1
|
Tang TT, Zawaski JA, Sabek OM, Gaber MW. High variability in short and long-term recovery kinetic of blood cell count and blood chemistry in a partial body irradiation mouse model. Int J Radiat Biol 2024; 100:565-572. [PMID: 38306486 DOI: 10.1080/09553002.2024.2304833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 02/04/2024]
Abstract
PURPOSE In the aftermath of a nuclear disaster or accident, survivors will suffer from radiation-induced normal tissue damage. Recovery after radiation exposure is dictated by several factors, one of which is degree of shielding at time of exposure. This study aims to characterize the short and late term changes in kinetics and magnitude of pancytopenia and blood chemistry in a model of heterogeneous radiation exposure, or partial body irradiation (PBI), compared to whole body irradiation (WBI). MATERIALS AND METHODS Male C57BL/6 mice, 8-10 weeks of age, were WBI at 6 different doses (6, 6.1. 6.15, 6.2, 6.5, and 7.5 Gy) to establish the LD50. To determine the effect of shielding on blood cell counts and chemistry, animals were either WBI at 6 Gy (LD2230) or 6 Gy PBI with one leg shielding (LD030). Complete blood counts and chemistry were measured at 1, 5-, 10-, 20-, 30- and 120-days post-irradiation. RESULTS AND CONCLUSIONS Irradiated animals had significant depletion of white blood cells, red blood cells and platelets up to 10 days post-irradiation. Separation between PBI and WBI were observed at 10- and 20-days post-irradiation at which point PBI animals showed sign of recovery while overall cell count remains depleted in WBI animals up to 30 days post-irradiation. In addition, significant changes were found in parameters indicative of hematopoietic injury including hemoglobin count, hematocrit count and white blood cell population. Significant changes were observed in kidney function with changes to blood urea nitrogen and calcium concentration at 5-days post-irradiation. At 10-days post-irradiation. liver function changes differentiated WBI from PBI animals. Long-term, irradiated animal's chemistry values and many blood counts were not significantly different from Sham. In conclusion, partial shielding ensured complete survival and demonstrated a different recovery kinetics of blood and chemistry parameters after irradiation compared to survivors of whole body irradiation and no single hemopoietic parameter was able to consistently differentiate irradiated from Sham animals. This seems to indicate that there is no single robust hemopoietic parameter to differentiate those exposed from those who were not due to the inherent variability in individual responses. Furthermore, there were no significant long-term effects on these blood parameters between survivors of WBI and PBI except that shielding accelerated recovery.
Collapse
Affiliation(s)
- Tien T Tang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janice A Zawaski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Omaima M Sabek
- Department of Surgery, Methodist Hospital Research Institute, Houston, TX, USA
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Shuryak I, Nemzow L, Bacon BA, Taveras M, Wu X, Deoli N, Ponnaiya B, Garty G, Brenner DJ, Turner HC. Machine learning approach for quantitative biodosimetry of partial-body or total-body radiation exposures by combining radiation-responsive biomarkers. Sci Rep 2023; 13:949. [PMID: 36653416 PMCID: PMC9849198 DOI: 10.1038/s41598-023-28130-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
During a large-scale radiological event such as an improvised nuclear device detonation, many survivors will be shielded from radiation by environmental objects, and experience only partial-body irradiation (PBI), which has different consequences, compared with total-body irradiation (TBI). In this study, we tested the hypothesis that applying machine learning to a combination of radiation-responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.0-2.5 or 5.0 Gy of half-body PBI or TBI. The random forest (RF) algorithm trained on ½ of the data reconstructed the radiation dose on the remaining testing portion of the data with mean absolute error of 0.749 Gy and reconstructed the product of dose and exposure status (defined as 1.0 × Dose for TBI and 0.5 × Dose for PBI) with MAE of 0.472 Gy. Among irradiated samples, PBI could be distinguished from TBI: ROC curve AUC = 0.944 (95% CI: 0.844-1.0). Mouse sex did not significantly affect dose reconstruction. These results support the hypothesis that combinations of protein biomarkers and blood cell counts can complement existing methods for biodosimetry of PBI and TBI exposures.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA.
| | - Leah Nemzow
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
3
|
McGill MR, Findley DL, Mazur A, Yee EU, Allard FD, Powers A, Coward L, Blough ER, Gorman G, Hambuchen MD. Radiation Effects on Methamphetamine Pharmacokinetics and Pharmacodynamics in Rats. Eur J Drug Metab Pharmacokinet 2022; 47:319-330. [PMID: 35137360 DOI: 10.1007/s13318-022-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Whole-body radiation exposure has been shown to alter the pharmacokinetics of certain drugs in both animal models and humans, but little is known about the effect of radiation on psychoactive medications. These drugs may have altered pharmacokinetics when administered during or after space travel or therapeutic or accidental radiation exposure, resulting in reduced efficacy or increased toxicity. METHODS Methamphetamine was used to determine the effects of acutely administered 1, 3, and 6 Gy radiation on drug pharmacokinetics and pharmacodynamics. Male Wistar rats were exposed to 0, 1, 3, or 6 Gy X-ray radiation on day 0. The serum pharmacokinetics of subcutaneously administered 1 mg/kg methamphetamine was determined on day 3. Methamphetamine-induced (1 mg/kg) locomotor activity was measured on day 5. Brain methamphetamine concentrations were determined 2 h after methamphetamine administration (1 mg/kg) on day 6. Renal and hepatic serum biomarkers were assessed on days 3 and 6, with liver histology performed on day 6. RESULTS While serum half-life and unchanged methamphetamine urine clearance were unaffected by any radiation dose, maximum methamphetamine concentrations and methamphetamine and amphetamine metabolite area under the serum concentration-time curve values from 0 to 300 min were significantly reduced after 6 Gy radiation exposure. Additionally, methamphetamine-induced locomotor activity and the brain to serum methamphetamine concentration ratio were significantly elevated after 6 Gy radiation. CONCLUSIONS While 1-6 Gy radiation exposure did not affect methamphetamine elimination, 6 Gy exposure had effects on both subcutaneous absorption and brain distribution. These effects should be considered when administering drugs during or after radiation exposure.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR, 72205, USA
| | - David L Findley
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Kopp Hall 353, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Anna Mazur
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Allison Powers
- Office of Radiation Safety, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Lori Coward
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, 800 Lakeshore Drive, Birmingham, AL, 35229, USA
| | - Eric R Blough
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Kopp Hall 353, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Greg Gorman
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, 800 Lakeshore Drive, Birmingham, AL, 35229, USA
| | - Michael D Hambuchen
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Kopp Hall 353, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|