1
|
Shimizu S, Sato T, Funamoto S, Sposto R, Cullings HM, Endo A, Egbert SD, Kai M. Calculations of Mean Quality Factors and Their Implications for Organ-specific Relative Biological Effectiveness (RBE) in Analysis of Radiation-related Risk in the Atomic Bomb Survivors. Radiat Res 2025; 203:155-162. [PMID: 40049653 DOI: 10.1667/rade-24-00199.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 04/04/2025]
Abstract
Past and current estimates of relative biological effectiveness (RBE) from the cohort analyses of atomic bomb survivors suggested not only that RBE may be much higher than those assessed by the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) and International Commission on Radiological Protection (ICRP), but also that RBE may differ by organ and organ depth. This is at least partly due to how the ratio of neutron to gamma-ray dose changes with organ depth because of the more rapid attenuation of neutrons in tissue. Additionally, the RBE estimates from Life Span Study (LSS) data depend on the total dose and the neutron/gamma ratio. To further examine this issue, we calculated the mean quality factor based on Linear Energy Transfer (LET) distributions for representative organs and exposure scenarios of A-bomb survivors using Particle and Heavy Ion Transport code System (PHITS) simulation and the radiation quality factor [Q(L) relationship] defined by ICRP, as well as the Quality Factor (QF) function defined by the National Aeronautics and Space Administration (NASA). This is done in the context of the adult male phantom of the J45 series, which was created to precisely reproduce the anatomy of the Japanese population in 1945. We also investigate the depth dependence of the mean quality factors in the International Commission on Radiation Units and Measurements (ICRU) sphere irradiated by mono-energetic neutrons. Both the results from the human phantom, and from the ICRU sphere phantom suggest that the mean quality factors are approximately 15 and independent of the organ type, body depth, city and ground range when the contributions from the secondary γ rays are excluded from the neutron doses. We also discuss reasons that RBE estimates from cohort analyses are generally much larger than those based on the mean quality factors.
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | - Sachiyo Funamoto
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Richard Sposto
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Akira Endo
- Japan Atomic Energy Agency, Tokaimura, Japan
| | | | | |
Collapse
|
2
|
Little MP, Hamada N, Cullings HM. Analysis of Departures from Linearity in the Dose Response for Japanese Atomic Bomb Survivor Solid Cancer Mortality and Cancer Incidence Data and Assessment of Low-Dose Extrapolation Factors. Radiat Res 2025; 203:115-127. [PMID: 39799958 DOI: 10.1667/rade-24-00202.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Although leukemia in the Japanese atomic bomb survivor data has long exhibited upward curvature, until recently this appeared not to be the case for solid cancer. It has been suggested that the recently observed upward curvature in the dose response for the Japanese atomic bomb survivor solid cancer mortality data may be accounted for by flattening of the dose response in the moderate dose range (0.3-0.7 Gy). To investigate this, the latest version available of the solid cancer mortality and incidence datasets (with follow-up over the years 1950-2003 and 1958-2009 respectively) for the Life Span Study cohort of atomic bomb survivors was used to assess possible departures from linearity in the moderate dose range. Linear-spline models were fitted, also up to 6th order polynomial models in dose (higher order polynomials tended not to converge). The organ dose used for all solid cancers was weighted dose to the colon. There are modest indications of departures from linearity for the mortality data, whether using polynomial or linear-spline models. Use of the Akaike information criterion (AIC) suggests that the optimal model for the mortality data is given by a 5th order polynomial in dose. There is borderline significant (P = 0.071) indication of improvement provided by a linear-spline model in the mortality data. The low-dose extrapolation factor (LDEF), which measures the degree of overestimation of low-dose linear slope by the linear slope fitted over some specified dose range, is generally between 1.1-2.0 depending on the dose range, with upper confidence limits that sometimes exceed 10; although LDEF < 1 for the lowest dose range (<0.5 Gy), there are substantial uncertainties, with an upper confidence limit that exceeds 1.6. There are generally only modest indications of departures from linearity for the solid cancer incidence data, whether using polynomial or linear-spline models. In contrast to the mortality data, there are much weaker indications of improvement in fit provided by higher order polynomials, and only weak indications (P > 0.2) of improvement provided by linear-spline models. Nevertheless, use of AIC suggests that the optimal model for the incidence data is given by a 3rd order polynomial. LDEF evaluated over various dose ranges is generally between 1.2-1.4 with upper confidence limits that generally exceed 1.6; although LDEF < 1 for the lowest dose range (<0.5 Gy), there are substantial uncertainties, with an upper confidence limit that substantially exceeds 2.0. In summary, the evidence we have presented for higher order powers than the second in the dose response is not overwhelmingly strong, and is to some extent dependent on dose range. A feature of the dose response, which is reflected in the higher-order polynomials fitted to the data, is a leveling off or even a downturn in the response at doses >2 Gy. The linear-quadratic model is very widely used for modeling of dose response, and has been widely used in radiotherapy oncology applications as part of treatment planning. There is a theoretical basis for this model, based on the two-target model, although the data used to validate this has been mainly in vitro; there may be more complicated interactions than are implied by a two-target model, but the contributions made by these, which would contribute to higher order (than quadratic) powers of dose, may not be very pronounced over moderate ranges of dose.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland 20892-9778
- Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, United Kingdom
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Harry M Cullings
- Chief (retired), Department of Statistics, Radiation Research Effects Foundation, Hiroshima, Japan
| |
Collapse
|
3
|
Ariyoshi K, Imaoka T, Ohmachi Y, Ishida Y, Uda M, Nishimura M, Shinagawa M, Yoshida M, Ogiu T, Kaminishi M, Morioka T, Kakinuma S, Shimada Y. Influence of Age on Leukemia Mortality Associated with Exposure to γ rays and 2-MeV Fast Neutrons in Male C3H Mice. Radiat Res 2024; 202:685-696. [PMID: 39187269 DOI: 10.1667/rade-23-00069.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
