1
|
Barata P, Oliveira A, Soares R, Fernandes A. Gut Microbiota Is Not Significantly Altered by Radioiodine Therapy. Nutrients 2025; 17:395. [PMID: 39940254 PMCID: PMC11819986 DOI: 10.3390/nu17030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
Purpose: Radiotherapy treatments are known to alter the gut microbiota. However, little is known regarding the effect of nuclear medicine treatments on gut microbiota, and it is established that nuclear medicine is inherently different from radiotherapy. To address this knowledge gap, we conducted a prospective study to identify changes in the gut microbiota of patients treated with [131I]NaI by comparing fecal samples before and after RAIT. Methods: Fecal samples of 64 patients (37 with thyroid cancer and 27 with hyperthyroidism) with indication for RAIT were collected 2 to 3 days before treatment and 8 to 10 days post-treatment. After DNA extraction, the gut microbiota's richness, diversity, and composition were analyzed by shotgun metagenomics. In addition, LEfSe was performed to compare compositional changes in specific bacteria. Results: Gut microbiome richness and diversity remained unchanged after RAIT, with few changes in its composition identified, especially in patients with hyperthyroidism. Conclusions: This study provides a conceptual and analytical basis for increasing our understanding of the effects of radiopharmaceuticals on gut microbiota. Our preliminary results indicate that RAIT, contrary to radiotherapy, does not cause major disruptions to the human gut microbiota.
Collapse
Affiliation(s)
- Pedro Barata
- RISE-Health, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Fundação Ensino e Cultura Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Centro Hospitalar de Santo António, Unidade Local de Saúde de Santo António, Largo do Professor Abel Salazar, 4099-001 Porto, Portugal
| | - Ana Oliveira
- Department of Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana Fernandes
- RISE-Health, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Fundação Ensino e Cultura Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Department of Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Huang Z, Wang L, Tong J, Zhao Y, Ling H, Zhou Y, Tan Y, Xiong X, Qiu Y, Bi Y, Pan Z, Yang R. Alterations in Gut Microbiota Correlate With Hematological Injuries Induced by Radiation in Beagles. Int J Microbiol 2024; 2024:3096783. [PMID: 39659556 PMCID: PMC11631345 DOI: 10.1155/ijm/3096783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Dynamics of gut microbiota and their associations with the corresponding hematological injuries postradiation remain to be elucidated. Using single whole-body exposure to 60Co-γ ray radiation at the sublethal dose of 2.5 Gy, we developed a beagle model of acute radiation syndrome (ARS) and then monitored the longitudinal changes of gut microbiome and hematology for 45 days. We found that the absolute counts of circulating lymphocytes, neutrophils, and platelets were sharply declined postradiation, accompanied by a largely shifted composition of gut microbiome that manifested as a significantly increased ratio of Firmicutes to Bacteroidetes. In irradiated beagles, alterations in hematological parameters reached a nadir on day 14, sustaining for 1 week, which were gradually returned to the normal levels thereafter. However, no structural recovery of gut microbiota was observed throughout the study. Fecal metagenomics revealed that irradiation increased the relative abundances of genus Streptococcus, species Lactobacillus animalis and Lactobacillus murinus, but decreased those of genera Prevotella and Bacteroides. Metagenomic functions prediction demonstrated that 26 altered KEGG pathways were significantly enriched on Day 14 and 35 postradiation. Furthermore, a total of 43 bacterial species were found to correlate well with hematological parameters by Spearman's analysis. Our results provide an insight into the longitudinal changes in intestinal microbiota at different clinical stages during ARS in canine. Several key microbes those tightly associated with the hematological alterations may serve as biomarkers to discriminate the different phases of host with ARS.
Collapse
Affiliation(s)
- Zongyu Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, Jiangsu, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Jianghui Tong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Yong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, Anhui, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, Jiangsu, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
- Department of Research and Development, Grand Life Sciences Group Ltd., China Grand Enterprises Inc., Chaoyang, Beijing 100101, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| |
Collapse
|
3
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Chaklai A, O’Neil A, Goel S, Margolies N, Krenik D, Perez R, Kessler K, Staltontall E, Yoon HK(E, Pantoja M, Stagaman K, Kasschau K, Unni V, Duvoisin R, Sharpton T, Raber J. Effects of Paraquat, Dextran Sulfate Sodium, and Irradiation on Behavioral and Cognitive Performance and the Gut Microbiome in A53T and A53T-L444P Mice. Genes (Basel) 2024; 15:282. [PMID: 38540341 PMCID: PMC11154584 DOI: 10.3390/genes15030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.
Collapse
Affiliation(s)
- Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Abigail O’Neil
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Shrey Goel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Nick Margolies
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Elizabeth Staltontall
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Hong Ki (Eric) Yoon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Montzerrat Pantoja
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.K.); (T.S.)
| | - Kristin Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.K.); (T.S.)
| | - Vivek Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Jungers Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Robert Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.K.); (T.S.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (A.C.); (A.O.); (S.G.); (N.M.); (D.K.); (R.P.); (K.K.); (E.S.); (M.P.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
5
|
Wang X, Zhou G, Lin J, Qin T, Du J, Guo L, Lai P, Jing Y, Zhang Z, Zhou Y, Ding G. Effects of radiofrequency field from 5G communication on fecal microbiome and metabolome profiles in mice. Sci Rep 2024; 14:3571. [PMID: 38347014 PMCID: PMC10861445 DOI: 10.1038/s41598-024-53842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
With the rapid development of 5G networks, the influence of the radiofrequency field (RF) generated from 5G communication equipment on human health is drawing increasing attention in public. The study aimed at assessing the effects of long-term exposure to 4.9 GHz (one of the working frequencies of 5G communication) RF field on fecal microbiome and metabolome profiles in adult male C57BL/6 mice. The animals were divided into Sham group and radiofrequency group (RF group). For RF group, the mice were whole body exposed to 4.9 GHz RF field for three weeks, 1 h/d, at average power density (PD) of 50 W/m2. After RF exposure, the mice fecal samples were collected to detect gut microorganisms and metabolites by 16S rRNA gene sequencing and LC-MS method, respectively. The results showed that intestinal microbial compositions were altered in RF group, as evidenced by reduced microbial diversity and changed microbial community distribution. Metabolomics profiling identified 258 significantly differentially abundant metabolites in RF group, 57 of which can be classified to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Besides, functional correlation analysis showed that changes in gut microbiota genera were significantly correlated with changes in fecal metabolites. In summary, the results suggested that altered gut microbiota and metabolic profile are associated with 4.9 GHz radiofrequency exposure.
Collapse
Affiliation(s)
- Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guiqiang Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jiajin Lin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tongzhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Junze Du
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Panpan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yuntao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhaowen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yan Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
6
|
Dahiya A, Agrawala PK, Dutta A. Mitigative and anti-inflammatory effects of Trichostatin A against radiation-induced gastrointestinal toxicity and gut microbiota alteration in mice. Int J Radiat Biol 2023; 99:1865-1878. [PMID: 37531370 DOI: 10.1080/09553002.2023.2242929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Radiation-induced gastrointestinal injury (RIGI) is a serious side effect of abdominal and pelvic radiotherapy, which often limits the treatment of gastrointestinal and gynaecological cancers. RIGI is also observed during accidental radiological or nuclear scenarios with no approved agents available till date to prevent or mitigate RIGI in humans. Trichostatin A (TSA), an epigenetic modulator, has been currently in clinical trials for cancer treatment and is also well known for its antibiotic and antifungal properties. METHODS In this study, partial body (abdominal) irradiation mice model was used to investigate the mitigative effect of TSA against gastrointestinal toxicity caused by gamma radiation. Mice were checked for alterations in mean body weight, diarrheal incidence, disease activity index and survival against 15 Gy radiation. Structural abnormalities in intestine and changes in microbiota composition were studied by histopathology and 16S rRNA sequencing of fecal samples respectively. Immunoblotting and biochemical assays were performed to check protein nitrosylation, expression of inflammatory mediators, infiltration of inflammatory cells and changes in pro-inflammatory cytokine. RESULTS TSA administration to C57Bl/6 mice improved radiation induced mean body weight loss, maintained better health score, reduced disease activity index and promoted survival. The 16S rRNA sequencing of fecal DNA demonstrated that TSA influenced the fecal microbiota dynamics with significant alterations in the Firmicutes/Bacteriodetes ratio. TSA effectively mitigated intestinal injury, down-regulated NF-κB, Cox-2, iNOS expression, inhibited PGE2 and protein nitrosylation levels in irradiated intestine. The upregulation of NLRP3-inflammasome complex and infiltrations of inflammatory cells in the inflamed intestine were also prevented by TSA. Subsequently, the myeloperoxidase activity in intestine alongwith serum IL-18 levels was found reduced. CONCLUSION These findings provide evidence that TSA inhibits inflammatory mediators, alleviates gut dysbiosis, and promotes structural restoration of the irradiated intestine. TSA, therefore, can be considered as a potential agent for mitigation of RIGI in humans.
