1
|
Bruss C, Albert V, Seitz S, Blaimer S, Kellner K, Pohl F, Ortmann O, Brockhoff G, Wege AK. Neoadjuvant radiotherapy in ER +, HER2 +, and triple-negative -specific breast cancer based humanized tumor mice enhances anti-PD-L1 treatment efficacy. Front Immunol 2024; 15:1355130. [PMID: 38742103 PMCID: PMC11089195 DOI: 10.3389/fimmu.2024.1355130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Stephanie Blaimer
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Fabian Pohl
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Radiotherapy, University Medical Center Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| |
Collapse
|
2
|
Xie Q, Liao Q, Wang L, Zhang Y, Chen J, Bai H, Li K, Ai J. The Dominant Mechanism of Cyclophosphamide-Induced Damage to Ovarian Reserve: Premature Activation or Apoptosis of Primordial Follicles? Reprod Sci 2024; 31:30-44. [PMID: 37486531 DOI: 10.1007/s43032-023-01294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphamide (CPM), a part of most cancer treatment regimens, has demonstrated high gonadal toxicity in females. Initially, CPM is believed to damage the ovarian reserve by premature activation of primordial follicles, for the fact that facing CPM damage, primordial oocytes show the activation of PTEN/PI3K/AKT pathways, accompanied by accelerated activation of follicle developmental waves. Meanwhile, primordial follicles are dormant and not considered the target of CPM. However, many researchers have found DNA DSBs and apoptosis within primordial oocytes under CPM-induced ovarian damage instead of premature accelerated activation. A stricter surveillance system of DNA damage is also thought to be in primordial oocytes. So far, the apoptotic death mechanism is considered well-proved, but the premature activation theory is controversial and unacceptable. The connection between the upregulation of PTEN/PI3K/AKT pathways and DNA DSBs and apoptosis within primordial oocytes is also unclear. This review aims to highlight the flaw and/or support of the disputed premature activation theory and the apoptosis mechanism to identify the underlying mechanism of CPM's injury on ovarian reserve, which is crucial to facilitate the discovery and development of effective ovarian protectants. Ultimately, this review finds no good evidence for follicle activation and strong consistent evidence for apoptosis.
Collapse
Affiliation(s)
- Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Reproductive Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangcheng District, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Qiuyue Liao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hualin Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Biswas H, Makinwa Y, Zou Y. Novel Cellular Functions of ATR for Therapeutic Targeting: Embryogenesis to Tumorigenesis. Int J Mol Sci 2023; 24:11684. [PMID: 37511442 PMCID: PMC10380702 DOI: 10.3390/ijms241411684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The DNA damage response (DDR) is recognized as having an important role in cancer growth and treatment. ATR (ataxia telangiectasia mutated and Rad3-related) kinase, a major regulator of DDR, has shown significant therapeutic potential in cancer treatment. ATR inhibitors have shown anti-tumor effectiveness, not just as monotherapies but also in enhancing the effects of standard chemotherapy, radiation, and immunotherapy. The biological basis of ATR is examined in this review, as well as its functional significance in the development and therapy of cancer, and the justification for inhibiting this target as a therapeutic approach, including an assessment of the progress and status of previous decades' development of effective and selective ATR inhibitors. The current applications of these inhibitors in preclinical and clinical investigations as single medicines or in combination with chemotherapy, radiation, and immunotherapy are also fully reviewed. This review concludes with some insights into the many concerns highlighted or identified with ATR inhibitors in both the preclinical and clinical contexts, as well as potential remedies proposed.
Collapse
Affiliation(s)
| | | | - Yue Zou
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (H.B.); (Y.M.)
