1
|
Shubayr N, Alashban Y. Estimation of radiation doses and lifetime attributable risk of radiation-induced cancer in the uterus and prostate from abdomen pelvis CT examinations. Front Public Health 2023; 10:1094328. [PMID: 36699908 PMCID: PMC9868812 DOI: 10.3389/fpubh.2022.1094328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Computed tomography (CT) scans are one of the most common radiation imaging modalities, and CT scans are rising steadily worldwide. CT has the potential to enhance radiography practice, but it also has the risk of drastically increasing patient doses. One CT procedure for the abdomen pelvis (AP) area can expose a patient's prostate or uterus to a substantial radiation dose, leading to concerns about radiation-induced cancer. This study aimed to estimate organ doses of the uterus and prostate and evaluate the lifetime attributable risk (LAR) of cancer incidence and mortality resulting from AP CT examinations. This retrospective study included 665 patients, of which 380 (57%) were female, and 285 (43%) were male. Data were collected from the picture archiving and communication system for AP CT procedures and exposure parameter data. Organ doses for the uterus and prostate were calculated using National Cancer Institute CT (NCICT) software. Based on the risk models proposed by the BEIR VII report, the calculated organ doses were used to estimate the LAR of prostate and uterus cancer incidence and mortality due to radiation exposure from AP CT procedures. The mean effective dose resulting from AP CT for females and males was 5.76 ± 3.22 (range: 1.13-12.71 mSv) and 4.37 ± 1.66 mSv (range: 1.36-8.07 mSv), respectively. The mean organ dose to the uterus was 10.86 ± 6.09 mGy (range: 2.13-24.06 mGy). The mean organ dose to the prostate was 7.00 ± 2.66 mGy (range: 2.18-12.94 mGy). The LAR of uterus and prostate cancer incidence was 1.75 ± 1.19 cases and 2.24 ± 1.06 cases per 100,000 persons, respectively. The LAR of cancer mortality rates from uterus and prostate cancers were 0.36 ± 0.22 and 0.48 ± 0.18 cases per 100,000 persons, respectively. The LAR of prostate and uterus cancer occurrence and mortality from radiation doses with AP CT procedures was low but not trivial. Therefore, efforts should be made to lower patient doses while retaining image quality. Although the minimization of the patient's radiation dose must guide clinical practice, the estimated slight increase in risk could aid in easing fears regarding well-justified AP CT procedures.
Collapse
Affiliation(s)
- Nasser Shubayr
- Department of Diagnostic Radiography Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia,*Correspondence: Nasser Shubayr ✉
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Wakeford R, Hauptmann M. The risk of cancer following high, and very high, doses of ionising radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020518. [PMID: 35671754 DOI: 10.1088/1361-6498/ac767b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
It is established that moderate-to-high doses of ionising radiation increase the risk of subsequent cancer in the exposed individual, but the question arises as to the risk of cancer from higher doses, such as those delivered during radiotherapy, accidents, or deliberate acts of malice. In general, the cumulative dose received during a course of radiation treatment is sufficiently high that it would kill a person if delivered as a single dose to the whole body, but therapeutic doses are carefully fractionated and high/very high doses are generally limited to a small tissue volume under controlled conditions. The very high cumulative doses delivered as fractions during radiation treatment are designed to inactivate diseased cells, but inevitably some healthy cells will also receive high/very high doses. How the doses (ranging from <1 Gy to tens of Gy) received by healthy tissues during radiotherapy affect the risk of second primary cancer is an increasingly important issue to address as more cancer patients survive the disease. Studies show that, except for a turndown for thyroid cancer, a linear dose-response for second primary solid cancers seems to exist over a cumulative gamma radiation dose range of tens of gray, but with a gradient of excess relative risk per Gy that varies with the type of second cancer, and which is notably shallower than that found in the Japanese atomic bomb survivors receiving a single moderate-to-high acute dose. The risk of second primary cancer consequent to high/very high doses of radiation is likely to be due to repopulation of heavily irradiated tissues by surviving stem cells, some of which will have been malignantly transformed by radiation exposure, although the exact mechanism is not known, and various models have been proposed. It is important to understand the mechanisms that lead to the raised risk of second primary cancers consequent to the receipt of high/very high doses, in particular so that the risks associated with novel radiation treatment regimens-for example, intensity modulated radiotherapy and volumetric modulated arc therapy that deliver high doses to the target volume while exposing relatively large volumes of healthy tissue to low/moderate doses, and treatments using protons or heavy ions rather than photons-may be properly assessed.