Collapse
Affiliation(s)
- Akshu Dahiya
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| | - Paban K Agrawala
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| | - Ajaswrata Dutta
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| |
Collapse
|
7
|
Yi Y, Lu W, Shen L, Wu Y, Zhang Z. The gut microbiota as a booster for radiotherapy: novel insights into radio-protection and radiation injury. Exp Hematol Oncol 2023; 12:48. [PMID: 37218007 DOI: 10.1186/s40164-023-00410-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Approximately 60-80% of cancer patients treated with abdominopelvic radiotherapy suffer post-radiotherapy toxicities including radiation enteropathy and myelosuppression. Effective preventive and therapeutic strategies are lacking for such radiation injury. The gut microbiota holds high investigational value for deepening our understanding of the pathogenesis of radiation injury, especially radiation enteropathy which resembles inflammatory bowel disease pathophysiology and for facilitating personalized medicine by providing safer therapies tailored for cancer patients. Preclinical and clinical data consistently support that gut microbiota components including lactate-producers, SCFA-producers, indole compound-producers and Akkermansia impose intestinal and hematopoietic radio-protection. These features serve as potential predictive biomarkers for radiation injury, together with the microbial diversity which robustly predicts milder post-radiotherapy toxicities in multiple types of cancer. The accordingly developed manipulation strategies including selective microbiota transplantation, probiotics, purified functional metabolites and ligands to microbe-host interactive pathways are promising radio-protectors and radio-mitigators that merit extensive validation in clinical trials. With massive mechanistic investigations and pilot clinical trials reinforcing its translational value the gut microbiota may boost the prediction, prevention and mitigation of radiation injury. In this review, we summarize the state-of-the-art landmark researches related with radio-protection to provide illuminating insights for oncologists, gastroenterologists and laboratory scientists interested in this overlooked complexed disorder.
Collapse
Affiliation(s)
- Yuxi Yi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Weiqing Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| |
Collapse
|
8
|
Fernandes A, Oliveira A, Soares R, Barata P. The Effects of Ionizing Radiation on Gut Microbiota: What Can Animal Models Tell Us?-A Systematic Review. Curr Issues Mol Biol 2023; 45:3877-3910. [PMID: 37232718 DOI: 10.3390/cimb45050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The gut microbiota is relatively stable; however, various factors can precipitate an imbalance that is known to be associated with various diseases. We aimed to conduct a systematic literature review of studies reporting the effects of ionizing radiation on the composition, richness, and diversity of the gut microbiota of animals. METHODS A systematic literature search was performed in PubMed, EMBASE, and Cochrane library databases. The standard methodologies expected by Cochrane were utilized. RESULTS We identified 3531 non-duplicated records and selected twenty-nine studies after considering the defined inclusion criteria. The studies were found to be heterogeneous, with significant differences in the chosen populations, methodologies, and outcomes. Overall, we found evidence of an association between ionizing radiation exposure and dysbiosis, with a reduction of microbiota diversity and richness and alterations in the taxonomic composition. Although differences in taxonomic composition varied across studies, Proteobacteria, Verrucomicrobia, Alistipes, and Akkermancia most consistently reported to be relatively more abundant after ionizing radiation exposure, whereas Bacteroidetes, Firmicutes, and Lactobacillus were relatively reduced. CONCLUSIONS This review highlights the effect of ionizing exposure on gut microbiota diversity, richness, and composition. It paves the way for further studies on human subjects regarding gastrointestinal side effects in patients submitted to treatments with ionizing radiation and the development of potential preventive, therapeutic approaches.
Collapse
Affiliation(s)
- Ana Fernandes
- Department Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Ana Oliveira
- Department Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Raquel Soares
- i3S-Institute for Research and Innovation in Health, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Pedro Barata
- i3S-Institute for Research and Innovation in Health, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|
9
|
Zheng L, Zhang L, Tang L, Huang D, Pan D, Guo W, He S, Huang Y, Chen Y, Xiao X, Tang B, Chen J. Gut microbiota is associated with response to 131I therapy in patients with papillary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:1453-1465. [PMID: 36512067 PMCID: PMC10027784 DOI: 10.1007/s00259-022-06072-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Radioactive iodine (131I) therapy is a conventional post-surgery treatment widely used for papillary thyroid carcinoma (PTC). Since 131I is orally administered, we hypothesize that it may affect gut microbiome. This study aims to investigate alterations of intestinal microbiome caused by 131I therapy in PTC patients and explore its association with response to 131I therapy. METHODS Fecal samples of 60 PTC patients pre- and post-131I therapy were collected to characterize the 131I therapy-induced gut microbiota alterations using 16S rRNA gene sequencing. According to the inclusion criteria, sequence data of 40 out of the 60 patients, divided into excellent response (ER) group and non-excellent response (NER) group, were recruited to investigate the possible connection between gut microbiota and response to 131I therapy. Multivariate binary logistic regression was employed to construct a predictive model for response to 131I therapy. RESULTS Microbial richness, diversity, and composition were tremendously altered by 131I therapy. A significant decline of Firmicutes to Bacteroides (F/B) ratio was observed post-131I therapy. 131I therapy also led to changes of gut microbiome-related metabolic pathways. Discrepancies in β diversity were found between ER and NER groups both pre- and post-131I therapy. Furthermore, a predictive model for response to 131I therapy with a p value of 0.003 and an overall percentage correct of 80.0% was established, with three variables including lymph node metastasis, relative abundance of g_Bifidobacterium and g_Dorea. Among them, g_Dorea was identified to be an in independent predictor of response to 131I therapy (p = 0.04). CONCLUSION For the first time, the present study demonstrates the gut microbial dysbiosis caused by 131I therapy in post-surgery PTC patients and reveals a previously undefined role of gut microbiome as predictor for 131I ablation response. G_Dorea and g_Bifidobacterium may be potential targets for clinical intervention to improve response to 131I in post-operative PTC patients. TRIAL REGISTRATION ChiCTR2100048000. Registered 28 June 2021.
Collapse
Affiliation(s)
- Lei Zheng
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Linjing Zhang
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital (the Second Affiliated Hospital), Third Military Medical University, (Army Medical University), Chongqing, China
| | - Dingde Huang
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Pan
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Guo
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Song He
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burns and Combined Injury of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing, 400038, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing, 400038, China
| | - Xu Xiao
- Department of Gastroenterology, Xinqiao Hospital (the Second Affiliated Hospital), Third Military Medical University, (Army Medical University), Chongqing, China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital (the Second Affiliated Hospital), Third Military Medical University, (Army Medical University), Chongqing, China.
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing, 400038, China.
| |
Collapse
|
10
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
11
|
Domingues C, Cabral C, Jarak I, Veiga F, Dourado M, Figueiras A. The Debate between the Human Microbiota and Immune System in Treating Aerodigestive and Digestive Tract Cancers: A Review. Vaccines (Basel) 2023; 11:vaccines11030492. [PMID: 36992076 DOI: 10.3390/vaccines11030492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The human microbiota comprises a group of microorganisms co-existing in the human body. Unbalanced microbiota homeostasis may impact metabolic and immune system regulation, shrinking the edge between health and disease. Recently, the microbiota has been considered a prominent extrinsic/intrinsic element of cancer development and a promising milestone in the modulation of conventional cancer treatments. Particularly, the oral cavity represents a yin-and-yang target site for microorganisms that can promote human health or contribute to oral cancer development, such as Fusobacterium nucleatum. Moreover, Helicobacter pylori has also been implicated in esophageal and stomach cancers, and decreased butyrate-producing bacteria, such as Lachnospiraceae spp. and Ruminococcaceae, have demonstrated a protective role in the development of colorectal cancer. Interestingly, prebiotics, e.g., polyphenols, probiotics (Faecalibacterium, Bifidobacterium, Lactobacillus, and Burkholderia), postbiotics (inosine, butyrate, and propionate), and innovative nanomedicines can modulate antitumor immunity, circumventing resistance to conventional treatments and could complement existing therapies. Therefore, this manuscript delivers a holistic perspective on the interaction between human microbiota and cancer development and treatment, particularly in aerodigestive and digestive cancers, focusing on applying prebiotics, probiotics, and nanomedicines to overcome some challenges in treating cancer.
Collapse
Affiliation(s)
- Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cristiana Cabral
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
12
|
Li Z, Ke X, Zuo D, Wang Z, Fang F, Li B. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients 2022; 15:nu15010048. [PMID: 36615706 PMCID: PMC9824372 DOI: 10.3390/nu15010048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death among humans in the world, and the threat that it presents to human health is becoming more and more serious. The mechanisms of cancer development have not yet been fully elucidated, and new therapies are changing with each passing day. Evidence from the literature has validated the finding that the composition and modification of gut microbiota play an important role in the development of many different types of cancer. The results also demonstrate that there is a bidirectional interaction between the gut microbiota and radiotherapy treatments for cancer. In a nutshell, the modifications of the gut microbiota caused by radiotherapy have an effect on tumor radiosensitivity and, as a result, affect the efficacy of radiotherapy and show a certain radiation toxicity, which leads to numerous side effects. What is of new research significance is that the "gut-organ axis" formed by the gut microbiota may be one of the most interesting potential mechanisms, although the relevant research is still very limited. In this review, we combine new insights into the relationship between the gut microbiota, cancer, and radiotherapy. Based on our current comprehensive understanding of this relationship, we give an overview of the new cancer treatments based on the gut microbiota.
