud O, Paget V, Deutsch E, Benadjaoud MA, Mondini M, Milliat F, François A. Evidence of Alveolar Macrophage Metabolic Shift Following Stereotactic Body Radiation Therapy -Induced Lung Fibrosis in Mice. Int J Radiat Oncol Biol Phys 2025; 121:506-519. [PMID: 39278419 DOI: 10.1016/j.ijrobp.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE Radiation-induced pneumopathy is the main dose-limiting factor in cases of chest radiation therapy. Macrophage infiltration is frequently observed in irradiated lung tissues and may participate in lung damage development. Radiation-induced lung fibrosis can be reproduced in rodent models using whole thorax irradiation but suffers from limits concerning the role played by unexposed lung volumes in damage development. METHODS AND MATERIALS Here, we used an accurate stereotactic body radiation therapy preclinical model irradiating 4% of the mouse lung. Tissue damage development and macrophage populations were followed by histology, flow cytometry, and single-cell RNA sequencing. Wild-type and CCR2 KO mice, in which monocyte recruitment is abrogated, were exposed to single doses of radiation, inducing progressive (60 Gy) or rapid (80 Gy) lung fibrosis. RESULTS Numerous clusters of macrophages were observed around the injured area, during progressive as well as rapid fibrosis. The results indicate that probably CCR2-independent recruitment and/or in situ proliferation may be responsible for macrophage invasion. Alveolar macrophages experience a metabolic shift from fatty acid metabolism to cholesterol biosynthesis, directing them through a possible profibrotic phenotype. Depicted data revealed that the origin and phenotype of macrophages present in the injured area may differ from what has been previously described in preclinical models exposing large lung volumes, representing a potentially interesting trail in the deciphering of radiation-induced lung damage processes. CONCLUSIONS Our study brings new possible clues to the understanding of macrophage implications in radiation-induced lung damage, representing an interesting area for exploration in future studies.
Collapse
Affiliation(s)
- Sarah Braga-Cohen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Jérémy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, F-92260 Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Valérie Buard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Jan Baijer
- Plateforme de cytométrie, UMR ≪ Stabilité Génétique, Cellules souches et Radiations ≫, CEA-INSERM-Universités de Paris et Paris-Sud, CEA-DRF/JACOB/iRCM/UMRE008-U1274, BP6 92265 Fontenay-aux-Roses Cedex, France
| | - Olivier Guipaud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Vincent Paget
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Eric Deutsch
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, 94 800 Villejuif, France; Département d'Oncologie Radiothérapie, Gustave Roussy, 94 800 Villejuif, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, F-92260 Fontenay-aux-Roses, France
| | - Michele Mondini
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, 94 800 Villejuif, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France.
| | - Agnès François
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France.
| |
Collapse
|
5
|
Guo S, Zhang Q, Guo Y, Yin X, Zhang P, Mao T, Tian Z, Li X. The role and therapeutic targeting of the CCL2/CCR2 signaling axis in inflammatory and fibrotic diseases. Front Immunol 2025; 15:1497026. [PMID: 39850880 PMCID: PMC11754255 DOI: 10.3389/fimmu.2024.1497026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
CCL2, a pivotal cytokine within the chemokine family, functions by binding to its receptor CCR2. The CCL2/CCR2 signaling pathway plays a crucial role in the development of fibrosis across multiple organ systems by modulating the recruitment and activation of immune cells, which in turn influences the progression of fibrotic diseases in the liver, intestines, pancreas, heart, lungs, kidneys, and other organs. This paper introduces the biological functions of CCL2 and CCR2, highlighting their similarities and differences concerning fibrotic disorders in various organ systems, and reviews recent progress in the diagnosis and treatment of clinical fibrotic diseases linked to the CCL2/CCR2 signaling pathway. Additionally, further in-depth research is needed to explore the clinical significance of the CCL2/CCR2 axis in fibrotic conditions affecting different organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Wang C, Wu Y, Liu C, Li Y, Mi S, Yang X, Liu T, Tian Y, Zhang Y, Hu P, Qiao L, Deng G, Liang N, Sun J, Zhang Y, Zhang J. Nervonic acid alleviates radiation-induced early phase lung inflammation by targeting macrophages activation in mice. Front Immunol 2024; 15:1405020. [PMID: 39723218 PMCID: PMC11668677 DOI: 10.3389/fimmu.2024.1405020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Patients receiving chest radiation therapy, or exposed to high radiation levels due to accidental nuclear leakage are at risk of radiation-induced lung injury (RILI). In innate immunity, macrophages not only exhibit certain radiation tolerance but also play an important regulatory role in the whole pathological process. Nervonic acid (NA), a long-chain unsaturated fatty acid found in nerve tissue, plays a pivotal role in maintaining normal tissue growth and repair. However, the influence of NA on RILI progression has yet to be examined. Aim This study aimed to assess the role of macrophage subtypes in RILI and whether NA can alleviate RILI. Specifically, whether NA can alleviate RILI by targeting macrophages and reducing the levels of inflammatory mediators in mouse models was assessed. Methods Mice RILI model was employed with 13 Gy whole thoracic radiation with or without administration of NA. Various assays were performed to evaluate lung tissue histological changes, cytokine expression, IκB-α expression and the number and proportion of macrophages. Results Radiation can lead to the release of inflammatory mediators, thereby exacerbating RILI. The specific radiation dose and duration of exposure can lead to different dynamic changes in the number of subpopulations of lung macrophages. NA can affect the changes of macrophages after irradiation and reduce inflammatory responses to alleviate RILI. Conclusion Macrophages play a significant role in the integrated pathological process of lung injury after irradiation which shows a dynamic change with different times. NA can protect lung tissues against the toxic effects of ionizing radiation and is a new potential functional component for targeting macrophages.
Collapse
Affiliation(s)
- Chenlin Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yanan Wu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Song Mi
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaofan Yang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Yuanjing Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - YingYing Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yan Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeto College of Medicine, Shandong University, Jinan, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Bertho A, Ortiz R, Maurin M, Juchaux M, Gilbert C, Espenon J, Ramasamy G, Patriarca A, De Marzi L, Pouzoulet F, Prezado Y. Thoracic Proton Minibeam Radiation Therapy: Tissue Preservation and Survival Advantage Over Conventional Proton Therapy. Int J Radiat Oncol Biol Phys 2024; 120:579-592. [PMID: 38621606 DOI: 10.1016/j.ijrobp.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is an innovative radiation therapy approach that highly modulates the spatial dimension of the dose delivery using narrow, parallel, and submillimetric proton beamlets. pMBRT has proven its remarkable healthy tissue preservation in the brain and skin. This study assesses the potential advantages of pMBRT for thoracic irradiations compared with conventional radiation therapy in terms of normal tissue toxicity. The challenge here was the influence of respiratory motion on the typical peak and valley dose patterns of pMBRT and its potential biologic effect. METHODS AND MATERIALS The whole thorax of naïve C57BL/6 mice received one fraction of high dose (18 Gy) pMBRT or conventional proton therapy (CPT) without any respiratory control. The development of radiation-induced pulmonary fibrosis was longitudinally monitored using cone beam computed tomography. Anatomopathologic analysis was carried out at 9 months postirradiation and focused on the reaction of the lungs' parenchyma and the response of cell types involved in the development of radiation-induced fibrosis and lung regeneration as alveolar type II epithelial cells, club cells, and macrophages. RESULTS pMBRT has milder effects on survival, skin reactions, and lung fibrosis compared with CPT. The pMBRT-induced lung changes were more regional and less severe, with evidence of potential reactive proliferation of alveolar type II epithelial cells and less extensive depletion of club cells and macrophage invasion than the more damaging effects observed in CPT. CONCLUSIONS pMBRT appears suitable to treat moving targets, holding a significant ability to preserve healthy lung tissue, even without respiratory control or precise targeting.
Collapse
Affiliation(s)
- Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France; Université Paris-Saclay, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Ramon Ortiz
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France; Université Paris-Saclay, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France; Université Paris-Saclay, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Cristèle Gilbert
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France; Université Paris-Saclay, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Julie Espenon
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France; Université Paris-Saclay, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Gabriel Ramasamy
- Institut Curie, PSL Research University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiation therapy (RadeXp), Paris, France
| | - Annalisa Patriarca
- Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL University, Orsay, France
| | - Ludovic De Marzi
- Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL University, Orsay, France; Institut Curie, Campus Universitaire, PSL University, University Paris Saclay, INSERM, Orsay
| | - Frédéric Pouzoulet
- Institut Curie, PSL Research University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiation therapy (RadeXp), Paris, France; Institut Curie, PSL University, Université Paris-Saclay, Inserm, Laboratoire de Recherche Translationnelle en Oncologie, Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France; Université Paris-Saclay, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
| |
Collapse
|
8
|
Ma L, Jin Y, Aili A, Xu L, Wang X, Xiao L, Zhao W, Yin S, Liu B, Yuan X. High-dose vitamin C attenuates radiation-induced pulmonary fibrosis by targeting S100A8 and S100A9. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167358. [PMID: 39025374 DOI: 10.1016/j.bbadis.2024.167358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a frequently encountered late complication in patients undergoing radiation therapy, presenting a substantial risk to patient mortality and quality of life. The pathogenesis of RIPF remains unclear, and current treatment options are limited in efficacy. High-dose vitamin C has demonstrated potential when used in conjunction with other adjuvant therapies due to potent anticancer properties. However, the potential relationship between high-dose vitamin C and RIPF has not yet been explored in existing literature. In our study, the RIPF model and the LLC tumor model were used as two animal models to explore how high-dose vitamin C can improve RIPF without hampering the antitumour efficacy of radiotherapy. The impact of high-dose vitamin C on RIPF was assessed through various assays, including micro-CT, HE staining, Masson staining, and immunohistochemistry. Our results indicated that administering high-dose vitamin C 2 days before radiation and continuing for a duration of 6 weeks significantly inhibited the progression of RIPF. In order to explore the mechanism by which high-dose vitamin C attenuates RIPF, we utilized RNA-seq analysis of mouse lung tissue in conjunction with publicly available databases. Our findings indicated that high-dose vitamin C inhibits the differentiation of fibroblasts into myofibroblasts by targeting S100A8 and S100A9 derived from neutrophils. Additionally, the combination of high-dose vitamin C and radiation demonstrated enhanced inhibition of tumor growth in a murine LLC tumor model. These results revealed that the combination of radiotherapy and high-dose vitamin C may offer a promising therapeutic approach for the clinical management of thoracic tumors and the prevention of RIPF.