The relative biological effectiveness (RBE) of densely ionizing radiation can depend on the biological context. From a radiological perspective, age is an important factor affecting health risks of radiation exposure, but little is known about the modifying impact of age on the effects of densely ionizing radiation. Herein, we addressed the influence of age on leukemogenesis induced by accelerator-generated fast neutrons (mean energy, ∼2 MeV). Male C3H/HeNrs mice were exposed to 137Cs γ rays (0.2-3.0 Gy) or neutrons (0.0485-0.97 Gy, γ ray contamination 0.0105-0.21 Gy) at 1, 3, 8, or 35 weeks of age and observed over their lifetimes under specific pathogen-free conditions. Leukemia and lymphoma were diagnosed pathologically. Hazard ratio (HR) and RBE for myeloid leukemia mortality as well as the age dependence of these two parameters were modeled and analyzed using Cox regression. Neutron exposure increased HR concordant with a linear dose response. The increase of HR per dose depended on age at exposure, with no significant dose dependence at age 1 or 3 weeks but a significant increase in HR of 5.5 per Gy (γ rays) and 16 per Gy (neutrons) at 8 weeks and 5.8 per Gy (γ rays) and 9 per Gy (neutrons) at 35 weeks. The RBE of neutrons was 2.1 (95% confidence interval, 1.1-3.7), with no dependence on age. The development of lymphoid neoplasms was not related to radiation exposure. The observed increasing trend of radiation-associated mortality of myeloid leukemia with age at exposure supports previous epidemiological and experimental findings. The results also suggest that exposure at the susceptible age of 8 or 35 weeks does not significantly influence the RBE value for neutrons for induction of leukemia, unlike what has been documented for breast and brain tumors.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasushi Ohmachi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Yuka Ishida
- Laboratory Animal and Genome Sciences Section, Department of Safety Administration, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masahiro Uda
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Midori Yoshida
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Toshiaki Ogiu
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Kamikita-gun, Aomori, Japan
| |
Collapse
|
4
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Kodama Y, Nakamura N, Nakano M, Ohtaki K, Hamasaki K, Noda A. Cytogenetic validation of DS02R1-estimated dose for atomic bomb survivors in Hiroshima and Nagasaki with FISH. Int J Radiat Biol 2024; 100:1155-1164. [PMID: 38991111 DOI: 10.1080/09553002.2024.2373750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION For Hiroshima and Nagasaki survivors, it has not been possible to calculate individual doses from the cytogenetic data and compare them with the physically estimated doses. This is because the cytogenetic studies used solid Giemsa staining which only provides the percent of cells bearing at least one stable-type aberration (most of the unstable-type aberrations had already disappeared), and a gamma-ray dose plus a 10-times neutron dose was used to integrate the data for both cities. OBJECTIVES To compare the FISH-derived gamma-ray dose with the DS02R1-derived gamma-ray dose after correcting for a contribution of the neutron dose. It was also an attempt to determine if the frequency of stable-type aberrations had remained unchanged after the exposure. METHODS Stable exchange-type aberration data was obtained using the 2-color FISH method from 1,868 atomic bomb survivors in Hiroshima and Nagasaki. The collected frequency was first extended to a genome-equivalent frequency. Then, by using known induction rates of exchange-type aberrations in vitro caused by neutrons and gamma-rays, respectively, and the mean relationship between the neutron and gamma-ray doses in the DS02R1 estimates for the survivors, the gamma-ray effect was estimated from the total yield of translocations. RESULTS It was found that over 95% of individual cytogenetic gamma-ray doses fell within the expected range of plus/minus about 1 Gy from the DS02R1 dose and the mean slope for the linear regression was 0.98, which reassures us of the validity of the DS02R1 study. CONCLUSIONS The present results demonstrate the validity of the individual DS02R1 doses, and that the frequency of stable-type aberrations in blood lymphocytes did not decay over the years, and thus is useful for retrospective dose evaluations of exposures which took place in the distant past.
Collapse
Affiliation(s)
- Y Kodama
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - N Nakamura
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - M Nakano
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Ohtaki
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - A Noda
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
6
|
Sposto R, Cullings HM. The Use of Joint Models in Analysis of Aggregate Endpoints in RERF Cohort Studies. Radiat Res 2024; 201:304-309. [PMID: 38348602 DOI: 10.1667/rade-23-00122.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/25/2024] [Indexed: 04/10/2024]
Abstract
In radiation risk estimation based on the Radiation Effects Research Foundation (RERF) cohort studies, one common analysis is Poisson regression on radiation dose and background and effect modifying variables of an aggregate endpoint such as all solid cancer incidence or all non-cancer mortality. As currently performed, these analyses require selection of a surrogate radiation organ dose, (e.g., colon dose), which could conceptually be problematic since the aggregate endpoint comprises events arising from a variety of organs. We use maximum likelihood theory to compare inference from the usual aggregate endpoint analysis to analyses based on joint analysis. These two approaches are also compared in a re-analysis of RERF Life Span Study all cancer mortality. We show that, except for a trivial difference, these two analytic approaches yield identical inference with respect to radiation dose response and background and effect modification when based on a single surrogate organ radiation dose. When repeating the analysis with organ-specific doses, an interesting issue of bias in intercept parameters arises when dose estimates are undefined for one sex when sex-specific outcomes are included in the aggregate endpoint, but a simple correction will avoid this issue. Lastly, while the joint analysis formulation allows use of organ-specific doses, the interpretation of such an analysis for inference regarding an aggregate endpoint can be problematic. To the extent that analysis of radiation risk for an aggregate endpoint is of interest, the joint-analysis formulation with a single surrogate dose is an appropriate analytic approach, whereas joint analysis with organ-specific doses may only be interpretable if endpoints are considered separately for estimating dose response. However, for neither approach is inference about dose response well defined.