Collapse
Affiliation(s)
- Zhipeng Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiyang Ke
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Ministry of Education, Beijing 100142, China
| | - Dan Zuo
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Fang Fang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-85619455
| | - Bo Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
Ionizing Radiation from Radiopharmaceuticals and the Human Gut Microbiota: An Ex Vivo Approach. Int J Mol Sci 2022; 23:ijms231810809. [PMID: 36142722 PMCID: PMC9506506 DOI: 10.3390/ijms231810809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the effect of three widely used radiopharmaceuticals with intestinal excretion on selected relevant bacteria that are part of the human gut microbiota, using an ex vivo approach. Fecal samples obtained from healthy volunteers were analyzed. Each sample was divided into four smaller aliquots. One served as the non-irradiated control. The other three were homogenized with three radiopharmaceutical solutions ([131I]NaI, [99mTc]NaTcO4, and [223Ra]RaCl2). Relative quantification of each taxa was determined by the 2−ΔΔC method, using the ribosomal gene 16S as an internal control (primers 534/385). Twelve fecal samples were analysed: three controls and nine irradiated. Our experiment showed fold changes in all analyzed taxa with all radiopharmaceuticals, but results were more significant with I-131, ranging from 1.87–83.58; whereas no relevant differences were found with Tc-99m and Ra-223, ranging from 0.98–1.58 and 0.83–1.97, respectively. This study corroborates limited existing research on how ionizing radiation changes the gut microbiota composition, providing novel data regarding the ex vivo effect of radiopharmaceuticals. Our findings justify the need for future larger scale projects.
Collapse
|
14
|
Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP. Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life (Basel) 2022; 12:1163. [PMID: 36013342 PMCID: PMC9409767 DOI: 10.3390/life12081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
The microbiota is important for immune modulation, nutrient acquisition, vitamin production, and other aspects for long-term human health. Isolated model organisms can lose microbial diversity over time and humans are likely the same. Decreasing microbial diversity and the subsequent loss of function may accelerate disease progression on Earth, and to an even greater degree in space. For this reason, maintaining a healthy microbiome during spaceflight has recently garnered consideration. Diet, lifestyle, and consumption of beneficial microbes can shape the microbiota, but the replenishment we attain from environmental exposure to microbes is important too. Probiotics, prebiotics, fermented foods, fecal microbiota transplantation (FMT), and other methods of microbiota modulation currently available may be of benefit for shorter trips, but may not be viable options to overcome the unique challenges faced in long-term space travel. Novel fermented food products with particular impact on gut health, immune modulation, and other space-targeted health outcomes are worthy of exploration. Further consideration of potential microbial replenishment to humans, including from environmental sources to maintain a healthy microbiome, may also be required.
Collapse
Affiliation(s)
- Kait F. Al
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - John A. Chmiel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gerrit A. Stuivenberg
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gregor Reid
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| |
Collapse
|
15
|
Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota. Commun Biol 2022; 5:680. [PMID: 35804021 PMCID: PMC9270490 DOI: 10.1038/s42003-022-03602-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Radiation affects not only cognitive function but also gut microbiota. Eleutheroside E (EE), a principal active compound of Acanthopanax senticosus, has a certain protective effect on the nervous system. Here, we find a four-week EE supplementation to the 60Co-γ ray irradiated mice improves the cognition and spatial memory impairments along with the protection of hippocampal neurons, remodels the gut microbiota, especially changes of Lactobacillus and Helicobacter, and altered the microbial metabolites including neurotransmitters (GABA, NE, ACH, 5-HT) as well as their precursors. Furthermore, the fecal transplantation of EE donors verifies that EE alleviated cognition and spatial memory impairments, and activates the PKA/CREB/BDNF signaling via gut microbiota. Our findings provide insight into the mechanism of EE effect on the gut-brain axis and underpin a proposed therapeutic value of EE in cognitive and memory impairments induced by radiation.
Collapse
|
16
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
17
|
Li Y, Zhang Y, Wei K, He J, Ding N, Hua J, Zhou T, Niu F, Zhou G, Shi T, Zhang L, Liu Y. Review: Effect of Gut Microbiota and Its Metabolite SCFAs on Radiation-Induced Intestinal Injury. Front Cell Infect Microbiol 2021; 11:577236. [PMID: 34307184 PMCID: PMC8300561 DOI: 10.3389/fcimb.2021.577236] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is regarded as the second human genome and forgotten organ, which is symbiotic with the human host and cannot live and exist alone. The gut microbiota performs multiple physiological functions and plays a pivotal role in host health and intestinal homeostasis. However, the gut microbiota can always be affected by various factors and among them, it is radiotherapy that results in gut microbiota 12dysbiosis and it is often embodied in a decrease in the abundance and diversity of gut microbiota, an increase in harmful bacteria and a decrease in beneficial bacteria, thereby affecting many disease states, especially intestine diseases. Furthermore, gut microbiota can produce a variety of metabolites, among which short-chain fatty acids (SCFAs) are one of the most abundant and important metabolites. More importantly, SCFAs can be identified as second messengers to promote signal transduction and affect the occurrence and development of diseases. Radiotherapy can lead to the alterations of SCFAs-producing bacteria and cause changes in SCFAs, which is associated with a variety of diseases such as radiation-induced intestinal injury. However, the specific mechanism of its occurrence is not yet clear. Therefore, this review intends to emphasize the alterations of gut microbiota after radiotherapy and highlight the alterations of SCFAs-producing bacteria and SCFAs to explore the mechanisms of radiation-induced intestinal injury from the perspective of gut microbiota and its metabolite SCFAs.
Collapse
Affiliation(s)
- Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kongxi Wei
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fan Niu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gucheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Tongfan Shi
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Gansu Institute of Cardiovascular Diseases, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China
| |
Collapse
|
18
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
19
|
Yi Y, Shen L, Shi W, Xia F, Zhang H, Wang Y, Zhang J, Wang Y, Sun X, Zhang Z, Zou W, Yang W, Zhang L, Zhu J, Goel A, Ma Y, Zhang Z. Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Prospective, Longitudinal Study. Clin Cancer Res 2021; 27:1329-1340. [PMID: 33298472 DOI: 10.1158/1078-0432.ccr-20-3445] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The gut microbiome is involved in antitumor immunotherapy and chemotherapy responses; however, evidence-based research on the role of gut microbiome in predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC) remains scarce. This prospective, longitudinal study aimed to evaluate the feasibility of the gut microbiome in predicting nCRT responses. EXPERIMENTAL DESIGN We collected 167 fecal samples from 84 patients with LARC before and after nCRT and 31 specimens from healthy individuals for 16S rRNA sequencing. Patients were divided into responders and nonresponders according to pathologic response to nCRT. After identifying microbial biomarkers related to nCRT responses, we constructed a random forest classifier for nCRT response prediction of a training cohort of baseline samples from 37 patients and validated the classifier in another cohort of 47 patients. RESULTS We observed significant microbiome alterations represented by a decrease in LARC-related pathogens and an increase in Lactobacillus and Streptococcus during nCRT. Furthermore, a prominent microbiota difference between responders and nonresponders was noticed in the baseline samples. Microbes related with butyrate production, including Roseburia, Dorea, and Anaerostipes, were overrepresented in responders, whereas Coriobacteriaceae and Fusobacterium were overrepresented in nonresponders. Ten biomarkers were selected for the response-prediction classifier, including Dorea, Anaerostipes, and Streptococcus, which yielded an area under the curve value of 93.57% [95% confidence interval (CI), 85.76%-100%] in the training cohort and 73.53% (95% CI, 58.96%-88.11%) in the validation cohort. CONCLUSIONS The gut microbiome offers novel potential biomarkers for predicting nCRT responses, which has important manifestations in the clinical management of these patients.
Collapse
Affiliation(s)
- Yuxi Yi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yan Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jing Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yaqi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiaoyang Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Zhiyuan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wei Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wang Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Lingyi Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Yanlei Ma
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
20
|
Qayed M, Michonneau D, Socié G, Waller EK. Indole derivatives, microbiome and graft versus host disease. Curr Opin Immunol 2021; 70:40-47. [PMID: 33647539 PMCID: PMC8466652 DOI: 10.1016/j.coi.2021.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Graft versus host disease is a life-threatening complication following allogeneic hematopoietic stem cell transplantation driven by donor T cells reacting against disparate host antigens. Immune homeostasis within the gut plays a major role in the graft versus host response. Gut microbiota and its metabolites impact gut integrity, inflammation and immune activation within the gut. This review will focus on the role of indoles, a product of microbiota metabolism, on gut homeostasis and our current understanding on how that modulates graft versus host disease.
Collapse
Affiliation(s)
- Muna Qayed
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Corresponding author: Edmund K. Waller MD, PhD, FACP, Professor of Medicine and Oncology, Winship Cancer Institute Emory University, Atlanta, Georgia 30322; Phone 404-727-4995; Fax 404-778-5530
| | - David Michonneau
- Hematology Transplantation, Saint Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université de Paris, INSERM U976, F-75010 Paris, France
| | - Gerard Socié
- Hematology Transplantation, Saint Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université de Paris, INSERM U976, F-75010 Paris, France
| | - Edmund K. Waller
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Lensu S, Waselius T, Mäkinen E, Kettunen H, Virtanen A, Tiirola M, Penttonen M, Pekkala S, Nokia MS. Irradiation of the head reduces adult hippocampal neurogenesis and impairs spatial memory, but leaves overall health intact in rats. Eur J Neurosci 2021; 53:1885-1904. [PMID: 33382141 DOI: 10.1111/ejn.15102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
Treatment of brain cancer, glioma, can cause cognitive impairment as a side-effect, possibly because it disrupts the integrity of the hippocampus, a structure vital for normal memory. Radiotherapy is commonly used to treat glioma, but the effects of irradiation on the brain are still poorly understood, and other biological effects have not been extensively studied. Here, we exposed healthy adult male rats to moderate-dose irradiation of the head. We found no effect of irradiation on systemic inflammation, weight gain or gut microbiota diversity, although it increased the abundance of Bacteroidaceae family, namely Bacteroides genus in the gut microbiota. Irradiation had no effect on long-term potentiation in the CA3-CA1 synapse or endogenous hippocampal electrophysiology, but it did reduce adult hippocampal neurogenesis and impaired short-term spatial recognition memory. However, no overall cognitive impairment was observed. To summarize, our results suggest that in adult male rats head irradiation does not compromise health or cognition overall even though the number of new, adult-born hippocampal neurons is decreased. Thus, the sole effects of head irradiation on the body, brain and cognition might be less harmful than previously thought, and the cognitive decline experienced by cancer patients might originate from physiological and mental effects of the disease itself. Therefore, to increase the translational value of animal studies, the effects of irradiation should be studied together with cancer, in older animals, using varying irradiation protocols and doses.