Collapse
Affiliation(s)
- Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aifeina Aili
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Yin
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Shi XY, Zhu YQ, Liang CJ, Chen T, Shi Z, Wang W. Single-cell transcriptomic analysis of radiation-induced lung injury in rat. BIOMOLECULES & BIOMEDICINE 2024; 24:1331-1349. [PMID: 38552230 PMCID: PMC11379000 DOI: 10.17305/bb.2024.10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 09/07/2024]
Abstract
Radiation-induced lung injury (RILI) frequently occurs as a complication following radiotherapy for chest tumors like lung and breast cancers. However, the precise underlying mechanisms of RILI remain unclear. In this study, we generated RILI models in rats treated with a single dose of 20 Gy and examined lung tissues by single-cell RNA sequencing (scRNA-seq) 2 weeks post-radiation. Analysis of lung tissues revealed 18 major cell populations, indicating an increase in cell-cell communication following radiation exposure. Neutrophils, macrophages, and monocytes displayed distinct subpopulations and uncovered potential for pro-inflammatory effects. Additionally, endothelial cells exhibited a highly inflammatory profile and the potential for reactive oxygen species (ROS) production. Furthermore, smooth muscle cells (SMC) showed a high propensity for extracellular matrix (ECM) deposition. Our findings broaden the current understanding of RILI and highlight potential avenues for further investigation and clinical applications.
Collapse
Affiliation(s)
- Xing-Yuan Shi
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, The Fifth Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - You-Qing Zhu
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Biotechnology and Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Chan-Jin Liang
- Department of Radiation Oncology, The Fifth Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Chen
- Department of Radiation Oncology, The Fifth Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Biotechnology and Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Zhao Y, Yang J, Zhang Q, Chen X, Liang W, Zheng Y, Huang J, Liao Y, Fu C, Huang T, Li X, Zheng Y, Bu J, Shen E. Fasting alleviates bleomycin-induced lung inflammation and fibrosis via decreased Tregs and monocytes. Adv Med Sci 2024; 69:303-311. [PMID: 38986767 DOI: 10.1016/j.advms.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF), a chronic and progressively worsening condition characterized by interstitial lung inflammation and fibrosis of unknown etiology, has a grim prognosis. The treatment options for IPF are limited and new therapeutic strategies are urgently needed. Dietary restriction can improve various inflammatory diseases, but its therapeutic effect on bleomycin (BLM)-induced pulmonary fibrosis mouse model remains unclear. This study aims to investigate whether intermittent fasting (IF) can alleviate BLM-induced pulmonary inflammation and fibrosis. METHODS Pulmonary fibrosis mouse models were induced by BLM. The IF group underwent 24-h fasting cycles for one week prior and three weeks following BLM administration. Meanwhile, the ad libitum feeding group had unrestricted access to food throughout the experiment. The evaluation focused on lung pathology via histological staining, qPCR analysis of collagen markers, and immune cell profiling through flow cytometry. RESULTS IF group significantly reduced inflammation and fibrosis in lung tissues of BLM-induced mice compared to ad libitum feeding group. qPCR results showed IF remarkably decreased the mRNA expression of Col 1a and Col 3a in the lungs of BLM-induced mouse models. IF also reduced the numbers of regulatory T cells (Tregs), T helper 17 (Th17) cells, monocytes, and monocyte-derived alveolar macrophages (MoAMs) in the lung tissues. CONCLUSIONS IF may improve BLM-induced pulmonary fibrosis by decreasing numbers of immune cells including Treg cells, Th17 cells, monocytes, and MoAMs in the lungs. This study offers experimental validation for dietary intervention as a viable treatment modality in IPF management.
Collapse
Affiliation(s)
- Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jingying Yang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Department of Clinical Laboratory, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Qi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; The 903rd Hospital of the PLA, Hangzhou, Zhejiang, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Wenting Liang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Cheng Fu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ting Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Groves AM, Paris ND, Johnston CJ, Hernady E, Finkelstein J, Lawrence P, Marples B. Mitigating Viral Impact on the Radiation Response of the Lung. Radiat Res 2024; 202:552-564. [PMID: 39048109 PMCID: PMC11610374 DOI: 10.1667/rade-24-00103.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Inflammation is a key factor in both influenza and radiation-induced lung pathophysiology. This implies a commonality of response to pulmonary damage from these insults and suggests exacerbated pathology may occur after combined exposure. We therefore tested the hypothesis that past inflammation from viral infection alters the lung microenvironment and lowers tolerance for radiation injury. Mice were inoculated with influenza A virus (IAV) and three weeks later, after virus clearance, mice received total-body irradiation (TBI). Survival as well as systemic and local lung inflammation were assessed, and strategies to mitigate pulmonary injury were investigated. After IAV infection alone, body condition recovered within 3 weeks, however inflammatory pathways remained active for 15 weeks. IAV infection exacerbated subsequent TBI responses, evident by increased lethality, enhanced histologically evident lung injury and an altered lung macrophage phenotype. To mitigate this enhanced sensitivity, captopril [an angiotensin converting enzyme inhibitor (ACEi)] was administered to limit tissue inflammation, or inflammatory monocyte-derived macrophage recruitment was blocked with a C-C chemokine receptor type 2 (CCR2) inhibitor. Both treatments abrogated the changes in circulating immune cells observed 4 weeks after TBI, and attenuated pro-inflammatory phenotypes in lung alveolar macrophages, appearing to shift immune cell dynamics towards recovery. Histologically apparent lung injury was not improved by either treatment. We show that latent lung injury from viral infection exacerbates radiation morbidity and mortality. Although strategies that attenuate proinflammatory immune cell phenotypes can normalize macrophage dynamics, this does not fully mitigate lung injury. Recognizing that past viral infections can enhance lung radiosensitivity is of critical importance for patients receiving TBI, as it could increase the incidence of adverse outcomes.
Collapse
Affiliation(s)
- Angela M. Groves
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Nicole D. Paris
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Carl J. Johnston
- Department of Pediatrics, University of Rochester, Rochester, New York
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Jacob Finkelstein
- Department of Pediatrics, University of Rochester, Rochester, New York
| | - Paige Lawrence
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| |
Collapse
|
12
|
Zhang D, Li Y, Pan J, Zheng Y, Xu X. Copper homeostasis and cuproptosis in radiation-induced injury. Biomed Pharmacother 2024; 178:117150. [PMID: 39047417 DOI: 10.1016/j.biopha.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Radiation therapy for cancer treatment brings about a series of radiation injuries to normal tissues. In recent years, the discovery of copper-regulated cell death, cuproptosis, a novel form of programmed cell death, has attracted widespread attention and exploration in various biological functions and pathological mechanisms of copper metabolism and cuproptosis. Understanding its role in the process of radiation injury may open up new avenues and directions for exploration in radiation biology and radiation oncology, thereby improving tumor response and mitigating adverse reactions to radiotherapy. This review provides an overview of copper metabolism, the characteristics of cuproptosis, and their potential regulatory mechanisms in radiation injury.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinghui Pan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
13
|
Zheng M, Liu Z, He Y. Radiation-induced fibrosis: Mechanisms and therapeutic strategies from an immune microenvironment perspective. Immunology 2024; 172:533-546. [PMID: 38561001 DOI: 10.1111/imm.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Radiation-induced fibrosis (RIF) is a severe chronic complication of radiotherapy (RT) manifested by excessive extracellular matrix (ECM) components deposition within the irradiated area. The lung, heart, skin, jaw, pelvic organs and so on may be affected by RIF, which hampers body functions and quality of life. There is accumulating evidence suggesting that the immune microenvironment may play a key regulatory role in RIF. This article discussed the synergetic or antagonistic effects of immune cells and mediators in regulating RIF's development. Several potential preventative and therapeutic strategies for RIF were proposed based on the immunological mechanisms to provide clinicians with improved cognition and clinical treatment guidance.