Collapse
Affiliation(s)
- Richard Sposto
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ku, Hiroshima City, 732-0815, Japan
| | - Harry M Cullings
- Expert Advisor, Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ku, Hiroshima City, 732-0815, Japan
| |
Collapse
|
7
|
Hafner L, Walsh L. Application of multi-method-multi-model inference to radiation related solid cancer excess risks models for astronaut risk assessment. Z Med Phys 2024; 34:83-91. [PMID: 37429805 PMCID: PMC10919967 DOI: 10.1016/j.zemedi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
The impact of including model-averaged excess radiation risks (ER) into a measure of radiation attributed decrease of survival (RADS) for the outcome all solid cancer incidence and the impact on the uncertainties is demonstrated. It is shown that RADS applying weighted model averaged ER based on AIC weights result in smaller risk estimates with narrower 95% CI than RADS using ER based on BIC weights. Further a multi-method-multi-model inference approach is introduced that allows calculating one general RADS estimate providing a weighted average risk estimate for a lunar and a Mars mission. For males the general RADS estimate is found to be 0.42% (95% CI: 0.38%; 0.45%) and for females 0.67% (95% CI: 0.59%; 0.75%) for a lunar mission and 2.45% (95% CI: 2.23%; 2.67%) for males and 3.91% (95% CI: 3.44%; 4.39%) for females for a Mars mission considering an age at exposure of 40 years and an attained age of 65 years. It is recommended to include these types of uncertainties and to include model-averaged excess risks in astronaut risk assessment.
Collapse
Affiliation(s)
- Luana Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Industriestrasse 19, 5201 Brugg, Switzerland.
| | - Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
8
|
Walsh L, Hafner L, Berger T, Matthiä D, Schneider U, Straube U. European astronaut radiation related cancer risk assessment using dosimetric calculations of organ dose equivalents. Z Med Phys 2024; 34:92-99. [PMID: 37932191 PMCID: PMC10919965 DOI: 10.1016/j.zemedi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
An illustrative sample mission of a Mars swing-by mission lasting one calendar year was chosen to highlight the application of European risk assessment software to cancer (all solid cancer plus leukaemia) risks from radiation exposures in space quantified with organ dose equivalent rates from model calculations based on the quantity Radiation Attributed Decrease of Survival (RADS). The relevant dose equivalent to the colon for radiation exposures from this Mars swing-by mission were found to vary between 198 and 482 mSv. These doses depend on sex and the two other factors investigated here of: solar activity phase (maximum or minimum); and the choice of space radiation quality factor used in the calculations of dose equivalent. Such doses received at typical astronaut ages around 40 years old will result in: the probability of surviving until retirement age (65 years) being reduced by a range from 0.38% (95%CI: 0.29; 0.49) to 1.29% (95%CI: 1.06; 1.56); and the probability of surviving cancer free until retirement age being reduced by a range from 0.78% (95%CI: 0.59; 0.99) to 2.63% (95%CI: 2.16; 3.18). As expected from the features of the models applied to quantify the general dosimetric and radiation epidemiology parameters, the cancer incidence risks in terms of surviving cancer free, are higher than the cancer mortality risks in terms of surviving, the risks for females are higher than for males, and the risks at solar minimum are higher than at solar maximum.
Collapse
Affiliation(s)
- Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Luana Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Industriestrasse 19, 5201 Brugg, Switzerland.
| | - Thomas Berger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Höhe, 51147 Köln, Germany.
| | - Daniel Matthiä
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Höhe, 51147 Köln, Germany.
| | - Uwe Schneider
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Ulrich Straube
- European Space Agency ESA, European Astronaut Centre EAC, Space Medicine HRE-OM, Cologne, Germany.
| |
Collapse
|
9
|
Hafner L, Walsh L, Rühm W. Assessing the impact of neutron relative biological effectiveness on all solid cancer mortality risks in the Japanese atomic bomb survivors. Int J Radiat Biol 2024; 100:61-71. [PMID: 37772764 DOI: 10.1080/09553002.2023.2245463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE Risk analyses, based on relative biological effectiveness (RBE) estimates for neutrons relative to gammas, were performed; and the change in the curvature of the risk to dose response with increasing neutron RBE was analyzed using all solid cancer mortality data from the Radiation Effect Research Foundation (RERF). Results were compared to those based on incidence data. MATERIALS AND METHODS This analysis is based on RERF mortality data with separate neutron and gamma doses for colon doses, from which organ averaged doses could be calculated. A model for risk ratio variation with RBE was developed. RESULTS The best estimate of the neutron RBE considering mortality data was 200 (95% confidence interval (CI): 50-1010) for colon dose using the weighted-dose approach and for organ averaged dose 110 (95% CI: 30-350). The ERR risk ratios for all solid cancers combined, for the best fitting neutron RBE estimate and the neutron RBE of 10 result in a ratio of 0.54 (95% CI: 0.17-0.85) for colon dose and 0.55 (95% CI: 0.18-0.87) for organ averaged dose. The risk to dose response curvature became significantly negative (concave down) with increasing RBE, at a neutron RBE of 170 using colon dose and at an RBE of 90 using organ averaged dose for males when fitting a linear-quadratic dose response. For females, the curvature decreased toward linearity with increasing neutron RBE and remained significantly positive until RBE of 80 and 40 using colon and organ averaged dose, respectively. For higher neutron RBEs, no significant conclusion could be drawn about the shape of the dose-response curve. CONCLUSIONS Application of neutron RBE values higher than 10 results in substantially reduced cancer mortality risk estimates and a significant reduction in curvature of the risk to dose responses for males. Using mortality data, the best fitting neutron RBE is much higher than when incidence data is used. The neutron RBE ranges covered by the overlap in the CIs from both the mortality and incidence analyses are 50-190 using colon dose and in all cases, the best fitting neutron RBE and lower 95% CI are higher than the value of 10 traditionally applied by the RERF. Therefore, it is recommended to consider uncertainties in neutron RBE values when calculating radiation risks and discussing the shape of dose responses using Japanese A-bomb survivors data.