Collapse
Affiliation(s)
- Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland.,Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Tomi Waselius
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Heikki Kettunen
- Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland
| | - Ari Virtanen
- Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Markku Penttonen
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Miriam S Nokia
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
22
|
Girgis M, Li Y, Jayatilake M, Gill K, Wang S, Makambi K, Sridharan V, Cheema AK. Short-term metabolic disruptions in urine of mouse models following exposure to low doses of oxygen ion radiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:234-249. [PMID: 33902388 PMCID: PMC9757021 DOI: 10.1080/26896583.2020.1868866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Molecular alterations as a result of exposure to low doses of high linear energy transfer (LET) radiation can have deleterious short- and long-term consequences on crew members embarking on long distance space missions. Oxygen ions (16O) are among the high LET charged particles that make up the radiation environment inside a vehicle in deep space. We used mass spectrometry-based metabolomics to characterize urinary metabolic profiles of male C57BL/6J mice exposed to a single dose of 0.1, 0.25 and 1.0 Gy of 16O (600 MeV/n) at 10 and 30 days post-exposure to delineate radiation-induced metabolic alterations. We recognized a significant down regulation of several classes of metabolites including cresols and tryptophan metabolites, ketoacids and their derivatives upon exposure to 0.1 and 0.25 Gy after 10 days. While some of these changes reverted to near normal by 30 days, some metabolites including p-Cresol sulfate, oxalosuccinic acid, and indoxylsulfate remained dysregulated at 30 days, suggesting long term prognosis on metabolism. Pathway analysis revealed a long-term dysregulation in multiple pathways including tryptophan and porphyrin metabolism. These results suggest that low doses of high-LET charged particle irradiation may have long-term implications on metabolic imbalance.
Collapse
Affiliation(s)
- Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kirandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sirao Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kepher Makambi
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
23
|
Dong J, Gao HL, Wang WQ, Yu XJ, Liu L. Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188484. [PMID: 33246025 DOI: 10.1016/j.bbcan.2020.188484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies and is known for its high resistance and low response to treatment. Cancer treatments can reshape the microbiota and in turn, the microbiota influences the therapeutic efficacy by regulating immune response and metabolism. This crosstalk is bidirectional, heterogeneous, and dynamic. In this review, we elaborated on the interactions between the microbiota and therapeutic resistance in pancreatic ductal adenocarcinoma. Regulating the microbiota in pancreatic tumor microenvironment may not only generate direct anti-cancer but also synergistic effects with other treatments, providing new directions in cancer therapy.
Collapse
Affiliation(s)
- Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Mao A, Sun C, Katsube T, Wang B. A Minireview on Gastrointestinal Microbiota and Radiosusceptibility. Dose Response 2020; 18:1559325820963859. [PMID: 33239996 PMCID: PMC7672743 DOI: 10.1177/1559325820963859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal (GI) microbiota maintains a symbiotic relationship with the host and plays a key role in modulating many important biological processes and functions of the host, such as metabolism, inflammation, immune and stress response. It is becoming increasingly apparent that GI microbiota is susceptible to a wide range of environmental factors and insults, for examples, geographic location of birth, diet, use of antibiotics, and exposure to radiation. Alterations in GI microbiota link to various diseases, including radiation-induced disorders. In addition, GI microbiota composition could be used as a biomarker to estimate radiosusceptibility and radiation health risk in the host. In this minireview, we summarized the documented studies on radiation-induced alterations in GI microbiota and the relationship between GI microbiota and radiosusceptibility of the host, and mainly discussed the possible mechanisms underlying GI microbiota influencing the outcome of radiation response in humans and animal models. Furthermore, we proposed that GI microbiota manipulation may be used to reduce radiation injury and improve the health of the host.
Collapse
Affiliation(s)
- Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, People's Republic of China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
25
|
Xu L, Li Y, Sun S, Yue J. Decrease of oral microbial diversity might correlate with radiation esophagitis in patients with esophageal cancer undergoing chemoradiation: A pilot study. PRECISION RADIATION ONCOLOGY 2020. [DOI: 10.1002/pro6.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Lei Xu
- School of Medicine Shandong University Jinan Shandong China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan Shandong China
| | - Yan Li
- Department of Disease Control and Prevention Huaiyin District Center for Disease Control and Prevention Jinan Shandong China
| | - Shichang Sun
- Department of Medical Oncology Jining Cancer Hospital Jining Shandong China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan Shandong China
| |
Collapse
|
26
|
Ye F, Ning J, Fardous Z, Katsube T, Li Q, Wang B. Citrulline, A Potential Biomarker of Radiation-Induced Small Intestine Damage. Dose Response 2020; 18:1559325820962341. [PMID: 33013253 PMCID: PMC7513408 DOI: 10.1177/1559325820962341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation damage assessment of the small intestine is important in nuclear accidents or routine radiotherapy of abdominal tumors. This article reviews the clinical symptoms and molecular mechanisms of radiation-induced small intestinal damage and summarizes recent research on biomarkers of such damage. Citrulline is the most promising biomarker for the evaluation of radiation-induced small intestinal damage caused by radiotherapy and nuclear accidents. This article also summarizes the factors influencing plasma citrulline measurement investigated in the latest research, as well as new findings on the concentration of citrulline in saliva and urine after different types of radiation.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Jing Ning
- Gansu Provincial Hospital, Lanzhou, People’s Republic of China
| | - Zeenath Fardous
- Institute of Food and Radiation
Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy
Commission, Dhaka, Bangladesh
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
27
|
Joseph NT, Shankar SR, Narasimhamurthy RK, Rao SBS, Mumbrekar KD. Bi-Directional interactions between microbiota and ionizing radiation in head and neck and pelvic radiotherapy - clinical relevance. Int J Radiat Biol 2020; 96:961-971. [PMID: 32420768 DOI: 10.1080/09553002.2020.1770361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Rapid developments in high throughput screening technology for the detection and identification of the human microbiota have helped in understanding its influence on human health and disease. In the recent past, several seminal studies have demonstrated the influence of microbiota on outcomes of therapy-associated radiation exposure. In this review, we highlight the concepts related to the mechanisms by which radiation alters the microbiota composition linked with radiation-associated toxicity in head and neck and pelvic regions. We further discuss specific microbial changes that can be employed as a biomarker for radiation and tumor response.Conclusion: Knowledge of the influence of microbiota in radiation response and advances in microbiota manipulation techniques would help to design personalized treatment augmenting the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Nidhya Teresa Joseph
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Saligrama R Shankar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satish Bola Sadashiva Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
28
|
Song C, Gao X, Song W, Zeng D, Shan S, Yin Y, Li Y, Baranenko D, Lu W. Simulated spatial radiation impacts learning and memory ability with alterations of neuromorphology and gut microbiota in mice. RSC Adv 2020; 10:16196-16208. [PMID: 35493686 PMCID: PMC9052872 DOI: 10.1039/d0ra01017k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
Complex space environments, including microgravity and radiation, affect the body's central nervous system, endocrine system, circulatory system, and reproductive system. Radiation-induced aberration in the neuronal integrity and cognitive functions are particularly well known. Moreover, ionizing radiation is a likely contributor to alterations in the microbiome. However, there is a lacuna between radiation-induced memory impairment and gut microbiota. The present study was aimed at investigating the effects of simulated space-type radiation on learning and memory ability and gut microbiota in mice. Adult mice were irradiated by 60Co-γ rays at 4 Gy to simulate spatial radiation; behavioral experiments, pathological experiments, and transmission electron microscopy all showed that radiation impaired learning and memory ability and hippocampal neurons in mice, which was similar to the cognitive impairment in neurodegenerative diseases. In addition, we observed that radiation destroyed the colonic structure of mice, decreased the expression of tight junction proteins, and increased inflammation levels, which might lead to dysregulation of the intestinal microbiota. We found a correlation between the brain and colon in the changes in neurotransmitters associated with learning and memory. The 16S rRNA results showed that the bacteria associated with these neurotransmitters were also changed at the genus level and were significantly correlated. These results indicate that radiation-induced memory and cognitive impairment can be linked to gut microbiota through neurotransmitters.