Collapse
Affiliation(s)
- Mengting Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
14
|
Chaudary N, Hill RP, Milosevic M. Targeting the CXCL12/CXCR4 pathway to reduce radiation treatment side effects. Radiother Oncol 2024; 194:110194. [PMID: 38447871 DOI: 10.1016/j.radonc.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
High precision, image-guided radiotherapy (RT) has increased the therapeutic ratio, enabling higher tumor and lower normal tissue doses, leading to improved patient outcomes. Nevertheless, some patients remain at risk of developing serious side effects.In many clinical situations, the radiation tolerance of normal tissues close to the target volume limits the dose that can safely be delivered and thus the potential for tumor control and cure. This is particularly so in patients being re-treated for tumor progression or a second primary tumor within a previous irradiated volume, scenarios that are becoming more frequent in clinical practice.Various normal tissue 'radioprotective' drugs with the potential to reduce side effects have been studied previously. Unfortunately, most have failed to impact clinical practice because of lack of therapeutic efficacy, concern about concurrent tumor protection or excessive drug-related toxicity. This review highlights the evidence indicating that targeting the CXCL12/CXCR4 pathway can mitigate acute and late RT-induced injury and reduce treatment side effects in a manner that overcomes these previous translational challenges. Pre-clinical studies involving a broad range of normal tissues commonly affected in clinical practice, including skin, lung, the gastrointestinal tract and brain, have shown that CXCL12 signalling is upregulated by RT and attracts CXCR4-expressing inflammatory cells that exacerbate acute tissue injury and late fibrosis. These studies also provide convincing evidence that inhibition of CXCL12/CXCR4 signalling during or after RT can reduce or prevent RT side effects, warranting further evaluation in clinical studies. Greater dialogue with the pharmaceutical industry is needed to prioritize the development and availability of CXCL12/CXCR4 inhibitors for future RT studies.
Collapse
Affiliation(s)
- Naz Chaudary
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Richard P Hill
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Milosevic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Yi H, Qin L, Ye X, Song J, Ji J, Ye T, Li J, Li L. Progression of radio-labeled molecular imaging probes targeting chemokine receptors. Crit Rev Oncol Hematol 2024; 195:104266. [PMID: 38232861 DOI: 10.1016/j.critrevonc.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Chemokine receptors are significantly expressed in the surface of most inflammatory cells and tumor cells. Guided by chemokines, inflammatory cells which express the relevant chemokine receptors migrate to inflammatory lesions and participate in the evolution of inflammation diseases. Similarly, driven by chemokines, immune cells infiltrate into tumor lesions not only induces alterations in the tumor microenvironment, disrupting the efficacy of tumor therapies, but also has the potential to selectively target tumoral cells and diminish tumor progression. Chemokine receptors, which are significantly expressed on the surface of tumor cell membranes, are regulated by chemokines and initiate tumor-associated signaling pathways within tumor cells, playing a complex role in tumor progression. Based on the antagonists targeting chemokine receptors, radionuclide-labeled molecular imaging probes have been developed for the emerging application of molecular imaging in diseases such as tumors and inflammation. The value and limitations of molecular probes in disease imaging are worth reviewing.
Collapse
Affiliation(s)
- Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Lilin Qin
- Second Clinical Medical College of Zhejiang Chinese Medical University, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Xuemei Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jinling Song
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Ting Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Dongfang Street 150, Hangzhou, Zhejiang 310022, China.
| | - Linfa Li
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
16
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
18
|
House EL, Kim SY, Chalupa D, Hernady E, Groves AM, Johnston CJ, McGraw MD. IL-17A neutralization fails to attenuate airway remodeling and potentiates a proinflammatory lung microenvironment in diacetyl-exposed rats. Am J Physiol Lung Cell Mol Physiol 2023; 325:L434-L446. [PMID: 37642674 PMCID: PMC10639012 DOI: 10.1152/ajplung.00082.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Bronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4+CD25+ T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling. We hypothesized that IL-17A neutralization would attenuate the severity of airway remodeling after repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor or filtered air (RA) for 6 h/day × 5 days and monitored for 2 wk postexposure. Treatment with IL-17A neutralization (αIL-17A) or IgG (control) began immediately following exposures and continued twice weekly until study's end. Lungs were harvested for histology, flow cytometry, and BAL analyses. Survival, oxygen saturations, and percent weight change decreased significantly in DA-exposed versus RA-exposed rats, but did not differ significantly between DA + αIL-17A versus DA + IgG. Similarly, the number nor severity of airway lesions did not differ significantly between DA + αIL-17A versus DA + IgG rats despite the percentage of lung regulatory T cells increasing with decreased BAL IL-17A concentrations. Ashcroft scoring of the distal lung parenchyma suggested worse parenchymal remodeling in DA + αIL-17A versus DA + IgG rats with increased expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor-kappa B (NF-κB). Collectively, IL-17A neutralization in DA-exposed rats failed to attenuate airway remodeling with increased expression of pro-inflammatory cytokines TNF-α, IL-1β, and NF-κB.NEW & NOTEWORTHY Interleukin-17A (IL-17A) neutralization has shown benefit previously in preclinical models of transplant-associated bronchiolitis obliterans (BO), yet it remains unknown whether IL-17A neutralization has similar benefit for other forms of BO. Here, IL-17A neutralization fails to prevent severe airway remodeling in rats exposed repetitively to the flavoring chemical diacetyl, and instead, promotes a proinflammatory microenvironment with increased expression of TNF-α, IL-1β, and NF-κB within the lung.
Collapse
Affiliation(s)
- Emma L House
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
| | - So-Young Kim
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States
| | - Angela M Groves
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New York, United States
| | - Carl J Johnston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew D McGraw
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
19
|
Ni J, Guo T, Zhou Y, Jiang S, Zhang L, Zhu Z. STING signaling activation modulates macrophage polarization via CCL2 in radiation-induced lung injury. J Transl Med 2023; 21:590. [PMID: 37667317 PMCID: PMC10476398 DOI: 10.1186/s12967-023-04446-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a prevalent complication of thoracic radiotherapy in cancer patients. A comprehensive understanding of the underlying mechanisms of RILI is essential for the development of effective prevention and treatment strategies. METHODS To investigate RILI, we utilized a mouse model that received 12.5 Gy whole-thoracic irradiation. The evaluation of RILI was performed using a combination of quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), histology, western blot, immunohistochemistry, RNA sequencing, and flow cytometry. Additionally, we established a co-culture system consisting of macrophages, lung epithelial cells, and fibroblasts for in vitro studies. In this system, lung epithelial cells were irradiated with a dose of 4 Gy, and we employed STING knockout macrophages. Translational examinations were conducted to explore the relationship between STING expression in pre-radiotherapy lung tissues, dynamic changes in circulating CCL2, and the development of RILI. RESULTS Our findings revealed significant activation of the cGAS-STING pathway and M1 polarization of macrophages in the lungs of irradiated mice. In vitro studies demonstrated that the deficiency of cGAS-STING signaling led to impaired macrophage polarization and RILI. Through RNA sequencing, cytokine profiling, and rescue experiments using a CCL2 inhibitor called Bindarit, we identified the involvement of CCL2 in the regulation of macrophage polarization and the development of RILI. Moreover, translational investigations using patient samples collected before and after thoracic radiotherapy provided additional evidence supporting the association between cGAS-STING signaling activity, CCL2 upregulation, and the development of radiation pneumonitis. CONCLUSIONS The cGAS-STING signaling pathway plays a crucial role in regulating the recruitment and polarization of macrophages, partly through CCL2, during the pathogenesis of RILI.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Long Zhang
- University of Shanghai for Science and Technology and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, Institute of Biomedical Sciences and Clinical Technology Transformation, School of Health Science and Engineering, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai, 200093, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Zhang M, Lan H, Peng S, Zhou W, Wang X, Jiang M, Hong J, Zhang Q. MiR-223-3p attenuates radiation-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Int Immunopharmacol 2023; 122:110616. [PMID: 37459784 DOI: 10.1016/j.intimp.2023.110616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Macrophage pyroptosis plays an important role in the development of radiation-induced cell and tissue damage, leading to acute lung injury. However, the underlying mechanisms of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3)-mediated macrophage pyroptosis and the regulatory factors involved in radiation-induced pyroptosis are unclear. In this study, the expression of the NLRP3 inflammasome and pyroptosis-associated factors in murine macrophage cell lines was investigated after ionizing radiation. High-throughput RNA sequencing was performed to identify and characterize miRNAs and mRNA transcripts associated with NLRP3-mediated cell death. Our results demonstrated that cleaved-caspase-1 (p10) and N-terminal domain of gasdermin-D (GSDMD-N) were upregulated, and the number of NLRP3 inflammasomes and pyroptotic cells increased in murine macrophage cell lines after irradiation (8 Gy). Comparativeprofiling of 300miRNAs revealed that 41 miRNAsexhibited significantly different expression after 8 Gy of irradiation. Granulocyte-specific microRNA-223-3p (miR-223-3p) is a negative regulator of NLRP3. In vitro experiments revealed that the expression of miR-223-3p was significantly altered by irradiation. Moreover, miR-223-3p decreased the expression of NLRP3 and proinflammatory factors, resulting in reduced pyroptosis in irradiated murine macrophages. Subsequently, in vivo experiments revealed the efficacy of miR-223-3p supplementation in ameliorating alveolar macrophage (AM) pyroptosis, attenuating the infiltration of inflammatory monocytes, and significantly alleviating the severity of acute radiation-induced lung injury (ARILI). Our findings suggest that the miR-223-3p/NLRP3/caspase-1 axis is involved in radiation-induced AM pyroptosis and ARILI.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weitong Zhou
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meina Jiang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
21
|
Groves AM, Misra R, Clair G, Hernady E, Olson H, Orton D, Finkelstein J, Marples B, Johnston CJ. Influence of the irradiated pulmonary microenvironment on macrophage and T cell dynamics. Radiother Oncol 2023; 183:109543. [PMID: 36813173 PMCID: PMC10238652 DOI: 10.1016/j.radonc.2023.109543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/29/2022] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The lung is sensitive to radiation, increasing normal tissue toxicity risks following radiation therapy. Adverse outcomes include pneumonitis and pulmonary fibrosis, which result from dysregulated intercellular communication within the pulmonary microenvironment. Although macrophages are implicated in these pathogenic outcomes, the impact of their microenvironment is not well understood. MATERIALS AND METHODS C57BL/6J mice received 6Gyx5 irradiation to the right lung. Macrophage and T cell dynamics were investigated in ipsilateral right lungs, contralateral left lungs and non-irradiated control lungs 4-26wk post exposure. Lungs were evaluated by flow cytometry, histology and proteomics. RESULTS Following uni-lung irradiation, focal regions of macrophage accumulation were noted in both lungs by 8wk, however by 26wk fibrotic lesions were observed only in ipsilateral lungs. Infiltrating and alveolar macrophages populations expanded in both lungs, however transitional CD11b + alveolar macrophages persisted only in ipsilateral lungs and expressed lower CD206. Concurrently, arginase-1 + macrophages accumulated in ipsilateral but not contralateral lungs at 8 and 26wk post exposure, while CD206 + macrophages were absent from these accumulations. While radiation expanded CD8 + T cells in both lungs, T regulatory cells only increased in ipsilateral lungs. Unbiased proteomics analysis of immune cells revealed a substantial number of differentially expressed proteins in ipsilateral lungs when compared to contralateral lungs and both differed from non-irradiated controls. CONCLUSIONS Pulmonary macrophage and T cell dynamics are impacted by the microenvironmental conditions that develop following radiation exposure, both locally and systemically. While macrophages and T cells infiltrate and expand in both lungs, they diverge phenotypically depending on their environment.