Collapse
Affiliation(s)
- Luana Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Brugg, Switzerland
| | - Linda Walsh
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, Munich, Germany
| |
Collapse
|
10
|
Hafner L, Walsh L, Rühm W. Discussion of uncertainties and the impact of different neutron RBEs on all solid cancer radiation incidence risks obtained from the Japanese A-bomb survivor data. Ann ICRP 2023; 52:17-22. [PMID: 38143299 DOI: 10.1177/01466453231211216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The most recent publicly available data on all solid cancer incidence from the Life Span Study (LSS) of Japanese A-bomb survivors provides colon dose contributions weighted with a relative biological effectiveness (RBE) of 10 for neutrons, relative to gammas. However, there is evidence from several investigations that the neutron RBE for A-bomb survivors may be higher than 10. The change in the shape of the corresponding dose-response curves was evaluated by Hafner and co-workers in a previous study by applying sex-specific linear-quadratic dose models to previous LSS data for all solid cancer incidence that include separate neutron and gamma absorbed doses for several organs, in contrast to the most recent data. The resulting curvature change became significantly negative for males at an RBE of 140 for colon, 100 for liver, and 80 for organ averaged dose. For females, the corresponding RBE values were 110, 80, and 60 for colon, liver, and organ averaged doses. The present study compares three different methods to calculate the 95% confidence intervals in an analysis of the curvature with increasing RBE. Further, the impact of a higher neutron RBE on the work of the International Commission on Radiological Protection, and the importance of including uncertainties and performing sensitivity analysis of different parameters in radiation risk assessment are discussed.
Collapse
Affiliation(s)
- L Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Industriestrasse 19, 5201 Brugg, Switzerland; e-mail:
| | - L Walsh
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; e-mail:
| | - W Rühm
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85769 Neuherberg, Germany; e-mail:
| |
Collapse
|
11
|
Hafner L, Walsh L, Rühm W. Assessing the impact of different neutron RBEs on the all solid cancer radiation risks obtained from the Japanese A-bomb survivors data. Int J Radiat Biol 2023; 99:629-643. [PMID: 36154910 DOI: 10.1080/09553002.2022.2117871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE Development of a model characterizing risk variation with RBE to investigate how the incidence risk for all solid cancers combined varies with higher neutron RBEs and different organ dose types. MATERIAL AND METHODS The model is based on RERF data with separate neutron and gamma dose information. RESULTS For both additive and multiplicative linear excess risks per unit organ averaged dose, a reduction of 50% in the risk coefficient per weighted dose arises when a neutron RBE of 110 is used instead of 10. Considering risk per unit liver dose, this reduction occurs for an RBE of 130 and for risks per unit colon dose for an RBE of 190. The change in the shape of the dose response curve when using higher neutron RBEs is evaluated. The curvature changed and became significantly negative for males at an RBE of 140 for colon dose, 100 for liver dose and 80 for organ averaged dose. For females this is the case at an RBE of 110, 80 and 60, respectively. CONCLUSIONS Uncertainties in neutron RBE values should be considered when radiation risks and the shape of dose responses are deduced from cancer risk data from the atomic bomb survivors.
Collapse
Affiliation(s)
- Luana Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Brugg, Switzerland
| | - Linda Walsh
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| |
Collapse
|
12
|
Brenner AV, Preston DL, Sakata R, Cologne J, Sugiyama H, Utada M, Cahoon EK, Grant E, Mabuchi K, Ozasa K. Comparison of All Solid Cancer Mortality and Incidence Dose-Response in the Life Span Study of Atomic Bomb Survivors, 1958-2009. Radiat Res 2022; 197:491-508. [PMID: 35213725 PMCID: PMC10273292 DOI: 10.1667/rade-21-00059.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/10/2022] [Indexed: 11/03/2022]
Abstract
Recent analysis of all solid cancer incidence (1958-2009) in the Life Span Study (LSS) revealed evidence of upward curvature in the radiation dose response among males but not females. Upward curvature in sex-averaged excess relative risk (ERR) for all solid cancer mortality (1950-2003) was also observed in the 0-2 Gy dose range. As reasons for non-linearity in the LSS are not completely understood, we conducted dose-response analyses for all solid cancer mortality and incidence applying similar methods [1958-2009 follow-up, DS02R1 doses, including subjects not-in-city (NIC) at the time of the bombing] and statistical models. Incident cancers were ascertained from Hiroshima and Nagasaki cancer registries, while cause of death was ascertained from death certificates throughout Japan. The study included 105,444 LSS subjects who were alive and not known to have cancer before January 1, 1958 (80,205 with dose estimates and 25,239 NIC subjects). Between 1958 and 2009, there were 3.1 million person-years (PY) and 22,538 solid cancers for incidence analysis and 3.8 million PY and 15,419 solid cancer deaths for mortality analysis. We fitted sex-specific ERR models adjusted for smoking to both types of data. Over the entire range of doses, solid cancer mortality dose-response exhibited a borderline significant upward curvature among males (P = 0.062) and significant upward curvature among females (P = 0.010); for solid cancer incidence, as before, we found a significant upward curvature among males (P = 0.001) but not among females (P = 0.624). The sex difference in magnitude of dose-response curvature was statistically significant for cancer incidence (P = 0.017) but not for cancer mortality (P = 0.781). The results of analyses in the 0-2 Gy range and restricted lower dose ranges generally supported inferences made about the sex-specific dose-response shape over the entire range of doses for each outcome. Patterns of sex-specific curvature by calendar period (1958-1987 vs. 1988-2009) and age at exposure (0-19 vs. 20-83) varied between mortality and incidence data, particularly among females, although for each outcome there was an indication of curvature among 0-19-year-old male survivors in both calendar periods and among 0-19-year-old female survivors in the recent period. Collectively, our findings indicate that the upward curvature in all solid cancer dose response in the LSS is neither specific to males nor to incidence data; its evidence appears to depend on the composition of sites comprising all solid cancer group and age at exposure or time. Further follow up and site-specific analyses of cancer mortality and incidence will be important to confirm the emerging trend in dose-response curvature among young survivors and unveil the contributing factors and sites.