Collapse
Affiliation(s)
- Chen Song
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology Harbin China
- National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation Harbin China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology Harbin China
- National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation Harbin China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin China
| | - Wei Song
- College of Food Science and Technology, Northwest University Xi'an 710069 China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering Xi'an 710069 Shanxi China
| | - Deyong Zeng
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology Harbin China
- National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation Harbin China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology Harbin China
- National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation Harbin China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin China
| | - Yishu Yin
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology Harbin China
- National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation Harbin China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin China
| | - Yongzhi Li
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology Harbin China
- China Astronaut Research and Training Centre Beijing China
| | - Denis Baranenko
- Biotechnologies of the Third Millennium, ITMO University Saint-Petersburg Russia
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology Harbin China
- National Local Joint Laboratory of Extreme Environmental Nutritional Molecule Synthesis Transformation and Separation Harbin China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin China
| |
Collapse
|
29
|
Miousse IR, Ewing LE, Skinner CM, Pathak R, Garg S, Kutanzi KR, Melnyk S, Hauer-Jensen M, Koturbash I. Methionine dietary supplementation potentiates ionizing radiation-induced gastrointestinal syndrome. Am J Physiol Gastrointest Liver Physiol 2020; 318:G439-G450. [PMID: 31961718 PMCID: PMC7099489 DOI: 10.1152/ajpgi.00351.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Laura E. Ewing
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles M. Skinner
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Center for Dietary Supplements Research, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rupak Pathak
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kristy R. Kutanzi
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stepan Melnyk
- 6Arkansas Children’s Research Institute, Little Rock, Arknsas
| | - Martin Hauer-Jensen
- 5Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- 1Department of Environmental and Occupation Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Center for Dietary Supplements Research, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
30
|
Zhao Z, Cheng W, Qu W, Shao G, Liu S. Antibiotic Alleviates Radiation-Induced Intestinal Injury by Remodeling Microbiota, Reducing Inflammation, and Inhibiting Fibrosis. ACS OMEGA 2020; 5:2967-2977. [PMID: 32095719 PMCID: PMC7033964 DOI: 10.1021/acsomega.9b03906] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 05/05/2023]
Abstract
Radiation-induced intestinal injury is a common complication of abdominal radiation therapy. However, the pathological features of radiation-induced intestinal injury and its therapeutic regimen are not very clear. The aim of this study was to investigate the effects of antibiotic pretreatment on radiation-induced intestinal injury. Abdominal radiation disrupted the intestinal microbiota balance and significantly reduced bacterial diversity in mice. Antibiotic cocktail (Abx) pretreatment effectively removed the intestinal microbiota of mice, and metronidazole also reduced the diversity of intestinal bacteria to some extent. Two antibiotic pretreatment regimens improved the reconstitution ability of the gut microbiota in mice after radiation. Further experiments showed that Abx pretreatment effectively reduced the content of lipopolysaccharide (LPS) and inhibited the TLR4/MyD88/NF-κB signaling pathway in the ileum. In addition, Abx pretreatment regulated macrophage cell polarization in the ileum, downregulated TGF-β1, phosphorylated Smad-3 and α-SMA protein levels, and upregulated E-cadherin protein expression. Eventually, Abx pretreatment significantly improved the survival rate and attenuated intestinal injury of mice after radiation by reducing inflammation and preventing intestinal fibrosis. These results revealed that antibiotic pretreatment can effectively alleviate gut microbiota turbulence and intestinal damage caused by abdominal radiation in mice. Collectively, these findings add to our understanding of the pathogenesis of radiation enteritis.
Collapse
Affiliation(s)
- Zhenguo Zhao
- Department
of General Surgery, The Affiliated Jiangyin
Hospital of Southeast University Medical College, Wuxi, Jiangsu 214400, China
| | - Wei Cheng
- Department
of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese
Medicine, Nanjing 210029, China
| | - Wei Qu
- Department
of Pharmacy, The Affiliated Jiangyin Hospital
of Southeast University Medical College, Wuxi, Jiangsu 214400, China
| | - Guoyi Shao
- Department
of General Surgery, The Affiliated Jiangyin
Hospital of Southeast University Medical College, Wuxi, Jiangsu 214400, China
- E-mail: (G.S.)
| | - Shuanghai Liu
- Department
of General Surgery, The Affiliated Jiangyin
Hospital of Southeast University Medical College, Wuxi, Jiangsu 214400, China
- E-mail: (S.L.)
| |
Collapse
|
31
|
Ito I, Loucas BD, Suzuki S, Kobayashi M, Suzuki F. Glycyrrhizin Protects γ-Irradiated Mice from Gut Bacteria-Associated Infectious Complications by Improving miR-222-Associated Gas5 RNA Reduction in Macrophages of the Bacterial Translocation Site. THE JOURNAL OF IMMUNOLOGY 2020; 204:1255-1262. [PMID: 31941655 DOI: 10.4049/jimmunol.1900949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
Gut bacteria-associated sepsis is a serious concern in patients with gastrointestinal acute radiation syndrome (GIARS). In our previous studies, gut bacteria-associated sepsis caused high mortality rates in mice exposed to 6-9 Gy of γ-rays. IL-12+CD38+ iNOS+ Mϕ (M1Mϕ) located in the bacterial translocation site (mesenteric lymph nodes [MLNs]) of unirradiated mice were characterized as host defense antibacterial effector cells. However, cells isolated from the MLNs of GIARS mice were mostly CCL1+IL-10+LIGHT+miR-27a+ Mϕ (M2bMϕ, inhibitor cells for the M1Mϕ polarization). Reduced long noncoding RNA Gas5 and increased miR-222 expression in MLN-Mϕ influenced by the irradiation were shown to be associated with M2bMϕ polarization. In this study, the mortality of mice exposed to 7 Gy of γ-rays (7 Gy GIARS mice) was completely controlled after the administration of glycyrrhizin (GL), a major active ingredient in licorice root (Glycyrrhiza glabra). Bacterial translocation and subsequent sepsis were minimal in 7 Gy GIARS mice treated with GL. Increased Gas5 RNA level and decreased miR-222 expression were shown in MLN-Mϕ isolated from 7 Gy GIARS mice treated with GL, and these macrophages did not display any properties of M2bMϕ. These results indicate that gut bacteria-associated sepsis in 7 Gy GIARS mice was controlled by the GL through the inhibition of M2bMϕ polarization at the bacteria translocation site. Expression of Ccl1, a gene required for M2bMϕ survival, is silenced in the MLNs of 7 Gy GIARS mice because of Gas5 RNA, which is increased in these cells after the suppression of miR-222 (a Gas5 RNA expression inhibitor) by the GL.
Collapse
Affiliation(s)
- Ichiaki Ito
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555
| | - Bradford D Loucas
- Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, TX 77555; and
| | - Sumihiro Suzuki
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Makiko Kobayashi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555
| | - Fujio Suzuki
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555;
| |
Collapse
|
32
|
Jones CB, Davis CM, Sfanos KS. The Potential Effects of Radiation on the Gut-Brain Axis. Radiat Res 2020; 193:209-222. [DOI: 10.1667/rr15493.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences
| | | |
Collapse
|
33
|
Sakamoto Y, Tsujiguchi T, Ito K, Yamanouchi K. DETERMINATION OF GUT BACTERIAL METABOLITES IN RADIATION EXPOSED MICE. RADIATION PROTECTION DOSIMETRY 2019; 184:493-495. [PMID: 31323674 DOI: 10.1093/rpd/ncz094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
Gut microflora (GM) impacts human health in various ways, both beneficial and detrimental. Recently, it has attracted attention for its application in treatment, as protective agents, and as biomarkers in radiation exposure. In this study, we focused on organic acids that have not yet been reported to be related to radiation exposure; we measured the pH and organic acid content in the faeces of 0, 2, 4 and 8 Gy-irradiated mice. A common trend of fluctuation of some organic acids was observed in each group, suggesting a correlation between radiation exposure and organic acid fluctuation. Lactate fluctuation was similar between 0 and 2 Gy-, and 4 and 8 Gy-irradiated mice. Based on this finding, we suggest that lactate may also be an organic acid that is greatly affected by irradiation.
Collapse
Affiliation(s)
- Yamato Sakamoto
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | | | - Koichi Ito
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Kanako Yamanouchi
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
34
|
Zhang A, Steen TY. Gut Microbiomics-A Solution to Unloose the Gordian Knot of Biological Effects of Ionizing Radiation. J Hered 2019; 109:212-221. [PMID: 29452420 DOI: 10.1093/jhered/esx059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022] Open
Abstract
The Chernobyl and Fukushima nuclear accidents have called forth a growing body of research on their biological aftermaths. A variety of wild organisms, including primates, birds, fish, insects, and worms are being studied in the affected areas, with emerging morphological, physiological, and genetic aberrations ascribed to ionizing radiation. Despite the effort in surveying Chernobyl and Fukushima wildlife, little is known about the microorganisms associated with these radiation-contaminated animals. The microbiota, especially the gut commensal, plays an important role in shaping the metabolic reservoir and immune system of the host, and is sensitive to a wide array of environmental factors, including ionizing radiation. Humans and limited numbers of laboratory species have been the main subjects of microbiome studies, however, a more practical insight on host-gut microbiota dynamics under environmental impact should be explored in natural habitats. In this analysis, we introduced a working model explaining possible mechanisms of ionizing radiation on the gut microbiota, with an evaluation of the gut microbiota as a potential biomarker for exposure to ionizing radiation.