| |
Collapse
|
4
|
Felgentreff K, Schuetz C, Baumann U, Klemann C, Viemann D, Ursu S, Jacobsen EM, Debatin KM, Schulz A, Hoenig M, Schwarz K. Differential DNA Damage Response of Peripheral Blood Lymphocyte Populations. Front Immunol 2021; 12:739675. [PMID: 34594342 PMCID: PMC8478158 DOI: 10.3389/fimmu.2021.739675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
DNA damage occurs constantly in every cell triggered by endogenous processes of replication and metabolism, and external influences such as ionizing radiation and intercalating chemicals. Large sets of proteins are involved in sensing, stabilizing and repairing this damage including control of cell cycle and proliferation. Some of these factors are phosphorylated upon activation and can be used as biomarkers of DNA damage response (DDR) by flow and mass cytometry. Differential survival rates of lymphocyte subsets in response to DNA damage are well established, characterizing NK cells as most resistant and B cells as most sensitive to DNA damage. We investigated DDR to low dose gamma radiation (2Gy) in peripheral blood lymphocytes of 26 healthy donors and 3 patients with ataxia telangiectasia (AT) using mass cytometry. γH2AX, p-CHK2, p-ATM and p53 were analyzed as specific DDR biomarkers for functional readouts of DNA repair efficiency in combination with cell cycle and T, B and NK cell populations characterized by 20 surface markers. We identified significant differences in DDR among lymphocyte populations in healthy individuals. Whereas CD56+CD16+ NK cells showed a strong γH2AX response to low dose ionizing radiation, a reduced response rate could be observed in CD19+CD20+ B cells that was associated with reduced survival. Interestingly, γH2AX induction level correlated inversely with ATM-dependent p-CHK2 and p53 responses. Differential DDR could be further noticed in naïve compared to memory T and B cell subsets, characterized by reduced γH2AX, but increased p53 induction in naïve T cells. In contrast, DDR was abrogated in all lymphocyte populations of AT patients. Our results demonstrate differential DDR capacities in lymphocyte subsets that depend on maturation and correlate inversely with DNA damage-related survival. Importantly, DDR analysis of peripheral blood cells for diagnostic purposes should be stratified to lymphocyte subsets.
Collapse
Affiliation(s)
- Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Baumann
- Department of Pediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Simona Ursu
- Core Facility Cytometry, Ulm University Medical Faculty, Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Manfred Hoenig
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.,Core Facility Cytometry, Ulm University Medical Faculty, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany.,The Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| |
Collapse
|
5
|
Evaluation of Calyculin A Effect on γH2AX/53BP1 Focus Formation and Apoptosis in Human Umbilical Cord Blood Lymphocytes. Int J Mol Sci 2021; 22:ijms22115470. [PMID: 34067339 PMCID: PMC8196852 DOI: 10.3390/ijms22115470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Dephosphorylation inhibitor calyculin A (cal A) has been reported to inhibit the disappearance of radiation-induced γH2AX DNA repair foci in human lymphocytes. However, other studies reported no change in the kinetics of γH2AX focus induction and loss in irradiated cells. While apoptosis might interplay with the kinetics of focus formation, it was not followed in irradiated cells along with DNA repair foci. Thus, to validate plausible explanations for significant variability in outputs of these studies, we evaluated the effect of cal A (1 and 10 nM) on γH2AX/53BP1 DNA repair foci and apoptosis in irradiated (1, 5, 10, and 100 cGy) human umbilical cord blood lymphocytes (UCBL) using automated fluorescence microscopy and annexin V-FITC/propidium iodide assay/γH2AX pan-staining, respectively. No effect of cal A on γH2AX and colocalized γH2AX/53BP1 foci induced by low doses (≤10 cGy) of γ-rays was observed. Moreover, 10 nM cal A treatment decreased the number of all types of DNA repair foci induced by 100 cGy irradiation. 10 nM cal A treatment induced apoptosis already at 2 h of treatment, independently from the delivered dose. Apoptosis was also detected in UCBL treated with lower cal A concentration, 1 nM, at longer cell incubation, 20 and 44 h. Our data suggest that apoptosis triggered by cal A in UCBL may underlie the failure of cal A to maintain radiation-induced γH2AX foci. All DSB molecular markers used in this study responded linearly to low-dose irradiation. Therefore, their combination may represent a strong biodosimetry tool for estimation of radiation response to low doses. Assessment of colocalized γH2AX/53BP1 improved the threshold of low dose detection.