Collapse
Affiliation(s)
- Angela M Groves
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Ravi Misra
- Department of Pediatrics, Division of Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Heather Olson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Danny Orton
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jacob Finkelstein
- Department of Pediatrics, Division of Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Carl J Johnston
- Department of Pediatrics, Division of Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Beach TA, Finkelstein JN, Chang PY. Epithelial Responses in Radiation-Induced Lung Injury (RILI) Allow Chronic Inflammation and Fibrogenesis. Radiat Res 2023; 199:439-451. [PMID: 37237442 PMCID: PMC10498477 DOI: 10.1667/rade-22-00103.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/20/2023] [Indexed: 05/28/2023]
Abstract
Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8-10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.
Collapse
Affiliation(s)
- Tyler A. Beach
- SRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
| | - Jacob N. Finkelstein
- University of Rochester Medical Center, Departments of Pediatrics and Neonatology, and Environmental Medicine, Rochester, New York 14642
| | - Polly Y. Chang
- SRI Biosciences, SRI International, Menlo Park, Calfornia 94025-3493
| |
Collapse
|
23
|
Sun Z, Lou Y, Hu X, Song F, Zheng X, Hu Y, Ding H, Zhang Y, Huang P. Single-cell sequencing analysis fibrosis provides insights into the pathobiological cell types and cytokines of radiation-induced pulmonary fibrosis. BMC Pulm Med 2023; 23:149. [PMID: 37118713 PMCID: PMC10148423 DOI: 10.1186/s12890-023-02424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Radiotherapy is an essential treatment for chest cancer. Radiation-induced pulmonary fibrosis (RIPF) is an almost irreversible interstitial lung disease; however, its pathogenesis remains unclear. METHODS We analyzed specific changes in cell populations and potential markers by using single-cell sequencing datasets from the Sequence Read Archive database, PERFORMED from control (0 Gy) and thoracic irradiated (20 Gy) mouse lungs at day 150 post-radiation. We performed IHC and ELISA on lung tissue and cells to validate the potential marker cytokines identified by the analysis on rat thoracic irradiated molds (30 Gy). RESULTS Single-cell sequencing analysis showed changes in abundance across cell types and at the single-cell level, with B and T cells showing the most significant changes in abundance. And four cytokines, CCL5, ICAM1, PF4, and TNF, were significantly upregulated in lung tissues of RIPF rats and cell supernatants after ionizing radiation. CONCLUSION Cytokines CCL5, ICAM1, PF4, and TNF may play essential roles in radiation pulmonary fibrosis. They are potential targets for the treatment of radiation pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhiyong Sun
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yutao Lou
- College of pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaoping Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feifeng Song
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaowei Zheng
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiying Ding
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Liang Z, Luo K, Wang Y, Zeng Q, Ling X, Wang S, Dragomir MP, Li Q, Yang H, Xi M, Chen B. Clinical and Dosimetric Predictors for Postoperative Cardiopulmonary Complications in Esophageal Squamous Cell Carcinoma Patients Receiving Neoadjuvant Chemoradiotherapy and Surgery. Ann Surg Oncol 2023; 30:529-538. [PMID: 36127527 DOI: 10.1245/s10434-022-12526-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy followed by esophagectomy is the standard treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). This study explored correlations of clinical factors and dose-volume histogram (DVH) parameters with postoperative cardiopulmonary complications and predicted their risk by establishing a nomogram model. METHODS Clinical and DVH parameters of ESCC patients who underwent trimodality treatment from 2002 to 2020 were collected. Postoperative cardiopulmonary complications were recorded. Logistic regression analysis was applied, and a nomogram model was constructed. Area under the receiver operating characteristic (AUC) curve, calibration curve, and decision curve analyses were performed to evaluate the performance of the nomogram. RESULTS Of the 307 ESCC patients enrolled in this study, 65 (21.2%) experienced pulmonary complications and 57 (18.6%) experienced cardiac complications. The following six risk factors were identified as independent risk factors for pulmonary complications by multivariate logistic regression analyses in the integrated model: male sex (odds ratio [OR], 3.26; 95% confidence interval [CI], 1.27-9.70; P = 0.021), post-radiation therapy (RT) forced expiratory volume in 1 s (FEV1) (OR, 0.51; 95% CI 0.28-0.90; P = 0.023), mean lung dose (MLD) (OR, 1.13; 95% CI 1.01-1.28; P = 0.041), and pre-RT monocyte (OR, 8.36; 95% CI 1.23-11.7; P = 0.03). The AUC of this integrated model was 0.705 (95% CI 0.64-0.77). The paclitaxel and cisplatin (TP) concurrent chemotherapy regimen was the independent predictor of cardiac complication (OR, 2.50; 95% CI 1.22-5.55; P = 0.016). CONCLUSIONS For ESCC patients who underwent trimodality treatment, male sex, post-RT FEV1, MLD, and pre-RT monocyte were confirmed as significant predictors of postoperative pulmonary complications. A nomogram model including six risk factors was further established. The independent predictor of cardiac complication was TP concurrent chemotherapy.
Collapse
Affiliation(s)
- Zhaohui Liang
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China
| | - Kongjia Luo
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Yuting Wang
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Qiuli Zeng
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xiuzhen Ling
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Sifen Wang
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China
| | - Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Qiaoqiao Li
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China
| | - Hong Yang
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Mian Xi
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China. .,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China. .,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Xu C, Shang Z, Najafi M. Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms. Curr Drug Targets 2022; 23:1505-1525. [PMID: 36082868 DOI: 10.2174/1389450123666220907144131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.
Collapse
Affiliation(s)
- Chaofeng Xu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Zhongtu Shang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
27
|
Cogno N, Bauer R, Durante M. An Agent-Based Model of Radiation-Induced Lung Fibrosis. Int J Mol Sci 2022; 23:13920. [PMID: 36430398 PMCID: PMC9693125 DOI: 10.3390/ijms232213920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Early- and late-phase radiation-induced lung injuries, namely pneumonitis and lung fibrosis (RILF), severely constrain the maximum dose and irradiated volume in thoracic radiotherapy. As the most radiosensitive targets, epithelial cells respond to radiation either by undergoing apoptosis or switching to a senescent phenotype that triggers the immune system and damages surrounding healthy cells. Unresolved inflammation stimulates mesenchymal cells' proliferation and extracellular matrix (ECM) secretion, which irreversibly stiffens the alveolar walls and leads to respiratory failure. Although a thorough understanding is lacking, RILF and idiopathic pulmonary fibrosis share multiple pathways and would mutually benefit from further insights into disease progression. Furthermore, current normal tissue complication probability (NTCP) models rely on clinical experience to set tolerance doses for organs at risk and leave aside mechanistic interpretations of the undergoing processes. To these aims, we implemented a 3D agent-based model (ABM) of an alveolar duct that simulates cell dynamics and substance diffusion following radiation injury. Emphasis was placed on cell repopulation, senescent clearance, and intra/inter-alveolar bystander senescence while tracking ECM deposition. Our ABM successfully replicates early and late fibrotic response patterns reported in the literature along with the ECM sigmoidal dose-response curve. Moreover, surrogate measures of RILF severity via a custom indicator show qualitative agreement with published fibrosis indices. Finally, our ABM provides a fully mechanistic alveolar survival curve highlighting the need to include bystander damage in lung NTCP models.