Collapse
Affiliation(s)
- AV Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - DL Preston
- Hirosoft International Corporation, Eureka, California
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - J Cologne
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - H Sugiyama
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - M Utada
- Hirosoft International Corporation, Eureka, California
| | - EK Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - E Grant
- Associated Chief of Research, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - K Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| |
Collapse
|
13
|
Griffin KT, Sato T, Funamoto S, Chizhov K, Domal S, Paulbeck C, Bolch W, Cullings HM, Egbert S, Endo A, Hertel N, Lee C. Japanese pediatric and adult atomic bomb survivor dosimetry: potential improvements using the J45 phantom series and modern Monte Carlo transport. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:73-86. [PMID: 34718851 PMCID: PMC8897329 DOI: 10.1007/s00411-021-00946-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/25/2021] [Indexed: 06/12/2023]
Abstract
The radiation exposure estimates for the atomic bomb survivors at Hiroshima and Nagasaki have evolved over the past several decades, reflecting a constant strive by the Radiation Effects Research Foundation (RERF) to provide thorough dosimetry to their cohort. Recently, a working group has introduced a new series of anatomical models, called the J45 phantom series, which improves upon those currently used at RERF through greater age resolution, sex distinction, anatomical realism, and organ dose availability. To evaluate the potential dosimetry improvements that would arise from their use in an RERF Dosimetry System, organ doses in the J45 series are evaluated here using environmental fluence data for 20 generalized survivor scenarios pulled directly from the current dosimetry system. The energy- and angle-dependent gamma and neutron fluences were converted to a source term for use in MCNP6, a modern Monte Carlo radiation transport code. Overall, the updated phantom series would be expected to provide dose improvements to several important organs, including the active marrow, colon, and stomach wall (up to 20, 20, and 15% impact on total dose, respectively). The impacts were especially significant for neutron dose estimates (up to a two-fold difference) and within organs which were unavailable in the previous phantom series. These impacts were consistent across the 20 scenarios and are potentially even greater when biological effectiveness of the neutron dose component is considered. The entirety of the dosimetry results for all organs are available as supplementary data, providing confident justification for potential future DS workflows utilizing the J45 phantom series.
Collapse
Affiliation(s)
- Keith T Griffin
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai-mura, Japan
| | - Sachiyo Funamoto
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Konstantin Chizhov
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Sean Domal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Colin Paulbeck
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Wesley Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | - Akira Endo
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai-mura, Japan
| | - Nolan Hertel
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Choonsik Lee
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
14
|
Hafner L, Walsh L. Valid versus invalid radiation cancer risk assessment methods illustrated using Swiss population data. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1228-1242. [PMID: 34551406 DOI: 10.1088/1361-6498/ac290a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
After the nuclear accident in Fukushima, the public interest in radiation related cancer-risk assessment increased. However, interpretations of results from epidemiological studies and comprehension of cancer risk assessment methods can be unclear and involve questions about correctness and validity of the approaches. To shed some light on this potential lack of clarity, valid versus invalid radiation cancer risk assessments methods are illustrated here using Swiss population data. This involves a comparison of the cancer risk assessment method based on collective dose and the cumulative risk assessment method, where the latter is recommended with regard to uncertainties and risk of misinterpretation. Further, risk assessment in different dose ranges is discussed and it is concluded that below 100 mSv it cannot be appropriately stated that an adequate strength of evidence of a causal relationship between cancer and radiation is provided, because of the large uncertainties in this dose range. However, the linear non-threshold (LNT) model can be used to model the dose response, because it represents a prudent and parsimonious model, that fits the data well and lies within the given uncertainties. Additionally, treatments of uncertainties in the risk models are illustrated. The EU-project CONFIDENCE software is applied here to obtain example radiation related lifetime cancer risks for exposures of 20 mSv and 5 mSv. Furthermore, the impact of different dosimetry errors on the uncertainties in the cancer lifetime risk calculation is analysed, by including different standard deviations (SD) and by comparing the sampling of the doses from a normal and a lognormal distribution. Using the normal distribution, for females exposed to 20 mSv, the 95% confidence interval (CI) on the cancer lifetime risk increases, when compared to using a SD of 4 mSv, by a factor of 1.5 using a SD of 8 mSv and by a factor of 1.7 using a SD of 10 mSv. The corresponding factors for males for the same exposure are 1.3 and 1.5 respectively. For exposure to 5 mSv, the 95% CIs on the risk increase by a factor of 1.2 for females and 1.4 for men for a SD of 2 mSv using the normal distribution compared to the lognormal distribution and by a factor of 1.5 and 1.8 for a SD of 3 mSv compared to a SD of 1 mSv respectively. Furthermore, differences in the resulting 95% CI on the risk, using different distributions for the dose sampling are visible.
Collapse
Affiliation(s)
- Luana Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Industriestrasse 19, 5201 Brugg, Switzerland
| | - Linda Walsh
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
15
|
Boice JD, Quinn B, Al-Nabulsi I, Ansari A, Blake PK, Blattnig SR, Caffrey EA, Cohen SS, Golden AP, Held KD, Jokisch DW, Leggett RW, Mumma MT, Samuels C, Till JE, Tolmachev SY, Yoder RC, Zhou JY, Dauer LT. A million persons, a million dreams: a vision for a national center of radiation epidemiology and biology. Int J Radiat Biol 2021; 98:795-821. [PMID: 34669549 PMCID: PMC10594603 DOI: 10.1080/09553002.2021.1988183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.