Collapse
Affiliation(s)
- Amy Zhang
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY
| | - Tomoko Y Steen
- Department of Microbiology and Immunology, School of Medicine, Georgetown University, Washington, DC
| |
Collapse
|
35
|
Taraboletti A, Goudarzi M, Kabir A, Moon BH, Laiakis EC, Lacombe J, Ake P, Shoishiro S, Brenner D, Fornace AJ, Zenhausern F. Fabric Phase Sorptive Extraction-A Metabolomic Preprocessing Approach for Ionizing Radiation Exposure Assessment. J Proteome Res 2019; 18:3020-3031. [PMID: 31090424 PMCID: PMC7437658 DOI: 10.1021/acs.jproteome.9b00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The modern application of mass spectrometry-based metabolomics to the field of radiation assessment and biodosimetry has allowed for the development of prompt biomarker screenings for radiation exposure. Our previous work on radiation assessment, in easily accessible biofluids (such as urine, blood, saliva), has revealed unique metabolic perturbations in response to radiation quality, dose, and dose rate. Nevertheless, the employment of swift injury assessment in the case of a radiological disaster still remains a challenge as current sample processing can be time consuming and cause sample degradation. To address these concerns, we report a metabolomics workflow using a mass spectrometry-compatible fabric phase sorptive extraction (FPSE) technique. FPSE employs a matrix coated with sol-gel poly(caprolactone-b-dimethylsiloxane-b-caprolactone) that binds both polar and nonpolar metabolites in whole blood, eliminating serum processing steps. We confirm that the FPSE preparation technique combined with liquid chromatography-mass spectrometry can distinguish radiation exposure markers such as taurine, carnitine, arachidonic acid, α-linolenic acid, and oleic acid found 24 h after 8 Gy irradiation. We also note the effect of different membrane fibers on both metabolite extraction efficiency and the temporal stabilization of metabolites in whole blood at room temperature. These findings suggest that the FPSE approach could work in future technology to triage irradiated individuals accurately, via biomarker screening, by providing a novel method to stabilize biofluids between collection and sample analysis.
Collapse
Affiliation(s)
- Alexandra Taraboletti
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Bo-Hyun Moon
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Jerome Lacombe
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Pelagie Ake
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Sueoka Shoishiro
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - David Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Albert J. Fornace
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Frederic Zenhausern
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
- Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, Arizona 85004, United States
- Department of Basic Medical Sciences, College of Medicine Phoenix, 425 North Fifth Street, Phoenix, Arizona 85004, United States
| |
Collapse
|
36
|
Liu X, Zhou Y, Wang S, Guan H, Hu S, Huang R, Zhou P. Impact of Low-dose Ionising Radiation on the Composition of the Gut Microbiota of Mice. Toxicol Sci 2019; 171:258-268. [PMID: 31236581 DOI: 10.1093/toxsci/kfz144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although the importance of the gut microbiota in the maintenance of human health has been well established, little is known about the impact of low-dose ionising radiation (exposure to a dose of less than 0.5 Gy of low linear energy transfer radiation such as γ- or X-rays [LDR]) on the composition and functional role of the gut microbiota. The aim of the present study was to investigate and compare the composition of the gut microbiota in mice exposed to LDR. METHODS AND MATERIALS Male BALB/c mice were exposed to low-dose Co60 radiation. Faecal samples taken prior to and after irradiation were used for high-throughput sequencing of 16S rRNA gene sequence amplicons. RESULTS We observed substantial changes in the composition of the gut microbiota, including alpha diversity and beta diversity, in mice exposed to LDR compared to the non-radiated control group. Moreover, at the genus level, the abundance of Clostridium, Helicobacter and Oscilibacter increased, and those of Bacteroides and Barnesiella decreased, in a time-dependent manner in the radiated groups compared to the non-radiated control group. The functional metabolic pathway analysis indicated that Bacteroides spp. and members of the other genera that were found are predicted to play roles in bacterial toxin production, DNA repair, and Type II diabetes. Furthermore, these alterations in the gut microbiota were accompanied by changes in the abundance of multiple metabolites, which were predicted to be involved in multiple signalling pathways, including glucagon, central carbon metabolism, and type II diabetes. CONCLUSIONS The possibility of microbiota-mediated pathophysiology resulting from LDR may be an as yet unrecognised hazard that merits further experimental examination. This study provides a conceptual and analytical foundation for further research into the chronic effects of LDR on human health, and points to potential novel targets for intervention to prevent the adverse effects of radiation.
Collapse
Affiliation(s)
- Xiaodan Liu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Changsha, Hunan Province, P. R. China
| | - Shaozheng Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Sai Hu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Changsha, Hunan Province, P. R. China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Micewicz ED, Iwamoto KS, Ratikan JA, Nguyen C, Xie MW, Cheng G, Boxx GM, Deriu E, Damoiseaux RD, Whitelegge JP, Ruchala PP, Avetisyan R, Jung ME, Lawson G, Nemeth E, Ganz T, Sayre JW, McBride WH, Schaue D. The Aftermath of Surviving Acute Radiation Hematopoietic Syndrome and its Mitigation. Radiat Res 2019; 191:323-334. [PMID: 30730284 DOI: 10.1667/rr15231.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensive research is underway to find new agents that can successfully mitigate the acute effects of radiation exposure. This is primarily in response to potential counterthreats of radiological terrorism and nuclear accidents but there is some hope that they might also be of value for cancer patients treated with radiation therapy. Research into mitigation countermeasures typically employs classic animal models of acute radiation syndromes (ARS) that develop after whole-body irradiation (WBI). While agents are available that successfully mitigate ARS when given after radiation exposure, their success raises questions as to whether they simply delay lethality or unmask potentially lethal radiation pathologies that may appear later in time. Life shortening is a well-known consequence of WBI in humans and experimental animals, but it is not often examined in a mitigation setting and its causes, other than cancer, are not well-defined. This is in large part because delayed effects of acute radiation exposure (DEARE) do not follow the strict time-dose phenomena associated with ARS and present as a diverse range of symptoms and pathologies with low mortality rates that can be evaluated only with the use of large cohorts of subjects, as in this study. Here, we describe chronically increased mortality rates up to 660 days in large numbers of mice given LD70/30 doses of WBI. Systemic myeloid cell activation after WBI persists in some mice and is associated with late immunophenotypic changes and hematopoietic imbalance. Histopathological changes are largely of a chronic inflammatory nature and variable incidence, as are the clinical symptoms, including late diarrhea that correlates temporally with changes in the content of the microbiome. We also describe the acute and long-term consequences of mitigating hematopoietic ARS (H-ARS) lethality after LD70/30 doses of WBI in multiple cohorts of mice treated uniformly with radiation mitigators that have a common 4-nitro-phenylsulfonamide (NPS) pharmacophore. Effective NPS mitigators dramatically decrease ARS mortality. There is slightly increased subacute mortality, but the rate of late mortalities is slowed, allowing some mice to live a normal life span, which is not the case for WBI controls. The study has broad relevance to radiation late effects and their potential mitigation and epitomizes the complex interaction between radiation-damaged tissues and immune homeostasis.
Collapse
Affiliation(s)
- Ewa D Micewicz
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Keisuke S Iwamoto
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Josephine A Ratikan
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Christine Nguyen
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Michael W Xie
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Genhong Cheng
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Gayle M Boxx
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Elisa Deriu
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Robert D Damoiseaux
- g Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California
| | - Julian P Whitelegge
- h Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California
| | - Piotr P Ruchala
- h Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California
| | - Rozeta Avetisyan
- c Department of Anesthesiology, University of California at Los Angeles, Los Angeles, California
| | - Michael E Jung
- d Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Greg Lawson
- e Department of Laboratory Animal Medicine, University of California at Los Angeles, Los Angeles, California
| | - Elizabeta Nemeth
- f Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Tomas Ganz
- f Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - James W Sayre
- i School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California
| | - William H McBride
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Dörthe Schaue
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
38
|
Seidlmayer LK, Gomez-Garcia MR, Shiba T, Porter GA, Pavlov EV, Bers DM, Dedkova EN. Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Arch Biochem Biophys 2018; 662:177-189. [PMID: 30571965 DOI: 10.1016/j.abb.2018.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that inorganic polyphosphate (polyP) is a potent activator of the mitochondrial permeability transition pore (mPTP) in cardiac myocytes. PolyP depletion protected against Ca2+-induced mPTP opening, however it did not prevent and even exacerbated cell death during ischemia-reperfusion (I/R). The central goal of this study was to investigate potential molecular mechanisms underlying these dichotomous effects of polyP on mitochondrial function. We utilized a Langendorff-perfused heart model of I/R to monitor changes in polyP size and chain length at baseline, 20 min no-flow ischemia, and 15 min reperfusion. Freshly isolated cardiac myocytes and mitochondria from C57BL/6J (WT) and cyclophilin D knock-out (CypD KO) mice were used to measure polyP uptake, mPTP activity, mitochondrial membrane potential, respiration and ATP generation. We found that I/R induced a significant decrease in polyP chain length. We, therefore, tested, the ability of synthetic polyPs with different chain length to accumulate in mitochondria and induce mPTP. Both short and long chain polyPs accumulated in mitochondria in oligomycin-sensitive manner implicating potential involvement of mitochondrial ATP synthase in polyP transport. Notably, only short-chain polyP activated mPTP in WT myocytes, and this effect was prevented by mPTP inhibitor cyclosprorin A and absent in CypD KO myocytes. To the contrary, long-chain polyP suppressed mPTP activation, and enhanced ADP-linked respiration and ATP production. Our data indicate that 1) effect of polyP on cardiac function strongly depends on polymer chain length; and 2) short-chain polyPs (as increased in ischemia-reperfusion) induce mPTP and mitochondrial uncoupling, while long-chain polyPs contribute to energy generation and cell metabolism.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Internal Medicine, Cardiology, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | | | | | - George A Porter
- Department of Pediatrics, Pharmacology and Physiology, and Medicine (Aab Cardiovascular Research Institute), University of Rochester School of Medicine, Rochester, NY, USA
| | - Evgeny V Pavlov
- Department of Basic Science and Craniofacial Biology, School of Dentistry, New York University, New York, NY, USA
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Elena N Dedkova
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
39
|
Swimm A, Giver CR, DeFilipp Z, Rangaraju S, Sharma A, Ulezko Antonova A, Sonowal R, Capaldo C, Powell D, Qayed M, Kalman D, Waller EK. Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease. Blood 2018; 132:2506-2519. [PMID: 30257880 PMCID: PMC6284212 DOI: 10.1182/blood-2018-03-838193] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/19/2018] [Indexed: 01/05/2023] Open
Abstract
The intestinal microbiota in allogeneic bone marrow transplant (allo-BMT) recipients modulates graft-versus-host disease (GVHD), a systemic inflammatory state initiated by donor T cells that leads to colitis, a key determinant of GVHD severity. Indole or indole derivatives produced by tryptophan metabolism in the intestinal microbiota limit intestinal inflammation caused by diverse stressors, so we tested their capacity to protect against GVHD in murine major histocompatibility complex-mismatched models of allo-BMT. Indole effects were assessed by colonization of allo-BMT recipient mice with tryptophanase positive or negative strains of Escherichia coli, or, alternatively, by exogenous administration of indole-3-carboxaldehyde (ICA), an indole derivative. Treatment with ICA limited gut epithelial damage, reduced transepithelial bacterial translocation, and decreased inflammatory cytokine production, reducing GVHD pathology and GVHD mortality, but did not compromise donor T-cell-mediated graft-versus-leukemia responses. ICA treatment also led to recipient-strain-specific tolerance of engrafted T cells. Transcriptional profiling and gene ontology analysis indicated that ICA administration upregulated genes associated with the type I interferon (IFN1) response, which has been shown to protect against radiation-induced intestinal damage and reduce subsequent GVHD pathology. Accordingly, protective effects of ICA following radiation exposure were abrogated in mice lacking IFN1 signaling. Taken together, these data indicate that indole metabolites produced by the intestinal microbiota act via type I IFNs to limit intestinal inflammation and damage associated with myeloablative chemotherapy or radiation exposure and acute GVHD, but preserve antitumor responses, and may provide a therapeutic option for BMT patients at risk for GVHD.