Collapse
Affiliation(s)
- Nicolò Cogno
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
28
|
ZC3H4 regulates infiltrating monocytes, attenuating pulmonary fibrosis through IL-10. Respir Res 2022; 23:204. [PMID: 35962397 PMCID: PMC9375388 DOI: 10.1186/s12931-022-02134-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Silicosis is a pulmonary fibrosis-associated disease caused by the inhalation of large amounts of free silicon dioxide (SiO2) that mainly manifests as early inflammation and late pulmonary fibrosis. As macrophage precursors, monocytes accumulate in the lung during early inflammation, but their role in the development of silicosis is unclear. Single-cell sequencing (cell numbers = 25,002), Western blotting, quantitative real-time PCR, ELISA and cell functional experiments were used to explore the specific effects of monocytes on fibroblasts. The CRISPR/Cas9 system was used to specifically knock down ZC3H4, a novel member of the CCCH zinc finger protein family, and was combined with pharmacological methods to explore the mechanism by which ZC3H4 affects chemokine and cytokine secretion. The results indicated that (1) SiO2 induced an infiltrating phenotype in monocytes; (2) infiltrating monocytes inhibited the activation, viability and migration of fibroblasts by regulating IL-10 but not IL-8; and (3) SiO2 downregulated IL-10 via ZC3H4-induced autophagy. This study revealed that ZC3H4 regulated the secretion function of monocytes, which, in turn, inhibited fibroblast function in early inflammation through autophagy signaling, thereby reducing pulmonary fibrosis. These findings provide a new idea for the clinical treatment of silicosis.
Collapse
|
29
|
Marquardt RM, Ahn SH, Reske JJ, Chandler RL, Petroff MG, Kim TH, Jeong JW. Endometrial Epithelial ARID1A Is Required for Uterine Immune Homeostasis during Early Pregnancy. Int J Mol Sci 2022; 23:6067. [PMID: 35682747 PMCID: PMC9181301 DOI: 10.3390/ijms23116067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
A growing body of work suggests epigenetic dysregulation contributes to endometriosis pathophysiology and female infertility. The chromatin remodeling complex subunit AT-rich interaction domain 1A (ARID1A) must be properly expressed to maintain normal uterine function. Endometrial epithelial ARID1A is indispensable for pregnancy establishment in mice through regulation of endometrial gland function; however, ARID1A expression is decreased in infertile women with endometriosis. We hypothesized that ARID1A performs critical operations in the endometrial epithelium necessary for fertility besides maintaining gland function. To identify alterations in uterine gene expression resulting from loss of epithelial ARID1A, we performed RNA-sequencing analysis on pre-implantation uteri from LtfiCre/+Arid1af/f and control mice. Differential expression analysis identified 4181 differentially expressed genes enriched for immune-related ingenuity canonical pathways including agranulocyte adhesion and diapedesis and natural killer cell signaling. RT-qPCR confirmed an increase in pro-inflammatory cytokine and macrophage-related gene expression but a decrease in natural killer cell signaling. Immunostaining confirmed a uterus-specific increase in macrophage infiltration. Flow cytometry delineated an increase in inflammatory macrophages and a decrease in uterine dendritic cells in LtfiCre/+Arid1af/f uteri. These findings demonstrate a role for endometrial epithelial ARID1A in suppressing inflammation and maintaining uterine immune homeostasis, which are required for successful pregnancy and gynecological health.
Collapse
Affiliation(s)
- Ryan M. Marquardt
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA; (R.M.M.); (J.J.R.); (R.L.C.); (T.H.K.)
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Soo Hyun Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Jake J. Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA; (R.M.M.); (J.J.R.); (R.L.C.); (T.H.K.)
| | - Ronald L. Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA; (R.M.M.); (J.J.R.); (R.L.C.); (T.H.K.)
| | - Margaret G. Petroff
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA; (R.M.M.); (J.J.R.); (R.L.C.); (T.H.K.)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA; (R.M.M.); (J.J.R.); (R.L.C.); (T.H.K.)
| |
Collapse
|
30
|
Chaudhury D, Sen U, Sahoo BK, Bhat NN, Kumara K S, Karunakara N, Biswas S, Shenoy P S, Bose B. Thorium promotes lung, liver and kidney damage in BALB/c mouse via alterations in antioxidant systems. Chem Biol Interact 2022; 363:109977. [PMID: 35636501 DOI: 10.1016/j.cbi.2022.109977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 01/15/2023]
|
31
|
Wang L, Jiang J, Chen Y, Jia Q, Chu Q. The roles of CC chemokines in response to radiation. Radiat Oncol 2022; 17:63. [PMID: 35365161 PMCID: PMC8974090 DOI: 10.1186/s13014-022-02038-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microenvironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, including tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irradiation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to target specific chemokines to alleviate radiation-induced injury or promote tumour control.
Collapse
|
32
|
Günes Günsel G, Conlon TM, Jeridi A, Kim R, Ertüz Z, Lang NJ, Ansari M, Novikova M, Jiang D, Strunz M, Gaianova M, Hollauer C, Gabriel C, Angelidis I, Doll S, Pestoni JC, Edelmann SL, Kohlhepp MS, Guillot A, Bassler K, Van Eeckhoutte HP, Kayalar Ö, Konyalilar N, Kanashova T, Rodius S, Ballester-López C, Genes Robles CM, Smirnova N, Rehberg M, Agarwal C, Krikki I, Piavaux B, Verleden SE, Vanaudenaerde B, Königshoff M, Dittmar G, Bracke KR, Schultze JL, Watz H, Eickelberg O, Stoeger T, Burgstaller G, Tacke F, Heissmeyer V, Rinkevich Y, Bayram H, Schiller HB, Conrad M, Schneider R, Yildirim AÖ. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun 2022; 13:1303. [PMID: 35288557 PMCID: PMC8921220 DOI: 10.1038/s41467-022-28809-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated.
Collapse
Affiliation(s)
- Gizem Günes Günsel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Rinho Kim
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Zeynep Ertüz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Niklas J Lang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Meshal Ansari
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Mariia Novikova
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Ostrovityanova1 bldg 10, 117997, Moscow, Russia
| | - Dongsheng Jiang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Maximilian Strunz
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Mariia Gaianova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christine Hollauer
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Christina Gabriel
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ilias Angelidis
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Sebastian Doll
- Institute of Computational Biology, Helmholtz Munich, 85764, Munich, Germany
| | - Jeanine C Pestoni
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Stephanie L Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Kevin Bassler
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- aimed analytics, 53121, Bonn, Germany
| | - Hannelore P Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Sophie Rodius
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
| | - Carolina Ballester-López
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | | | - Natalia Smirnova
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, 80045, USA
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Charu Agarwal
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Ioanna Krikki
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Benoit Piavaux
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242, Vestec, Czech Republic
| | - Stijn E Verleden
- Division of Pneumology, KU Leuven, 3000, Leuven, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre, University of Antwerp, 2650, Edegem, Belgium
| | | | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gunnar Dittmar
- Proteomics of cellular signalling, Luxembourg Institute of Health, 1272, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University, University Hospital Ghent, 9000, Ghent, Belgium
| | - Joachim L Schultze
- Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, 53115, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE and the University of Bonn, 53115, Bonn, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Grosshansdorf, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 13353, Berlin, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Munich, 81377, Munich, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
| | - Yuval Rinkevich
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764, Munich, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow, 117997, Russia
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Munich, 85764, Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany.