Collapse
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Fehrbelliner Strasse 38, 16816 Neuruppin, Germany
| |
Collapse
|
3
|
Prabhu AV, Schad MD, Burnett AF, Lewis GD. Radiation treatment for refractory endometriosis: a 38-year-old female presenting with vaginal bleeding. Rep Pract Oncol Radiother 2021; 26:457-462. [PMID: 34277101 PMCID: PMC8281906 DOI: 10.5603/rpor.a2021.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background Endometriosis is typically managed with a medical or surgical approach, though some patients have medically refractory disease and are poor surgical candidates. Case presentation A 39-year-old woman presented to our facility with uncontrolled bleeding and pain from an endometriotic mass at the vaginal cuff. She had a history of abdominal hysterectomy with bilateral salpingo-oophorectomy, now with medically refractive and inoperable disease due to prior history of vesicovaginal fistula. We prescribed 30 Gy in 10 fractions with 10 MV and 18 MV photons to the target. At follow-up our patient reported a complete resolution of bleeding and pelvic pain. Conclusion Radiation treatment can be an effective treatment for refractory endometriosis.
Collapse
Affiliation(s)
- Arpan V Prabhu
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, UAMS Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, United States
| | - Michael D Schad
- University of Pittsburgh School of Medicine, Pennsylvania, United States
| | - Alexander F Burnett
- Department of Obstetrics & Gynecology, University of Arkansas for Medical Sciences, UAMS Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, United States
| | - Gary D Lewis
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, UAMS Winthrop P. Rockefeller Cancer Institute, Little Rock, Arkansas, United States
| |
Collapse
|
4
|
Utada M, Brenner AV, Preston DL, Cologne JB, Sakata R, Sugiyama H, Kato N, Grant EJ, Cahoon EK, Mabuchi K, Ozasa K. Radiation Risk of Ovarian Cancer in Atomic Bomb Survivors: 1958-2009. Radiat Res 2021; 195:60-65. [PMID: 33181839 PMCID: PMC10320731 DOI: 10.1667/rade-20-00170.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/18/2020] [Indexed: 11/03/2022]
Abstract
There is limited evidence concerning the association between radiation exposure and ovarian cancer. We evaluated radiation risk of ovarian cancer between 1958 and 2009 among 62,534 female atomic bomb survivors in the Life Span Study cohort, adding 11 years of follow-up from the previously reported study. Poisson regression methods were used to estimate excess relative risk per Gy (ERR/Gy) for total ovarian cancer and according to tumor type. We assessed the modifying effect of follow-up period and other factors on the radiation risk. We ascertained 288 first primary ovarian cancers including 77 type 1 epithelial cancers, 75 type 2 epithelial cancers, 66 epithelial cancers of undetermined type and 70 other cancers. Radiation dose was positively, although not significantly, associated with risk of total ovarian cancer [ERR/Gy = 0.30, 95% confidence interval (CI): -0.22 to 1.11]. There was a suggestion of heterogeneity in radiation effects (P = 0.08) for type 1 (ERR/Gy = -0.32, 95% CI: <-0.32 to 0.88) and type 2 cancers (ERR/Gy = 1.24, 95% CI: -0.08 to 4.16). There were no significant trends in the ERR with time since exposure or age at exposure. Further follow-up will help characterize more accurately the patterns of radiation risk for total ovarian cancer and its types.