Collapse
Affiliation(s)
- Alyson Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Cynthia R Giver
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Zachariah DeFilipp
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA
| | - Sravanti Rangaraju
- Department of Hematology and Oncology, Indiana University, Indianapolis, IN
| | - Akshay Sharma
- Pediatric Hematology and Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Alina Ulezko Antonova
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Robert Sonowal
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Christopher Capaldo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Domonica Powell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, GA; and
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| |
Collapse
|
40
|
Carbonero F, Mayta A, Bolea M, Yu JZ, Lindeblad M, Lyubimov A, Neri F, Szilagyi E, Smith B, Halliday L, Bartholomew A. Specific Members of the Gut Microbiota are Reliable Biomarkers of Irradiation Intensity and Lethality in Large Animal Models of Human Health. Radiat Res 2018; 191:107-121. [PMID: 30430918 DOI: 10.1667/rr14975.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of effective biomarkers for detecting the magnitude of radiation exposure and resiliency of host response is crucial to identifying appropriate treatment strategies after radiation exposure. We hypothesized that the gastrointestinal resident bacteria would demonstrate predictable, dose-dependent changes after radiation exposure across two large animal models of acute radiation syndrome. Here, Göttingen minipigs (GMP) (n = 50) and rhesus macaques (n = 48) were exposed to five dose levels (resulting in mortality rates of 33-100% and 25-68.7%, respectively). Fecal samples taken prior to and after irradiation (day 0 for GMP; day 0, 3 and 14 for macaques) were used for 16S rRNA gene sequence amplicon high-throughput sequencing. Baseline gut microbiota profiles were dissimilar between GMP and macaques, however, radiation appeared to have similar effect at the phylum level, resulting in Bacteroidetes decrease and Firmicutes increase in both models. The abundance of the main Bacteroidetes genus ( Bacteroides for GMP, Prevotella for macaques) was profoundly decreased by irradiation. Intracellular symbionts [Elusimicrobia in GMP, Treponema (Spirochaetes) in macaques] consistently increased after irradiation, suggesting their use as potential biomarkers of intestinal injury, and potential negative effect on health. Prevotella, Lactobacillus, Clostridium XIVa, Oscillibacter and Elusimicrobium/ Treponema abundances were found to be very significantly correlated with radiation intensity. Furthermore, Prevotella, Enterorhabdus and Ruminococcus and Enterorhabdus maintenance was strongly associated with survival in GMP, while Prevotella, Oscillibacter and Treponema were strongly associated with survival and Streptococcus with death in macaques. Overall, we found that a wide range of gut bacterial genera known to be abundant in the human gut microbiota are excellent biomarkers of radiation intensity and resilience in animal models, and that detrimental effects can be monitored, and potentially prevented, by targeting selected genera.
Collapse
Affiliation(s)
- Franck Carbonero
- a Department of Food Science, University of Arkansas, Fayetteville, Arkansas 72704
| | - Alba Mayta
- a Department of Food Science, University of Arkansas, Fayetteville, Arkansas 72704
| | - Mathilde Bolea
- a Department of Food Science, University of Arkansas, Fayetteville, Arkansas 72704
| | - Jiang-Zhou Yu
- b Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Matt Lindeblad
- c Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Alex Lyubimov
- c Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Flavia Neri
- b Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Erzsebet Szilagyi
- b Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Brett Smith
- d Department of Radiation Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Lisa Halliday
- e Department of Primatology, Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Amelia Bartholomew
- b Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Kumagai T, Rahman F, Smith AM. The Microbiome and Radiation Induced-Bowel Injury: Evidence for Potential Mechanistic Role in Disease Pathogenesis. Nutrients 2018; 10:E1405. [PMID: 30279338 PMCID: PMC6213333 DOI: 10.3390/nu10101405] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy has played a major role in both the curative and palliative treatment of cancer patients for decades. However, its toxic effect to the surrounding normal healthy tissue remains a major drawback. In cases of intra-abdominal and/or pelvic malignancy, healthy bowel is inevitably included in the radiation field, causing undesirable consequences that subsequently manifest as radiation-induced bowel injury, which is associated with significant morbidity and mortality. The pathophysiology of radiation-induced bowel injury is poorly understood, although we now know that it derives from a complex interplay of epithelial injury and alterations in the enteric immune, nervous, and vascular systems in genetically predisposed individuals. Furthermore, evidence supporting a pivotal role for the gut microbiota in the development of radiation-induced bowel injury has been growing. In this review, we aim to appraise our current understanding of radiation-induced bowel injury and the role of the microbiome in its pathogenesis as well as prevention and treatment. Greater understanding of the relationship between the disease mechanism of radiation-induced bowel injury and gut microbiome might shed light on potential future prevention and treatment strategies through the modification of a patient's gut microbiome.
Collapse
Affiliation(s)
- Tomoko Kumagai
- UCL Eastman Dental Institute, University College London (UCL), Rayne Institute, 5 University Street, London WC1E 6JF, UK.
| | - Farooq Rahman
- Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK.
| | - Andrew M Smith
- UCL Eastman Dental Institute, University College London (UCL), Rayne Institute, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
42
|
Casero D, Gill K, Sridharan V, Koturbash I, Nelson G, Hauer-Jensen M, Boerma M, Braun J, Cheema AK. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. MICROBIOME 2017; 5:105. [PMID: 28821301 PMCID: PMC5563039 DOI: 10.1186/s40168-017-0325-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/08/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. RESULTS Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. CONCLUSIONS The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects.
Collapse
Affiliation(s)
- David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kirandeep Gill
- Department of Oncology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gregory Nelson
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington DC, 20057, USA.
- Department of Biochemistry and Molecular and & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
- GCD-7N Pre-Clinical Science Building, 3900 Reservoir Road NW, Washington DC, 20057, USA.
| |
Collapse
|
43
|
Abstract
Surgery involving the gastrointestinal tract continues to prove challenging because of the persistence of unpredictable complications such as anastomotic leakage and life-threatening infections. Removal of diseased intestinal segments results in substantial catabolic stress and might require complex reconstructive surgery to maintain the functional continuity of the intestinal tract. As gastrointestinal surgery necessarily involves a breach of an epithelial barrier colonized by microorganisms, preoperative intestinal antisepsis is used to reduce infection-related complications. The current approach to intestinal antisepsis varies widely across institutions and countries with little understanding of its mechanism of action, effect on the gut microbiota and overall efficacy. Many of the current approaches to intestinal antisepsis before gastrointestinal surgery run counter to emerging concepts of intestinal microbiota contributing to immune function and recovery from injury. Here, we review evidence outlining the role of gut microbiota in recovery from gastrointestinal surgery, particularly in the development of infections and anastomotic leak. To make surgery safer and further reduce complications, a molecular, genetic and functional understanding of the response of the gastrointestinal tract to alterations in its microbiota is needed. Methods can then be developed to preserve the health-promoting functions of the microbiota while at the same time suppressing their harmful effects.