- Koç University Research Center for Translational Medicine (KUTTAM), 34010, Istanbul, Turkey.
| |
Collapse
|
33
|
Kallenbach JG, Bachman JF, Paris ND, Blanc RS, O'Connor T, Furati E, Williams JP, Chakkalakal JV. Muscle-specific functional deficits and lifelong fibrosis in response to paediatric radiotherapy and tumour elimination. J Cachexia Sarcopenia Muscle 2022; 13:296-310. [PMID: 34997696 PMCID: PMC8818600 DOI: 10.1002/jcsm.12902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND As paediatric cancer survivors are living into adulthood, they suffer from the age-related, accelerated decline of functional skeletal muscle tissue, termed sarcopenia. With ionizing radiation (radiotherapy) at the core of paediatric cancer therapies, its direct and indirect effects can have lifelong negative impacts on paediatric growth and maintenance of skeletal muscle. Utilizing our recently developed preclinical rhabdomyosarcoma mouse model, we investigated the late effects of paediatric radiation treatment on skeletal muscles from late adolescent (8 weeks old) and middle-aged (16 months old) mice. METHODS Paediatric C57BL/6J male mice (3 weeks old) were injected with rhabdomyosarcoma cells into their right hindlimbs, and then fractionated irradiation (3 × 8.2 Gy) was administered to those limbs at 4 weeks old to eliminate the tumours. Radiation-alone and tumour-irradiated mice were assessed at either 8 weeks (3 weeks post-irradiation) or 16 months (14 months post-irradiation) of age for muscle physiology, myofibre characteristics, cell loss, histopathology, fibrosis, inflammatory gene expression, and fibrotic gene expression. RESULTS Mice that received only paediatric radiation demonstrated reduced muscle mass (-17%, P < 0.001), muscle physiological function (-25%, P < 0.01), muscle contractile kinetics (-25%, P < 0.05), satellite cell number (-45%, P < 0.05), myofibre cross-sectional area (-30%, P < 0.0001), and myonuclear number (-17%, P < 0.001). Paediatric radiation increased inflammatory gene expression, increased fibrotic gene expression, and induced extracellular matrix protein deposition (fibrosis) with tumour elimination exacerbating some phenotypes. Paediatric tumour-eliminated mice demonstrated exacerbated deficits to function (-20%, P < 0.05) and myofibre size (-17%, P < 0.001) in some muscles as well as further increases to inflammatory and fibrotic gene expression. Examining the age-related effects of paediatric radiotherapy in middle-aged mice, we found persistent myofibre atrophy (-20%, P < 0.01), myonuclear loss (-18%, P < 0.001), up-regulated inflammatory and fibrotic signalling, and lifelong fibrosis. CONCLUSIONS The results from this paediatric radiotherapy model are consistent and recapitulate the clinical and molecular features of accelerated sarcopenia, musculoskeletal frailty, and radiation-induced fibrosis experienced by paediatric cancer survivors. We believe that this preclinical mouse model is well poised for future mechanistic insights and therapeutic interventions that improve the quality of life for paediatric cancer survivors.
Collapse
Affiliation(s)
- Jacob G Kallenbach
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - John F Bachman
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roméo S Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas O'Connor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Esraa Furati
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline P Williams
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe V Chakkalakal
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedic Surgery and Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
34
|
Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA, Illidge TM. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat Rev Immunol 2022; 22:124-138. [PMID: 34211187 DOI: 10.1038/s41577-021-00568-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-β (TGFβ). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.
Collapse
Affiliation(s)
- Urszula M Cytlak
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Douglas P Dyer
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Timothy M Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
35
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
36
|
Gao F, Dong W, Liu P, Narayanan J, Fish BL, Jacobs ER, Medhora M. Molecular Changes in miRNA in Irradiated Rat Kidneys: Role of miR-34a and its Vascular Targets in the Notch Pathway. Radiat Res 2021; 196:611-622. [PMID: 34330145 PMCID: PMC10416360 DOI: 10.1667/rade-20-00078.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/19/2021] [Indexed: 11/03/2022]
Abstract
The mechanism(s) of vascular regression in adult organs remains an unexplored gap. Irradiation to the kidney results in vascular regression and renal failure. The goal of this work was to determine molecular mechanism(s) of radiation-induced vascular regression and its mitigation by the drug lisinopril. Female WAG/RijCmcr rats received either 13 Gy X-ray irradiation, sparing one leg, or no irradiation, the latter serving as age-matched controls. Some irradiated animals received lisinopril. Kidney miRNA-seq was performed 35 days postirradiation, before symptoms of nephropathy. MicroRNA expression profiles were compared with data from humans. MicroRNA targets were predicted using TargetScan and confirmed by qRT-PCR and Western blot. Renal vascular endothelial cell density was evaluated at 100 days to confirm vascular regression. The normal rat kidney microRNA profile resembled that of humans. MiR-34a was increased >7-fold and emerged as the predominant rat microRNA altered by radiation. Expression of Jagged1, a ligand in the Notch pathway of vascular development and a target of miR-34a-5p was decreased by radiation but not in irradiated rats receiving lisinopril. Radiation decreased endothelial cells in the kidneys at 100 days, confirming vascular regression. In conclusion, the results of this study showed that radiation greatly increased miRNA34-a in rat kidneys, while lisinopril mitigated radiation-induced decrease of the Notch ligand, Jagged1, a molecular target of miRNA34-a.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of College of Dental Medicine - Illinois, Midwestern University, Downers Grove, Illinois
| | - Wei Dong
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pengyuan Liu
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Brian L. Fish
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Elizabeth R. Jacobs
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Physiology Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Pulmonary Medicine Medical College of Wisconsin, Wauwatosa, Wisconsin
- Department of Cardiovascular Center, Medical College of Wisconsin, Wauwatosa, Wisconsin
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, Wisconsin
| |
Collapse
|
37
|
Tang Y, Yuan Q, Zhao C, Xu Y, Zhang Q, Wang L, Sun Z, Cao J, Luo J, Jiao Y. Targeting USP11 may alleviate radiation-induced pulmonary fibrosis by regulating endothelium tight junction. Int J Radiat Biol 2021; 98:30-40. [PMID: 34705600 DOI: 10.1080/09553002.2022.1998711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a major side effect after radiotherapy for thoracic malignancies. However, rare anti-RIPF therapeutics show definitive effects for treating this disease. Ubiquitin-specific peptidase 11 (USP11) has been reported to promote transforming growth factor β (TGFβ) signaling which plays an essential role underlying RIPF. Herein, we explored the role of USP11 on RIPF. MATERIALS AND METHODS In the present study, USP11-knockout (Usp11-/-) mice were used to explore the effects of USP11 on RIPF. The lung tissue was obtained after receiving 30 Gy X-ray irradiation. The expression of USP11, TGF-β1, and a-SMA was determined by immunohistochemical and Western Blot, respectively. γ-H2AX foci and TUNEL positive cells were detected by fluorescent technique to assess DNA damage and apoptosis. High-throughput proteomic analysis was applied to further explore the related mechanisms. The transwell co-culture method was used to investigate bystander effects in HELF cells induced by irradiated HMEC-1 cells in vitro. RESULTS Here we found that radiation activated USP11 in vivo and in vitro. Our results showed that USP11 deficiency effectively decreased serum TGF-β1 level, suppressed α-SMA expression, and mitigated pulmonary fibrosis. In addition, fewer γ-H2AX foci and decreased apoptotic cells were identified after irradiation in the primary cells isolated from the lungs of Usp11-/- mice. High-throughput proteomics analysis results showed that 22-upregulated and 158-downregulated proteins were identified in the lung tissues of Usp11-/- mice after irradiation. Furthermore, gene set enrichment analysis (GSEA) revealed that USP11 deficiency affects the tight junction signaling pathway. CONCLUSIONS We verified that USP11 deficiency remarkably reinforced tight junction in the endothelial cells and alleviated TGF-β1 to inhibit fibrosis of fibroblast cells. The present study preliminarily showed that USP11-knockout mitigated RIPF via reinforcement endothelial barrier function.
Collapse
Affiliation(s)
- Yiting Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Qian Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Congzhao Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lili Wang
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
38
|
Cui W, Zhang P, Hankey KG, Xiao M, Farese AM, MacVittie TJ. AEOL 10150 Alleviates Radiation-induced Innate Immune Responses in Non-human Primate Lung Tissue. HEALTH PHYSICS 2021; 121:331-344. [PMID: 34546215 PMCID: PMC8601036 DOI: 10.1097/hp.0000000000001443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
ABSTRACT To study the molecular and cellular mechanisms of radiation-induced lung injury (RILI) in a non-human primate model, Rhesus macaques were irradiated with lethal doses of radiation to the whole thorax. A subset of the irradiated animals was treated with AEOL 10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Lung tissues were collected at necropsy for molecular and immunohistochemical (IHC) studies. Microarray expression profiling in the irradiated lung tissues identified differentially expressed genes (DEGs) and pathways important in innate immunity. The elevated expression of cytokines (CCL2, CCL11, IL-8), complement factors (CFB, C3), apoptosis-related molecules (p53, PTEN, Bax, p21, MDM2, c-Caspase 3), and adhesion molecules (fibronectin, integrin β6, ICAM-1) were further studied using real-time PCR, Western blot, or IHC. Oxidative stress and pulmonary inflammatory cell infiltration were increased in the irradiated lungs. Treatment with AEOL 10150 significantly decreased oxidative stress and monocyte/macrophage infiltration. Cytokine/chemokine-induced excessive innate immune response after thoracic irradiation plays an important role in RILI. To our knowledge, this is the first study to highlight the role of cytokine/chemokine-induced innate immune responses in radiation-induced pulmonary toxicity in a NHP model.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA 20889
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA 20817
| | - Pei Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| | - Kim G. Hankey
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA 20889
| | - Ann M. Farese
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA 21201
| |
Collapse
|
39
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
40
|
Dukhinova M, Kokinos E, Kuchur P, Komissarov A, Shtro A. Macrophage-derived cytokines in pneumonia: Linking cellular immunology and genetics. Cytokine Growth Factor Rev 2021; 59:46-61. [PMID: 33342718 PMCID: PMC8035975 DOI: 10.1016/j.cytogfr.2020.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Macrophages represent the first line of anti-pathogen defense - they encounter invading pathogens to perform the phagocytic activity, to deliver the plethora of pro- and anti-inflammatory cytokines, and to shape the tissue microenvironment. Throughout pneumonia course, alveolar macrophages and infiltrated blood monocytes produce increasing cytokine amounts, which activates the antiviral/antibacterial immunity but can also provoke the risk of the so-called cytokine "storm" and normal tissue damage. Subsequently, the question of how the cytokine spectrum is shaped and balanced in the pneumonia context remains a hot topic in medical immunology, particularly in the COVID19 pandemic era. The diversity in cytokine profiles, involved in pneumonia pathogenesis, is determined by the variations in cytokine-receptor interactions, which may lead to severe cytokine storm and functional decline of particular tissues and organs, for example, cardiovascular and respiratory systems. Cytokines and their receptors form unique profiles in individual patients, depending on the (a) microenvironmental context (comorbidities and associated treatment), (b) lung monocyte heterogeneity, and (c) genetic variations. These multidisciplinary strategies can be proactively considered beforehand and during the pneumonia course and potentially allow the new age of personalized immunotherapy.