Collapse
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Quinn
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Armin Ansari
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Steve R. Blattnig
- National Aeronautics and Space Administration Langley Research Center, Hampton, VA, USA
| | - Emily A. Caffrey
- Radian Scientific, LLC, Huntsville, AL, and Risk Assessment Corporation, Neeses, SC, USA
| | - Sarah S. Cohen
- EpidStrategies, a division of ToxStrategies, Inc, Cary, NC, USA
| | | | - Kathryn D. Held
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Derek W. Jokisch
- Francis Marion University, Florence, SC, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Michael T. Mumma
- Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | | | | | | | | | - Joey Y. Zhou
- United States Department of Energy, Gaithersburg, MD, USA
| | | |
Collapse
|
16
|
Laiakis EC, Canadell MP, Grilj V, Harken AD, Garty GY, Brenner DJ, Smilenov L, Fornace AJ. Small Molecule Responses to Sequential Irradiation with Neutrons and Photons for Biodosimetry Applications: An Initial Assessment. Radiat Res 2021; 196:468-477. [PMID: 33857313 PMCID: PMC9004252 DOI: 10.1667/rade-20-00032.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/18/2020] [Indexed: 11/03/2022]
Abstract
Mass casualty exposure scenarios from an improvised nuclear device are expected to be far more complex than simple photons. Based on the proximity to the explosion and potential shielding, a mixed field of neutrons and photons comprised of up to approximately 30% neutrons of the total dose is anticipated. This presents significant challenges for biodosimetry and for short-term and long-term medical treatment of exposed populations. In this study we employed untargeted metabolomic methods to develop a biosignature in urine and serum from C57BL/6 mice to address radiation quality issues. The signature was developed in males and applied to samples from female mice to identify potential sex differences. Thirteen urinary (primarily amino acids, vitamin products, nucleotides) and 18 serum biomarkers (primarily mitochondrial and fatty acid β oxidation intermediates) were selected and evaluated in samples from day 1 and day 7 postirradiation. Sham-irradiated groups (controls) were compared to an equitoxic dose (3 Gy X-ray equivalent) from X rays (1.2 Gy/min), neutrons (∼1 Gy/h), or neutrons-photons. Results showed a time-dependent increase in the efficiency of the signatures, with serum providing the highest levels of accuracy in distinguishing not only between exposed from non-exposed populations, but also between radiation quality (photon exposures vs. exposures with a neutron component) and in between neutron-photon exposures (5, 15 or 25% of neutrons in the total dose) for evaluating the neutron contribution. A group of metabolites known as acylcarnitines was only responsive in males, indicating the potential for different mechanisms of action in baseline levels and of neutron-photon responses between the two sexes. Our findings highlight the potential of metabolomics in developing biodosimetric methods to evaluate mixed exposures with high sensitivity and specificity.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer
Center, Georgetown University, Washington, DC
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington, DC
| | | | - Veljko Grilj
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - Andrew D. Harken
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - Guy Y. Garty
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New
York, New York
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University, New
York, New York
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer
Center, Georgetown University, Washington, DC
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington, DC
| |
Collapse
|
17
|
Simonsen LC, Slaba TC. Improving astronaut cancer risk assessment from space radiation with an ensemble model framework. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:14-28. [PMID: 34689946 DOI: 10.1016/j.lssr.2021.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
A new approach to NASA space radiation risk modeling has successfully extended the current NASA probabilistic cancer risk model to an ensemble framework able to consider sub-model parameter uncertainty as well as model-form uncertainty associated with differing theoretical or empirical formalisms. Ensemble methodologies are already widely used in weather prediction, modeling of infectious disease outbreaks, and certain terrestrial radiation protection applications to better understand how uncertainty may influence risk decision-making. Applying ensemble methodologies to space radiation risk projections offers the potential to efficiently incorporate emerging research results, allow for the incorporation of future models, improve uncertainty quantification, and reduce the impact of subjective bias. Moreover, risk forecasting across an ensemble of multiple predictive models can provide stakeholders additional information on risk acceptance if current health/medical standards cannot be met for future space exploration missions, such as human missions to Mars. In this work, ensemble risk projections implementing multiple sub-models of radiation quality, dose and dose-rate effectiveness factors, excess risk, and latency are presented. Initial consensus methods for ensemble model weights and correlations to account for individual model bias are discussed. In these analyses, the ensemble forecast compares well to results from NASA's current operational cancer risk projection model used to assess permissible mission durations for astronauts. However, a large range of projected risk values are obtained at the upper 95th confidence level where models must extrapolate beyond available biological data sets. Closer agreement is seen at the median ± one sigma due to the inherent similarities in available models. Identification of potential new models, epidemiological data, and methods for statistical correlation between predictive ensemble members are discussed. Alternate ways of communicating risk and acceptable uncertainty with respect to NASA's current permissible exposure limits are explored.
Collapse
Affiliation(s)
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, United States.
| |
Collapse
|
18
|
Stricklin DL, VanHorne-Sealy J, Rios CI, Scott Carnell LA, Taliaferro LP. Neutron Radiobiology and Dosimetry. Radiat Res 2021; 195:480-496. [PMID: 33587743 DOI: 10.1667/rade-20-00213.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
As the U.S. prepares for the possibility of a radiological or nuclear incident, or anticipated lunar and Mars missions, the exposure of individuals to neutron radiation must be considered. More information is needed on how to determine the neutron dose to better estimate the true biological effects of neutrons and mixed-field (i.e., neutron and photon) radiation exposures. While exposure to gamma-ray radiation will cause significant health issues, the addition of neutrons will likely exacerbate the biological effects already anticipated after radiation exposure. To begin to understand the issues and knowledge gaps in these areas, the National Institute of Allergy and Infectious Diseases (NIAID), Radiation Nuclear Countermeasures Program (RNCP), Department of Defense (DoD), Defense Threat Reduction Agency (DTRA), and National Aeronautics and Space Administration (NASA) formed an inter-agency working group to host a Neutron Radiobiology and Dosimetry Workshop on March 7, 2019 in Rockville, MD. Stakeholder interests were clearly positioned, given the differences in the missions of each agency. An overview of neutron dosimetry and neutron radiobiology was included, as well as a historical overview of neutron exposure research. In addition, current research in the fields of biodosimetry and diagnostics, medical countermeasures (MCMs) and treatment, long-term health effects, and computational studies were presented and discussed.