Collapse
Affiliation(s)
- Mai Utada
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Alina V Brenner
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | | | - John B Cologne
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Ritsu Sakata
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Naohiro Kato
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Eric J Grant
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Elizabeth K Cahoon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Kiyohiko Mabuchi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Kotaro Ozasa
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| |
Collapse
|
5
|
Harbron RW, Pasqual E. Ionising radiation as a risk factor for lymphoma: a review. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:R151-R185. [PMID: 33017815 DOI: 10.1088/1361-6498/abbe37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The ability of ionising radiation to induce lymphoma is unclear. Here, we present a narrative review of epidemiological evidence of the risk of lymphoma, including chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM), among various exposed populations including atomic bombing survivors, industrial and medical radiation workers, and individuals exposed for medical purposes. Overall, there is a suggestion of a positive dose-dependent association between radiation exposure and lymphoma. The magnitude of this association is highly imprecise, however, with wide confidence intervals frequently including zero risk. External comparisons tend to show similar incidence and mortality rates to the general population. Currently, there is insufficient information on the impact of age at exposure, high versus low linear energy transfer radiation, external versus internal or acute versus chronic exposures. Associations are stronger for males than females, and stronger for non-Hodgkin lymphoma and MM than for Hodgkin lymphoma, while the risk of radiation-induced CLL may be non-existent. This broad grouping of diverse diseases could potentially obscure stronger associations for certain subtypes, each with a different cell of origin. Additionally, the classification of malignancies as leukaemia or lymphoma may result in similar diseases being analysed separately, while distinct diseases are analysed in the same category. Uncertainty in cell of origin means the appropriate organ for dose response analysis is unclear. Further uncertainties arise from potential confounding or bias due to infectious causes and immunosuppression. The potential interaction between radiation and other risk factors is unknown. Combined, these uncertainties make lymphoma perhaps the most challenging malignancy to study in radiation epidemiology.
Collapse
Affiliation(s)
- Richard W Harbron
- Population Health Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Newcastle University, United Kingdom
- Barcelona Institute for Global Health, (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Elisa Pasqual
- Barcelona Institute for Global Health, (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
6
|
Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034819. [PMID: 31727680 DOI: 10.1101/cshperspect.a034819] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Available evidence suggests that the incidence of leukemia and lymphoma tends to be higher in highly developed regions of the world and among Whites in the United States. Temporal trends in incidence are dynamic and multifactorial; for instance, the incidence of non-Hodgkin's lymphoma increased around the turn of the century, in part because of the acquired immune deficiency syndrome (AIDS) epidemic. Most leukemias and lymphomas are sporadic and the specific etiology remains elusive. Still, research shows that these malignancies often develop in the context of genetic abnormalities, immunosuppression, and exposure to risk factors like ionizing radiation, carcinogenic chemicals, and oncogenic viruses. The prognosis varies by subtype, with poorer survival outcomes for acute leukemias among adults, and more favorable outcomes for Hodgkin's lymphoma. At a time when specific prevention efforts targeting these malignancies are nonexistent, there is a great need to ensure equitable access to diagnostic services and treatments worldwide.
Collapse
Affiliation(s)
- Jordan A Baeker Bispo
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Paulo S Pinheiro
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Erin K Kobetz
- Sylvester Comprehensive Cancer Center and Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| |
Collapse
|
7
|
Zhuntova GV, Azizova TV, Grigoryeva ES. Risk of stomach cancer incidence in a cohort of Mayak PA workers occupationally exposed to ionizing radiation. PLoS One 2020; 15:e0231531. [PMID: 32294114 PMCID: PMC7159243 DOI: 10.1371/journal.pone.0231531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Stomach cancer is a widespread health condition associated with environmental and genetic factors. Contribution of ionizing radiation to stomach cancer etiology is not sufficiently studied. This study was aimed to assess an association of the stomach cancer incidence risk with doses from occupational radiation exposure in a cohort of workers hired at main Mayak production association facilities in 1948–1982 taking into account non-radiation factors including digestive disorders. The study cohort comprised 22,377 individuals and by 31.12.2013 343 stomach cancer diagnoses had been reported among the cohort members. Occupational stomach absorbed doses were provided by the Mayak Worker Dosimetry System– 2008 (MWDS–2008) for external gamma ray exposure and by the Mayak Worker Dosimetry System– 2013 (MWDS–2013) for internal exposure to plutonium. Excess relative risks (ERR) per Gy for stomach cancer were estimated using the Poisson’s regression. Analyses were run using the AMFIT module of the EPICURE software. The stomach cancer incidence risk in the study cohort was found to be significantly associated with the stomach absorbed dose of gamma rays: ERR/Gy = 0.19 (95% CI: 0.01, 0.44) with a 0 year lag, and ERR/Gy = 0.20 (95% CI: 0.01, 0.45) with a 5 year lag. To estimate the baseline risk, sex, attained age, smoking status and alcohol consumption, chronic diseases (peptic ulcer, gastritis and duodenitis) were taken into account. No modifications of the radiogenic risk by non-radiation factors were found in the study worker cohort. No association of the stomach cancer incidence risk with internal exposure to incorporated plutonium was observed.