Collapse
Affiliation(s)
- Marina Dukhinova
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia.
| | - Elena Kokinos
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Polina Kuchur
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Alexey Komissarov
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Anna Shtro
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia; Department of Chemotherapy, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| |
Collapse
|
41
|
Wilson LJ, Newhauser WD. Generalized approach for radiotherapy treatment planning by optimizing projected health outcome: preliminary results for prostate radiotherapy patients. Phys Med Biol 2021; 66:065007. [PMID: 33545710 DOI: 10.1088/1361-6560/abe3cf] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Research in cancer care increasingly focuses on survivorship issues, e.g. managing disease- and treatment-related morbidity and mortality occurring during and after treatment. This necessitates innovative approaches that consider treatment side effects in addition to tumor cure. Current treatment-planning methods rely on constrained iterative optimization of dose distributions as a surrogate for health outcomes. The goal of this study was to develop a generally applicable method to directly optimize projected health outcomes. We developed an outcome-based objective function to guide selection of the number, angle, and relative fluence weight of photon and proton radiotherapy beams in a sample of ten prostate-cancer patients by optimizing the projected health outcome. We tested whether outcome-optimized radiotherapy (OORT) improved the projected longitudinal outcome compared to dose-optimized radiotherapy (DORT) first for a statistically significant majority of patients, then for each individual patient. We assessed whether the results were influenced by the selection of treatment modality, late-risk model, or host factors. The results of this study revealed that OORT was superior to DORT. Namely, OORT maintained or improved the projected health outcome of photon- and proton-therapy treatment plans for all ten patients compared to DORT. Furthermore, the results were qualitatively similar across three treatment modalities, six late-risk models, and 10 patients. The major finding of this work was that it is feasible to directly optimize the longitudinal (i.e. long- and short-term) health outcomes associated with the total (i.e. therapeutic and stray) absorbed dose in all of the tissues (i.e. healthy and diseased) in individual patients. This approach enables consideration of arbitrary treatment factors, host factors, health endpoints, and times of relevance to cancer survivorship. It also provides a simpler, more direct approach to realizing the full beneficial potential of cancer radiotherapy.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America.,Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, United States of America
| |
Collapse
|
42
|
Brody SL, Gunsten SP, Luehmann HP, Sultan DH, Hoelscher M, Heo GS, Pan J, Koenitzer JR, Lee EC, Huang T, Mpoy C, Guo S, Laforest R, Salter A, Russell TD, Shifren A, Combadiere C, Lavine KJ, Kreisel D, Humphreys BD, Rogers BE, Gierada DS, Byers DE, Gropler RJ, Chen DL, Atkinson JJ, Liu Y. Chemokine Receptor 2-targeted Molecular Imaging in Pulmonary Fibrosis. A Clinical Trial. Am J Respir Crit Care Med 2021; 203:78-89. [PMID: 32673071 PMCID: PMC7781144 DOI: 10.1164/rccm.202004-1132oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1β blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christophe Combadiere
- INSERM, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Kory J. Lavine
- Department of Medicine
- Department of Developmental Biology
| | - Daniel Kreisel
- Department of Surgery, and
- Department of Immunology and Pathology, Washington University School of Medicine, Saint Louis, Missouri; and
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
IGF-1 Receptor Signaling Regulates Type II Pneumocyte Senescence and Resulting Macrophage Polarization in Lung Fibrosis. Int J Radiat Oncol Biol Phys 2020; 110:526-538. [PMID: 33385497 DOI: 10.1016/j.ijrobp.2020.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE Type II pneumocyte (alveolar epithelial cells type II [AECII]) senescence has been implicated in the progression of lung fibrosis. The capacity of senescent cells to modulate pulmonary macrophages to drive fibrosis is unexplored. Insulin-like growth factor-1 receptor (IGF-1R) signaling has been implicated as a regulator of senescence and aging. METHODS AND MATERIALS Mice with an AECII-specific deletion of IGF-1R received thoracic irradiation (n ≥ 5 per condition), and the effect of IGF-1R deficiency on radiation-induced AECII senescence and macrophage polarization to an alternatively activated phenotype (M2) was investigated. IGF-1R signaling, macrophage polarization, and senescence were evaluated in surgically resected human lung (n = 63). RESULTS IGF-1R deficient mice demonstrated reduced AECII senescence (senescent AECII/field; intact: 7.25% ± 3.5% [mean ± SD], deficient: 2.75% ± 2.8%, P = .0001), reduced accumulation of M2 macrophages (intact: 24.7 ± 2.2 cells/field, deficient: 15.5 ± 1.2 cells/field, P = .0086), and fibrosis (hydroxyproline content; intact: 71.9 ± 21.7 μg/lung, deficient: 31.7 ± 7.9, P = .0485) after irradiation. Senescent AECII enhanced M2 polarization in a paracrine fashion (relative Arg1 mRNA, 0 Gy: 1.0 ± 0.4, 17.5 Gy: 7.34 ± 0.5, P < .0001). Evaluation of surgical samples from patients treated with chemoradiation demonstrated increased expression of IGF-1 (unirradiated: 10.2% ± 4.9% area, irradiated: 15.1% ± 11.5%, P = .0377), p21 (unirradiated: 0.013 ± 0.02 histoscore, irradiated: 0.084 ± 0.09 histoscore, P = .0002), IL-13 (unirradiated: 13.7% ± 2.8% area, irradiated: 21.7% ± 3.8%, P < .0001), and M2 macrophages in fibrotic regions relative to nonfibrotic regions (unirradiated: 11.4 ± 12.2 CD163 + cells/core, irradiated: 43.1 ± 40.9 cells/core, P = .0011), consistent with findings from animal models of lung fibrosis. CONCLUSIONS This study demonstrates that senescent AECII are necessary for the progression of pulmonary fibrosis and serve as a targetable, chronic stimuli for macrophage activation in fibrotic lung.
Collapse
|
44
|
You DJ, Lee HY, Taylor-Just AJ, Linder KE, Bonner JC. Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles. Nanotoxicology 2020; 14:1058-1081. [PMID: 32813574 DOI: 10.1080/17435390.2020.1808105] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nickel nanoparticles (NiNPs) are increasingly used in nanotechnology applications, yet information on sex differences in NiNP-induced lung disease is lacking. The goal of this study was to explore mechanisms of susceptibility between male and female mice after acute or subchronic pulmonary exposure to NiNPs. For acute exposure, male and female mice received a single dose of NiNPs with or without LPS by oropharyngeal aspiration and were necropsied 24 h later. For subchronic exposure, mice received NiNPs with or without LPS six times over 3 weeks prior to necropsy. After acute exposure to NiNPs and LPS, male mice had elevated cytokines (CXCL1 and IL-6) and more neutrophils in bronchoalveolar lavage fluid (BALF), along with greater STAT3 phosphorylation in lung tissue. After subchronic exposure to NiNPs and LPS, male mice exhibited increased monocytes in BALF. Moreover, subchronic exposure of male mice to NiNP only induced higher CXCL1 and CCL2 in BALF along with increased alveolar infiltrates and CCL2 in lung tissue. STAT1 in lung tissue was induced by subchronic exposure to NiNPs in females but not males. Males had a greater induction of IL-6 mRNA in liver after acute exposure to NiNPs and LPS, and greater CCL2 mRNA in liver after subchronic NiNP exposure. These data indicate that susceptibility of males to acute lung inflammation involves enhanced neutrophilia with increased CXCL1 and IL-6/STAT3 signaling, whereas susceptibility to subchronic lung inflammation involves enhanced monocytic infiltration with increased CXCL1 and CCL2. STAT transcription factors appear to play a role in these sex differences. This study demonstrates sex differences in the lung inflammatory response of mice to NiNPs that has implications for human disease.