Collapse
Affiliation(s)
- Daniela L Stricklin
- Previously - Arlington Division, Applied Research Associates, Inc., Arlington
| | - Jama VanHorne-Sealy
- Army Reactor Program, United States Army Nuclear and Countering Weapons of Mass Destruction Agency (USANCA), Department of Defense, Fort Belvoir, Virginia
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lisa A Scott Carnell
- Biological and Physical Sciences Division, National Aeronautics and Space Administration (NASA), Langley Research Center, Hampton, Virginia
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
19
|
Tsuruoka C, Kaminishi M, Shinagawa M, Shang Y, Amasaki Y, Shimada Y, Kakinuma S. High Relative Biological Effectiveness of 2 MeV Fast Neutrons for Induction of Medulloblastoma in Ptch1+/- Mice with Radiation-specific Deletion on Chromosome 13. Radiat Res 2021; 196:225-234. [PMID: 34046685 DOI: 10.1667/rade-20-00025.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
Neutron radiation, a high-linear energy transfer radiation, has a high relative biological effectiveness (RBE) for various end points. The age at exposure is an important modifier of the effects of radiation, including carcinogenesis, with infants being generally more radiosensitive. Ptch1+/- mice offer a unique experimental system for assessing radiation carcinogenesis. Spontaneous development of medulloblastoma tumors occurs in nonirradiated animals that lose their Ptch1+ allele, most frequently by a loss of heterozygosity (LOH) of chromosome 13 via recombination or non-disjunction (referred to as S-type tumors). In contrast, tumors occur in irradiated Ptch1+/- mice as a result of chromosome 13 LOH with an interstitial deletion (R-type), making spontaneous and radiation-induced tumors discernible. To elucidate the influence of age on the effect of fast neutrons, we irradiated Ptch1+/- mice with neutrons (mean energy, ∼2 MeV) or γ rays on embryonic day (E)14 and E17 and on postnatal day (P)1, 4 or 10 and classified the resulting medulloblastomas based on chromosome 13 aberrations. Instead of LOH, some tumors harbored mutations in their Ptch1+ gene via a nonirradiation-associated mechanism such as duplication, insertion, base substitution or deletion with microhomology-mediated end joining; thus, these tumors were classified as S-type. The RBE regarding the induction of R-type tumors was 12.9 (8.6, 17.2), 9.6 (6.9, 12.3), 21.5 (17.2, 25.8), and 7.1 (4.7, 9.5) (mean and 95% confidence interval) for mice irradiated on E14, E17, P1 and P4, respectively, with the highest value seen during the most active development of the tissue and P10 being completely resistant. These results indicate that the developmental stage at exposure of the tissue influences the RBE of neutrons.
Collapse
Affiliation(s)
- Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Institute for Environmental Science, Kamikita-gun, Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
20
|
Walsh L, Hafner L, Straube U, Ulanowski A, Fogtman A, Durante M, Weerts G, Schneider U. A bespoke health risk assessment methodology for the radiation protection of astronauts. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:213-231. [PMID: 33929575 PMCID: PMC8116305 DOI: 10.1007/s00411-021-00910-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/10/2021] [Indexed: 05/05/2023]
Abstract
An alternative approach that is particularly suitable for the radiation health risk assessment (HRA) of astronauts is presented. The quantity, Radiation Attributed Decrease of Survival (RADS), representing the cumulative decrease in the unknown survival curve at a certain attained age, due to the radiation exposure at an earlier age, forms the basis for this alternative approach. Results are provided for all solid cancer plus leukemia incidence RADS from estimated doses from theoretical radiation exposures accumulated during long-term missions to the Moon or Mars. For example, it is shown that a 1000-day Mars exploration mission with a hypothetical mission effective dose of 1.07 Sv at typical astronaut ages around 40 years old, will result in the probability of surviving free of all types of solid cancer and leukemia until retirement age (65 years) being reduced by 4.2% (95% CI 3.2; 5.3) for males and 5.8% (95% CI 4.8; 7.0) for females. RADS dose-responses are given, for the outcomes for incidence of all solid cancer, leukemia, lung and female breast cancer. Results showing how RADS varies with age at exposure, attained age and other factors are also presented. The advantages of this alternative approach, over currently applied methodologies for the long-term radiation protection of astronauts after mission exposures, are presented with example calculations applicable to European astronaut occupational HRA. Some tentative suggestions for new types of occupational risk limits for space missions are given while acknowledging that the setting of astronaut radiation-related risk limits will ultimately be decided by the Space Agencies. Suggestions are provided for further work which builds on and extends this new HRA approach, e.g., by eventually including non-cancer effects and detailed space dosimetry.
Collapse
Affiliation(s)
- Linda Walsh
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luana Hafner
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8092 Zurich, Switzerland
| | - Ulrich Straube
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Alexander Ulanowski
- Present Address: Environment Laboratories, International Atomic Energy Agency, 2444 Seibersdorf, Austria
- Institute of Radiation Medicine, Helmholtz Zentrum München- German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Anna Fogtman
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Guillaume Weerts
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Uwe Schneider
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, 8032 Zurich, Switzerland
| |
Collapse
|
21
|
Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, Haylock R, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A, Laurier D. Risk of cancer associated with low-dose radiation exposure: comparison of results between the INWORKS nuclear workers study and the A-bomb survivors study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:23-39. [PMID: 33479781 PMCID: PMC7902587 DOI: 10.1007/s00411-020-00890-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/19/2020] [Indexed: 05/21/2023]
Abstract
The Life Span Study (LSS) of Japanese atomic bomb survivors has served as the primary basis for estimates of radiation-related disease risks that inform radiation protection standards. The long-term follow-up of radiation-monitored nuclear workers provides estimates of radiation-cancer associations that complement findings from the LSS. Here, a comparison of radiation-cancer mortality risk estimates derived from the LSS and INWORKS, a large international nuclear worker study, is presented. Restrictions were made, so that the two study populations were similar with respect to ages and periods of exposure, leading to selection of 45,625 A-bomb survivors and 259,350 nuclear workers. For solid cancer, excess relative rates (ERR) per gray (Gy) were 0.28 (90% CI 0.18; 0.38) in the LSS, and 0.29 (90% CI 0.07; 0.53) in INWORKS. A joint analysis of the data allowed for a formal assessment of heterogeneity of the ERR per Gy across the two studies (P = 0.909), with minimal evidence of curvature or of a modifying effect of attained age, age at exposure, or sex in either study. There was evidence in both cohorts of modification of the excess absolute risk (EAR) of solid cancer by attained age, with a trend of increasing EAR per Gy with attained age. For leukemia, under a simple linear model, the ERR per Gy was 2.75 (90% CI 1.73; 4.21) in the LSS and 3.15 (90% CI 1.12; 5.72) in INWORKS, with evidence of curvature in the association across the range of dose observed in the LSS but not in INWORKS; the EAR per Gy was 3.54 (90% CI 2.30; 5.05) in the LSS and 2.03 (90% CI 0.36; 4.07) in INWORKS. These findings from different study populations may help understanding of radiation risks, with INWORKS contributing information derived from cohorts of workers with protracted low dose-rate exposures.