Collapse
Affiliation(s)
- Kristina Guyton
- MC-6040, Department of Surgery, University of Chicago Medicine, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA
| | - John C Alverdy
- MC-6090, Department of Surgery, University of Chicago Medicine, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA
| |
Collapse
|
44
|
Inorganic polyphosphate in cardiac myocytes: from bioenergetics to the permeability transition pore and cell survival. Biochem Soc Trans 2016; 44:25-34. [PMID: 26862184 DOI: 10.1042/bst20150218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of Pi residues linked together by high-energy phosphoanhydride bonds as in ATP. PolyP is present in all living organisms ranging from bacteria to human and possibly even predating life of this planet. The length of polyP chain can vary from just a few phosphates to several thousand phosphate units long, depending on the organism and the tissue in which it is synthesized. PolyP was extensively studied in prokaryotes and unicellular eukaryotes by Kulaev's group in the Russian Academy of Sciences and by the Nobel Prize Laureate Arthur Kornberg at Stanford University. Recently, we reported that mitochondria of cardiac ventricular myocytes contain significant amounts (280±60 pmol/mg of protein) of polyP with an average length of 25 Pi and that polyP is involved in Ca(2+)-dependent activation of the mitochondrial permeability transition pore (mPTP). Enzymatic polyP depletion prevented Ca(2+)-induced mPTP opening during ischaemia; however, it did not affect reactive oxygen species (ROS)-mediated mPTP opening during reperfusion and even enhanced cell death in cardiac myocytes. We found that ROS generation was actually enhanced in polyP-depleted cells demonstrating that polyP protects cardiac myocytes against enhanced ROS formation. Furthermore, polyP concentration was dynamically changed during activation of the mitochondrial respiratory chain and stress conditions such as ischaemia/reperfusion (I/R) and heart failure (HF) indicating that polyP is required for the normal heart metabolism. This review discusses the current literature on the roles of polyP in cardiovascular health and disease.
Collapse
|
45
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
46
|
Goudarzi M, Mak TD, Jacobs JP, Moon BH, Strawn SJ, Braun J, Brenner DJ, Fornace AJ, Li HH. An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis. Radiat Res 2016; 186:219-34. [PMID: 27512828 PMCID: PMC5304359 DOI: 10.1667/rr14306.1] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Medical responders to radiological and nuclear disasters currently lack sufficient high-throughput and minimally invasive biodosimetry tools to assess exposure and injury in the affected populations. For this reason, we have focused on developing robust radiation exposure biomarkers in easily accessible biofluids such as urine, serum and feces. While we have previously reported on urine and serum biomarkers, here we assessed perturbations in the fecal metabolome resulting from exposure to external X radiation in vivo. The gastrointestinal (GI) system is of particular importance in radiation biodosimetry due to its constant cell renewal and sensitivity to radiation-induced injury. While the clinical GI symptoms such as pain, bloating, nausea, vomiting and diarrhea are manifested after radiation exposure, no reliable bioindicator has been identified for radiation-induced gastrointestinal injuries. To this end, we focused on determining a fecal metabolomic signature in X-ray irradiated mice. There is overwhelming evidence that the gut microbiota play an essential role in gut homeostasis and overall health. Because the fecal metabolome is tightly correlated with the composition and diversity of the microorganism in the gut, we also performed fecal 16S rRNA sequencing analysis to determine the changes in the microbial composition postirradiation. We used in-house bioinformatics tools to integrate the 16S rRNA sequencing and metabolomic data, and to elucidate the gut integrated ecosystem and its deviations from a stable host-microbiome state that result from irradiation. The 16S rRNA sequencing results indicated that radiation caused remarkable alterations of the microbiome in feces at the family level. Increased abundance of common members of Lactobacillaceae and Staphylococcaceae families, and decreased abundances of Lachnospiraceae, Ruminococcaceae and Clostridiaceae families were found after 5 and 12 Gy irradiation. The metabolomic data revealed statistically significant changes in the microbial-derived products such as pipecolic acid, glutaconic acid, urobilinogen and homogentisic acid. In addition, significant changes were detected in bile acids such as taurocholic acid and 12-ketodeoxycholic acid. These changes may be associated with the observed shifts in the abundance of intestinal microbes, such as R. gnavus , which can transform bile acids.
Collapse
Affiliation(s)
- Maryam Goudarzi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Tytus D. Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Jonathan P. Jacobs
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Bo-Hyun Moon
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Steven J. Strawn
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New York, New York
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Heng-Hong Li
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| |
Collapse
|
47
|
Rentea RM, Lam V, Biesterveld B, Fredrich KM, Callison J, Fish BL, Baker JE, Komorowski R, Gourlay DM, Otterson MF. Radiation-induced changes in intestinal and tissue-nonspecific alkaline phosphatase: implications for recovery after radiation therapy. Am J Surg 2016; 212:602-608. [PMID: 27501776 DOI: 10.1016/j.amjsurg.2016.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/03/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Exogenous replacement of depleted enterocyte intestinal alkaline phosphatase (IAP) decreases intestinal injury in models of colitis. We determined whether radiation-induced intestinal injury could be mitigated by oral IAP supplementation and the impact on tissue-nonspecific AP. METHODS WAG/RjjCmcr rats (n = 5 per group) received lower hemibody irradiation (13 Gy) followed by daily gavage with phosphate-buffered saline or IAP (40 U/kg/d) for 4 days. Real-time polymerase chain reaction, AP activity, and microbiota analysis were performed on intestine. Lipopolysaccharide and cytokine analysis was performed on serum. Data were expressed as a mean ± SEM with P greater than .05 considered significant. RESULTS Intestine of irradiated animals demonstrates lower hemibody irradiation and is associated with upregulation of tissue-nonspecific AP, downregulation of IAP, decreased AP activity, and altered composition of the intestinal microbiome. CONCLUSIONS Supplemental IAP after radiation may be beneficial in mitigating intestinal radiation syndrome as evidenced by improved histologic injury, decreased acute intestinal inflammation, and normalization of intestinal microbiome.
Collapse
Affiliation(s)
- Rebecca M Rentea
- Department of Surgery, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | - Vy Lam
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ben Biesterveld
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Jennifer Callison
- Department of Surgery, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Brian L Fish
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John E Baker
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard Komorowski
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David M Gourlay
- Division of Pediatric Surgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Children's Research Institute, Milwaukee, WI, USA
| | - Mary F Otterson
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
48
|
Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn 2015; 16:65-81. [PMID: 26568096 PMCID: PMC4732464 DOI: 10.1586/14737159.2016.1121102] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia Lp Romaine
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Martin Hauer-Jensen
- c Departments of Pharmaceutical Sciences, Surgery, and Pathology , University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems , Little Rock , AR , USA
| | - Harvey B Pollard
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
49
|
Ritchie LE, Taddeo SS, Weeks BR, Lima F, Bloomfield SA, Azcarate-Peril MA, Zwart SR, Smith SM, Turner ND. Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. PLoS One 2015; 10:e0125792. [PMID: 26083373 PMCID: PMC4470690 DOI: 10.1371/journal.pone.0125792] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
Astronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted to achieve these goals: 1) fractionated low LET γ radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET γ radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.050 Gy), 1/6 G partial weight bearing (PWB), and a combination of high LET38Si particle exposure and PWB in female BalbC/ByJ mice; and 3) 13 d spaceflight in female C57BL/6 mice. Low LET radiation, IRON and spaceflight increased Bacteroidetes and decreased Firmicutes. RAD and IRON+RAD increased Lactobacillales and lowered Clostridiales compared to the control (CON) and IRON treatments. Low LET radiation, IRON, and spaceflight did not significantly affect diversity or richness, or elevate pathogenic genera. Spaceflight increased Clostridiales and decreased Lactobacillales, and similar trends were observed in the experiment using a ground-based model of microgravity, suggesting altered gravity may affect colonic microbiota. Although we noted no differences in colon epithelial injury or inflammation, spaceflight elevated TGFβ gene expression. Microbiota and mucosal characterization in these models is a first step in understanding the impact of the space environment on intestinal health.
Collapse
Affiliation(s)
- Lauren E. Ritchie
- Intercollegiate Faculty of Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Stella S. Taddeo
- Nutrition & Food Science Department, Texas A&M University, College Station, Texas, United States of America
| | - Brad R. Weeks
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Florence Lima
- Division of Nephrology, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Susan A. Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
| | - M. Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Sara R. Zwart
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, Texas, United States of America
| | - Scott M. Smith
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, Texas, United States of America
| | - Nancy D. Turner
- Intercollegiate Faculty of Genetics, Texas A&M University, College Station, Texas, United States of America
- Nutrition & Food Science Department, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
50
|
Lenarczyk M, Su J, Haworth ST, Komorowski R, Fish BL, Migrino RQ, Harmann L, Hopewell JW, Kronenberg A, Patel S, Moulder JE, Baker JE. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharmacol Res Perspect 2015; 3:e00145. [PMID: 26171225 PMCID: PMC4492761 DOI: 10.1002/prp2.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 01/20/2023] Open
Abstract
The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.
Collapse
Affiliation(s)
- Marek Lenarczyk
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Jidong Su
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Steven T Haworth
- Department of Medicine, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Richard Komorowski
- Department of Pathology, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin Milwaukee, Wisconsin
| | | | - Leanne Harmann
- Division of Cardiovascular Medicine, Medical College of Wisconsin Milwaukee, Wisconsin
| | - John W Hopewell
- Green Templeton College and Particle Therapy Cancer Research Institute, University of Oxford Oxford, United Kingdom
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory Berkeley, California
| | - Shailendra Patel
- Division of Endocrinology, Medical College of Wisconsin Milwaukee, Wisconsin ; Clement J. Zablocki Veterans Affairs Medical Center Milwaukee, Wisconsin
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin Milwaukee, Wisconsin
| | - John E Baker
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin ; Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, Wisconsin ; Children's Research Institute, Children's Hospital of Wisconsin Milwaukee, Wisconsin
| |
Collapse
|