Collapse
Affiliation(s)
- Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexia J Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Keith E Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
45
|
Liu IC, Giap F, Mailhot-Vega RB, Bradley JA, Mendenhall NP, Okunieff P, Lu L, Jantz MA, Daily K, Spiguel L, Lockney NA. Concomitant Radiation Recall Dermatitis and Organizing Pneumonia following Breast Radiotherapy: A Case Report. Case Rep Oncol 2020; 13:875-882. [PMID: 32884534 PMCID: PMC7443621 DOI: 10.1159/000508493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Radiation recall dermatitis (RRD) is a rare complication that occurs after completion of radiation therapy (RT) and initiation of a precipitating agent, most commonly chemotherapeutic medications. Various theories attempt to explain the mechanism, including activation of the body's inflammatory pathways through nonimmune activation. Likewise, radiation-induced organizing pneumonia (RIOP) is an infrequent but potentially life-threatening complication of RT that, while not fully understood, is suspected to be partly an autoimmune reaction. Patient We present the case of a 71-year-old female with a history of type 2 diabetes mellitus, hypothyroidism, interstitial cystitis, and osteoarthritis who presented with clinical stage T1N0M0 ER+/PR–/HER2– invasive ductal carcinoma of the lower outer quadrant of the left breast, for which she underwent left segmental mastectomy and sentinel lymph node biopsy followed by completion axillary lymph node dissection. Her final pathologic stage was T1N1M0. Result The patient developed RRD and later RIOP following receipt of radiation and chemotherapy, which resolved with steroid administration. Conclusions The rarity of both RRD and RIOP occurring in a patient, as in our case, suggests a shared pathophysiology behind these two complications. As both reactions involve some degree of inflammation and respond to corticosteroids, it seems likely that the etiologies of RRD and RIOP lie within the inflammatory pathway. However, further investigation should evaluate the frequency, duration, and triggering of concomitant RRD and RIOP.
Collapse
Affiliation(s)
- I-Chia Liu
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Fantine Giap
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Raymond B Mailhot-Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Michael A Jantz
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Karen Daily
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lisa Spiguel
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Natalie A Lockney
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
46
|
MALDI-MSI spatially maps N-glycan alterations to histologically distinct pulmonary pathologies following irradiation. Sci Rep 2020; 10:11559. [PMID: 32665567 PMCID: PMC7360629 DOI: 10.1038/s41598-020-68508-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury is a highly complex combination of pathological alterations that develop over time and severity of disease development is dose-dependent. Following exposures to lethal doses of irradiation, morbidity and mortality can occur due to a combination of edema, pneumonitis and fibrosis. Protein glycosylation has essential roles in a plethora of biological and immunological processes. Alterations in glycosylation profiles have been detected in diseases ranging from infection, inflammation and cancer. We utilized mass spectrometry imaging to spatially map N-glycans to distinct pathological alterations during the clinically latent period and at 180 days post-exposure to irradiation. Results identified alterations in a number of high mannose, hybrid and complex N-glycans that were localized to regions of mucus and alveolar-bronchiolar hyperplasia, proliferations of type 2 epithelial cells, accumulations of macrophages, edema and fibrosis. The glycosylation profiles indicate most alterations occur prior to the onset of clinical symptoms as a result of pathological manifestations. Alterations in five N-glycans were identified as a function of time post-exposure. Understanding the functional roles N-glycans play in the development of these pathologies, particularly in the accumulation of macrophages and their phenotype, may lead to new therapeutic avenues for the treatment of radiation-induced lung injury.
Collapse
|
47
|
Radiation Damage to Tumor Vasculature Initiates a Program That Promotes Tumor Recurrences. Int J Radiat Oncol Biol Phys 2020; 108:734-744. [PMID: 32473180 DOI: 10.1016/j.ijrobp.2020.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023]
Abstract
This review, mostly of preclinical data, summarizes the evidence that radiation at doses relevant to radiation therapy initiates a pathway that promotes the reconstitution of the tumor vasculature leading to tumor recurrence. The pathway is not specific to tumors; it promotes repair of damaged and ischemic normal tissues by attracting proangiogenic cells from the bone marrow. For irradiated tumors the pathway comprises: (1) loss of endothelial cells and reduced tumor blood perfusion leading to increased tumor hypoxia and increased levels of hypoxia inducible factor-1 (HIF-1). Alternatively, increased HIF-1 levels may arise by reactive oxygen species (ROS) production caused by tumor reoxygenation. (2) Increased HIF-1 levels lead to increased levels in the tumor of the chemokine stromal cell-derived factor-1 (SDF-1, CXCL12), which captures monocytes/macrophages expressing the CXCR4 receptor of CXCL12. (3) The increased levels of tumor-associated macrophages (TAMs) become highly proangiogenic (M2 polarized) and restore the tumor vasculature, thereby promoting tumor recurrence. The relevance of this pathway for radiation therapy is that it can be blocked in a number of different ways including by inhibitors of monocytes/macrophages, of HIF-1, of CXCL12, of CXCR4, and of CSF-1R, the latter of which is responsible for the M2 polarization of the TAMs. All of these inhibitors produce a robust enhancement of the radiation response of a wide variety of preclinical tumor models. Further, the same inhibitors actually provide protection against radiation damage of several normal tissues. Some of these pathway inhibitors are available clinically, and a first-in-human trial of the CXCR4 inhibitor, plerixafor, with radiation therapy of glioblastoma has yielded promising results, including an impressive increase in local tumor control. Further clinical trials are warranted.
Collapse
|
48
|
Reader BF, Sethuraman S, Hay BR, Thomas Becket RV, Karpurapu M, Chung S, Lee YG, Christman JW, Ballinger MN. IRAK-M Regulates Monocyte Trafficking to the Lungs in Response to Bleomycin Challenge. THE JOURNAL OF IMMUNOLOGY 2020; 204:2661-2670. [PMID: 32253243 DOI: 10.4049/jimmunol.1900466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
Abstract
Idiopathic pulmonary fibrosis is a deadly disease characterized by excessive extracellular matrix deposition in the lungs, resulting in decreased pulmonary function. Although epithelial cells and fibroblasts have long been the focus of idiopathic pulmonary fibrosis research, the role of various subpopulations of macrophages in promoting a fibrotic response is an emerging target. Healthy lungs are composed of two macrophage populations, tissue-resident alveolar macrophages and interstitial macrophages, which help to maintain homeostasis. After injury, tissue-resident alveolar macrophages are depleted, and monocytes from the bone marrow (BM) traffic to the lungs along a CCL2/CCR2 axis and differentiate into monocyte-derived alveolar macrophages (Mo-AMs), which is a cell population implicated in murine models of pulmonary fibrosis. In this study, we sought to determine how IL-1R-associated kinase-M (IRAK-M), a negative regulator of TLR signaling, modulates monocyte trafficking into the lungs in response to bleomycin. Our data indicate that after bleomycin challenge, mice lacking IRAK-M have decreased monocyte trafficking and reduced Mo-AMs in their lungs. Although IRAK-M expression did not regulate differences in chemokines, cytokines, or adhesion molecules associated with monocyte recruitment, IRAK-M was necessary for CCR2 upregulation following bleomycin challenge. This finding prompted us to develop a competitive BM chimera model, which demonstrated that expression of BM-derived IRAK-M was necessary for monocyte trafficking into the lung and for subsequent enhanced collagen deposition. These data indicate that IRAK-M regulates monocyte trafficking by increasing the expression of CCR2, resulting in enhanced monocyte translocation into the lung, Mo-AM differentiation, and development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Brenda F Reader
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Shruthi Sethuraman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Bryan R Hay
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Rose Viguna Thomas Becket
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Yong Gyu Lee
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Megan N Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH 43210
| |
Collapse
|
49
|
Beach TA, Groves AM, Williams JP, Finkelstein JN. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int J Radiat Biol 2020; 96:129-144. [PMID: 30359147 PMCID: PMC6483900 DOI: 10.1080/09553002.2018.1532619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
50
|
Macrophage exclusion after radiation therapy (MERT): A new and effective way to increase the therapeutic ratio of radiotherapy. Radiother Oncol 2019; 144:159-164. [PMID: 31812931 DOI: 10.1016/j.radonc.2019.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023]
Abstract
Here we review a variety of preclinical studies and a first-in-human clinical trial of newly diagnosed glioblastoma (GBM) patients that have investigated the significance of the influx of tumor associated macrophages (TAMs) into tumors after irradiation. We summarize the effects on the response of the tumors and normal tissues to radiation of various agents that either reduce the influx of TAMs into tumors after radiation or change their M1/M2 polarization. The studies show that following irradiation there is an accumulation of bone marrow derived TAMs in the irradiated tumors. These TAMs stimulate the resumption of blood flow in the irradiated tumors thereby promoting recurrence of the tumors. A key mechanism for this accumulation of TAMs is driven by the SDF-1/CXCR4 chemokine pathway though other pathways could also be involved for some tumors. Blocking this pathway to prevent the TAM accumulation in the tumors both enhances tumor response to radiation and protects irradiated tissues. A clinical trial in which the CXCR4 antagonist plerixafor was added to standard therapy of glioblastoma validated the preclinical findings by demonstrating i) reduced blood flow in the irradiated site, and ii) significantly improved tumor local control compared to GBM patients not treated with plerixafor. We conclude that macrophage exclusion after radiation therapy (MERT) is an effective way both to enhance the tumor response to radiation and to protect the irradiated normal tissues. Further clinical trials are warranted.
Collapse
|