Collapse
Affiliation(s)
- Galina V. Zhuntova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk region, Russia
| | - Tamara V. Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk region, Russia
- * E-mail:
| | - Evgeniya S. Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk region, Russia
| |
Collapse
|
8
|
Zwicker F, Kirchner C, Huber PE, Debus J, Zwicker H, Klepper R. Breast cancer occurrence after low dose radiotherapy of non-malignant disorders of the shoulder. Sci Rep 2019; 9:5301. [PMID: 30923327 PMCID: PMC6438961 DOI: 10.1038/s41598-019-41725-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/14/2019] [Indexed: 11/10/2022] Open
Abstract
Stochastic long-term damages at relatively low doses have the potential for cancer induction. For the first time we investigated the occurrence of breast cancer in female patients after radiotherapy of non-malignant disorders of the shoulder and made a comparison with the estimated spontaneous incidence of mammary carcinoma for this cohort. In a geographically defined district with a population of approximately 100.000 inhabitants, comprehensive data of radiological diagnostics and radiotherapy were registered nearly completely for 41 years; data included mammography and radiotherapy of breast cancer patients as well as of non-malignant disorders. Within this population a collective of 158 women with radiotherapy of the shoulder was investigated. Radiotherapy was performed with cobalt-60 photons (Gammatron) with an average cumulative-dose of 6 Gy. The average follow-up time was 21.3 years. Patients were 55 years old (median) when radiotherapy of the shoulder was performed. Seven patients (4.4%) developed breast cancer after a median of 21 years. According to the incidence statistics, 9.4 +/- 1.8 (95%CI) cases (5.9%) would be expected. In regard to the irradiated shoulder neither the ipsilateral nor the contralateral breasts showed increased rates of breast cancer. An induction of additional breast cancer caused by radiation of non-malignant disorders of the shoulder wasn't detected in the investigated cohort.
Collapse
Affiliation(s)
- Felix Zwicker
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany.
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | - Corinna Kirchner
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany
| | - Peter E Huber
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Hansjörg Zwicker
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany
| | - Rudolf Klepper
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany
| |
Collapse
|
9
|
Utada M, Brenner AV, Preston DL, Cologne JB, Sakata R, Sugiyama H, Sadakane A, Grant EJ, Cahoon EK, Ozasa K, Mabuchi K. Radiation Risks of Uterine Cancer in Atomic Bomb Survivors: 1958-2009. JNCI Cancer Spectr 2018; 2:pky081. [PMID: 31249993 PMCID: PMC6586771 DOI: 10.1093/jncics/pky081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 12/04/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ionizing radiation is known to be capable of causing cancer of many organs, but its relationship with uterine cancer has not been well characterized. METHODS We studied incidence of uterine cancer during 1958-2009 among 62 534 female atomic bomb survivors. Using Poisson regression analysis, we fitted excess relative risk (ERR) models to uterine cancer rates adjusted for several lifestyle and reproductive factors. Person-years at risk were also adjusted for the probability of prior hysterectomy, because it could affect the subsequent risk of uterine cancer. We assessed the modifying effect of age and other factors on the radiation risk. For analysis of the modifying effect of age at radiation exposure around menarche, we compared the radiation risk for several exposure-age categories as well as using parametric models. RESULTS There were 224 uterine corpus cancers and 982 cervical cancers. We found a significant association between radiation dose and risk of corpus cancer (ERR per Gray [ERR/Gy] = 0.73, 95% confidence interval [CI] = 0.03 to 1.87) but not for cervical cancer (ERR/Gy = 0.00, 95% CI = -0.22 to 0.31). For corpus cancer, we found statistically significant heterogeneity in ERR/Gy by age (P heterogeneity = .001) with elevated risk for women exposed to radiation between ages 11 and 15 years (ERR/Gy = 4.10, 95% CI = 1.47 to 8.42) and no indication of a radiation effect for exposures before or after this exposure-age range. CONCLUSIONS The current data suggest that uterine corpus is especially sensitive to the carcinogenic effect of radiation exposure occurring during the mid-pubertal period preceding menarche. There is little evidence for a radiation effect on cervical cancer risk.