Collapse
Affiliation(s)
- Klervi Leuraud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France.
| | - David B Richardson
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elisabeth Cardis
- Center for Research in Environmental Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Ciber Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Robert D Daniels
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Michael Gillies
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, UK
| | - Richard Haylock
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, UK
| | | | | | - Isabelle Thierry-Chef
- Center for Research in Environmental Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Ciber Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
22
|
Hafner L, Walsh L, Schneider U. Cancer incidence risks above and below 1 Gy for radiation protection in space. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:41-56. [PMID: 33612179 DOI: 10.1016/j.lssr.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
The risk assessment quantities called lifetime attributable risk (LAR) and risk of exposure-induced cancer (REIC) are used to calculate the cumulative cancer incidence risks for astronauts, attributable to radiation exposure accumulated during long term lunar and Mars missions. These risk quantities are based on the most recently published epidemiological data on the Life Span Study (LSS) of Japanese A-bomb survivors, who were exposed to γ-rays and neutrons. In order to analyze the impact of a different neutron RBE on the risk quantities, a model for the neutron relative biological effectiveness (RBE) relative to gammas in the LSS is developed based on an older dataset with less follow-up time. Since both risk quantities are based on uncertain quantities, such as survival curves, and REIC includes deterministic radiation induced non-cancer mortality risks, modelled with data based on the general population, the risks for astronauts may not be optimally estimated. The suitability of these risk assessment measures for the use of cancer risk calculation for astronauts is discussed. The work presented here shows that the use of a higher neutron RBE than the value of 10, traditionally used in the LSS risk models, can reduce the risks up to almost 50%. Additionally, including an excess absolute risk (EAR) baseline scaling also increases the risks by between 0.4% and 8.1% for the space missions considered in this study. Using just an EAR model instead of an equally weighted EAR and excess relative risk (ERR) model can decrease the cumulative risks for the considered missions by between 0.4% and 4.1% if no EAR baseline scaling is applied. If EAR baseline scaling is included, the calculated risks with the EAR- and the mixed model, as well as the risks calculated with just the ERR model are almost identical and only small differences in the uncertainties are visible.
Collapse
Affiliation(s)
- Luana Hafner
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland.
| | - Linda Walsh
- Department of Physics, Science Faculty, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Uwe Schneider
- Department of Physics, Science Faculty, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Radiotherapy Hirslanden, Witellikerstrasse 40, 8032 Zurich, Switzerland.
| |
Collapse
|
23
|
Sato T, Funamoto S, Paulbeck C, Griffin K, Lee C, Cullings H, Egbert SD, Endo A, Hertel N, Bolch WE. Dosimetric Impact of a New Computational Voxel Phantom Series for the Japanese Atomic Bomb Survivors: Methodological Improvements and Organ Dose Response Functions. Radiat Res 2020; 194:390-402. [PMID: 33045092 DOI: 10.1667/rr15546.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/26/2020] [Indexed: 11/03/2022]
Abstract
Owing to recent advances in computational dosimetry tools, an update is warranted for the dosimetry system for atomic bomb survivors that was established by the Joint U.S.Japan Working Group on the Reassessment of Atomic Bomb Dosimetry in 2002 (DS02). The DS02 system, and its predecessor, DS86, at the Radiation Effects Research Foundation (RERF), are based on adjoint Monte Carlo particle transport simulations coupled with stylized computational human phantoms. In our previous studies, we developed the J45 series of computational voxel phantoms representative of 1945 Japanese adults, children and pregnant females. The dosimetric impact of replacing the DS02/DS86 stylized phantoms by the J45 phantom series was also discussed through computation of organ doses for several idealized exposure scenarios. In the current study, we investigated the possible impact of introducing not only the J45 phantom series but also various methodological upgrades to the DS02 dosimetry system. For this purpose, we calculated organ doses in adults for 12 representative exposure scenarios having realistic particle energy and angular fluence, using different combinations of phantoms and dose calculation methods. Those doses were compared with survivor organ doses given by the DS02 system. It was found that the anatomical improvement in the J45 phantom series is the most important factor leading to potential changes in survivor organ doses. However, methodological upgrades, such as replacement of the adjoint Monte Carlo simulation with kerma approximation by the forward Monte Carlo simulation with secondary electron transport, can also improve the accuracy of organ doses by up to several percent.In addition, this study established a series of response functions, which allows for the rapid conversion of the unidirectional quasi-monoenergetic photon and neutron fluences from the existing DS02 system to organ doses within the J45 adult phantoms. The overall impact of introducing the response functions in the dosimetry system is not so significant, less than 10% in most cases, except for organs in which the calculation method or definition was changed, e.g., colon and bone marrow. This system of response functions can be implemented within a revision to the DS02 dosimetry system and used for future updates to organ doses within the Life Span Study of the atomic bomb survivors.
Collapse
Affiliation(s)
- Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Sachiyo Funamoto
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Colin Paulbeck
- Medical Physics Program, College of Medicine, University of Florida, Gainesville, Florida
| | - Keith Griffin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Harry Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | - Akira Endo
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Nolan Hertel
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Wesley E Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|