Collapse
Affiliation(s)
- Mai Utada
- Correspondence to: Mai Utada, PhD, Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan (e-mail: )
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mazonakis M, Damilakis J. Cancer risk after radiotherapy for benign diseases. Phys Med 2017; 42:285-291. [PMID: 28189418 DOI: 10.1016/j.ejmp.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/28/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy with low to intermediate doses has been historically employed for the management of several benign diseases. The exposure to ionizing radiation may increase the probability for carcinogenesis. The knowledge of this probability is of value for weighting the benefits and risks of radiotherapy against different therapeutic approaches. This study initially reviews the epidemiologic data associated with the cancer induction due to radiotherapy for non-malignant conditions in previous decades. Most of these data were derived from patients irradiated with conventional techniques, which are no longer applied, for some benign diseases not treated with radiotherapy nowadays. The follow-up of a series of patients undergoing modern radiotherapy for benign disorders may be used for estimating the radiation-induced cancer risk. The realization of this process is often difficult due to the relatively small number of patients undergoing radiation therapy for such diseases in many countries and due to long latent period for the appearance of a malignancy after exposure. The combination of dosimetric data, which can be obtained by phantom measurements or treatment planning systems or Monte Carlo calculations, with the appropriate linear and non-linear risk models may lead to theoretical estimates of the radiotherapy-induced cancer risks. The limitations of the method providing a whole-body cancer risk based on the effective dose concept are presented. The theoretical organ-specific risks for carcinogenesis give useful information about the development of malignancies at any in-field, partially in-field and out-of-field critical site. The uncertainties of the organ-dependent cancer risk estimates are discussed.
Collapse
Affiliation(s)
- M Mazonakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 2208, 71003 Iraklion, Crete, Greece
| | - J Damilakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 2208, 71003 Iraklion, Crete, Greece.
| |
Collapse
|
11
|
McKeown SR, Hatfield P, Prestwich RJD, Shaffer RE, Taylor RE. Radiotherapy for benign disease; assessing the risk of radiation-induced cancer following exposure to intermediate dose radiation. Br J Radiol 2015; 88:20150405. [PMID: 26462717 PMCID: PMC4984935 DOI: 10.1259/bjr.20150405] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/01/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022] Open
Abstract
Most radiotherapy (RT) involves the use of high doses (>50 Gy) to treat malignant disease. However, low to intermediate doses (approximately 3-50 Gy) can provide effective control of a number of benign conditions, ranging from inflammatory/proliferative disorders (e.g. Dupuytren's disease, heterotopic ossification, keloid scarring, pigmented villonodular synovitis) to benign tumours (e.g. glomus tumours or juvenile nasopharyngeal angiofibromas). Current use in UK RT departments is very variable. This review identifies those benign diseases for which RT provides good control of symptoms with, for the most part, minimal side effects. However, exposure to radiation has the potential to cause a radiation-induced cancer (RIC) many years after treatment. The evidence for the magnitude of this risk comes from many disparate sources and is constrained by the small number of long-term studies in relevant clinical cohorts. This review considers the types of evidence available, i.e. theoretical models, phantom studies, epidemiological studies, long-term follow-up of cancer patients and those treated for benign disease, although many of the latter data pertain to treatments that are no longer used. Informative studies are summarized and considered in relation to the potential for development of a RIC in a range of key tissues (skin, brain etc.). Overall, the evidence suggests that the risks of cancer following RT for benign disease for currently advised protocols are small, especially in older patients. However, the balance of risk vs benefit needs to be considered in younger adults and especially if RT is being considered in adolescents or children.
Collapse
Affiliation(s)
| | - Paul Hatfield
- Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | | | - Richard E Shaffer
- St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK
| | - Roger E Taylor
- College of Medicine, Swansea University, South West Cancer Centre, Swansea, UK
| |
Collapse
|
12
|
Fleenor CJ, Higa K, Weil MM, DeGregori J. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies. Radiat Res 2015; 184:341-51. [PMID: 26414506 DOI: 10.1667/rr14147.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis.
Collapse
Affiliation(s)
| | | | - Michael M Weil
- d Department of Environmental and Radiological Health Sciences, Colorado State University; Fort Collins, Colorado
| | - James DeGregori
- Departments of a Immunology.,b Biochemistry and Molecular Genetics and.,c Medicine, School of Medicine, University of Colorado, Aurora, Colorado; and
| |
Collapse
|