Collapse
|
6
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
7
|
Makinwa Y, Cartwright BM, Musich PR, Li Z, Biswas H, Zou Y. PP2A Regulates Phosphorylation-Dependent Isomerization of Cytoplasmic and Mitochondrial-Associated ATR by Pin1 in DNA Damage Responses. Front Cell Dev Biol 2020; 8:813. [PMID: 32984322 PMCID: PMC7484947 DOI: 10.3389/fcell.2020.00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Ataxia telangiectasia and Rad3-related protein (ATR) is a serine/threonine-protein kinase of the PI3K family and is well known for its key role in regulating DNA damage responses in the nucleus. In addition to its nuclear functions, ATR also was found to be a substrate of the prolyl isomerase Pin1 in the cytoplasm where Pin1 isomerizes cis ATR at the Ser428-Pro429 motif, leading to formation of trans ATR. Cis ATR is an antiapoptotic protein at mitochondria upon UV damage. Here we report that Pin1’s activity on cis ATR requires the phosphorylation of the S428 residue of ATR and describe the molecular mechanism by which Pin1-mediated ATR isomerization in the cytoplasm is regulated. We identified protein phosphatase 2A (PP2A) as the phosphatase that dephosphorylates Ser428 following DNA damage. The dephosphorylation led to an increased level of the antiapoptotic cis ATR (ATR-H) in the cytoplasm and, thus, its accumulation at mitochondria via binding with tBid. Inhibition or depletion of PP2A promoted the isomerization by Pin1, resulting in a reduction of cis ATR with an increased level of trans ATR. We conclude that PP2A plays an important role in regulating ATR’s anti-apoptotic activity at mitochondria in response to DNA damage. Our results also imply a potential strategy in enhancing cancer therapies via selective moderation of cis ATR levels.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Brian M Cartwright
- Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Phillip R Musich
- Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zhengke Li
- Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Himadri Biswas
- Department of Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Yue Zou
- Department of Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.,Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
8
|
A Phase 1 dose-escalation study to evaluate safety, pharmacokinetics and pharmacodynamics of AsiDNA, a first-in-class DNA repair inhibitor, administered intravenously in patients with advanced solid tumours. Br J Cancer 2020; 123:1481-1489. [PMID: 32839491 PMCID: PMC7653034 DOI: 10.1038/s41416-020-01028-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Background AsiDNA, a first-in-class oligonucleotide-mimicking double-stranded DNA breaks, acts as a decoy agonist to DNA damage response in tumour cells. It also activates DNA-dependent protein kinase and poly (adenosine diphosphate [ADP]-ribose) polymerase enzymes that induce phosphorylation of H2AX and protein PARylation. Methods The aim of this Phase 1 study was to determine dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), safety and pharmacokinetics/pharmacodynamics of AsiDNA administered daily for 3 days in the first week then weekly thereafter. Twenty-two patients with advanced solid tumours were enrolled in 5 dose levels: 200, 400, 600, 900, and 1300 mg, using a 3 + 3 design. Results The MTD was not reached. IV AsiDNA was safe. Two DLTs (grade 4 and grade 3 hepatic enzymes increased at 900 and 1300 mg), and two related SAE at 900 mg (grade 3 hypotension and grade 4 hepatic enzymes increased) were reported. AsiDNA PK increased proportionally with dose. A robust activation of DNA-PK by a significant posttreatment increase of γH2AX was evidenced in tumour biopsies. Conclusion The dose of 600 mg was identified as the optimal dose for further clinical development. Clinical trial registration Clinical trial registration (NCT number): NCT03579628.
Collapse
|
9
|
Ritt P, Jobic C, Beck M, Schmidkonz C, Kuwert T, Uder M, Brand M. Dissimilar DNA Damage to Blood Lymphocytes After 177Lu-Labeled DOTATOC or Prostate-Specific Membrane Antigen Therapy. J Nucl Med 2020; 62:379-385. [PMID: 32737244 DOI: 10.2967/jnumed.120.243782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks in cells of radionuclide-treated patients are quantifiable by immunofluorescence microscopy, using phosphorylation of histone-variant H2AX (γ-H2AX) to mark radiation-induced foci (RIFs). Using this method, we compared excess RIFs side by side in recipients of 177Lu-DOTATOC or 177Lu-prostate specific membrane antigen-617 (PSMA) radioligands. We also examined relations between blood dose and dose rate, RIFs, and platelet counts. Methods: Venous blood samples were obtained from 48 patients subjected to 177Lu-labeled radioligand therapy (177Lu-DOTATOC, 26; 177Lu-PSMA, 22) to quantify blood lymphocyte RIFs and blood activity concentrations at various time points, including baseline (before injection) and postinjection readings (5 min, 30 min, 4 h, 24 h, 48 h, and 72 h). Absorbed doses and dose rates to blood were derived from sequentially assessed blood activity concentrations and γ-camera imaging. Platelet levels in routine blood tests were monitored for 3 d after injection to assess responses. Results: RIF counts averaged 0.25 ± 0.15 at baseline. Postinjection RIF counts were significantly higher than baseline values, peaking at 5 min (average, 3.93 ± 2.51 min) and declining thereafter. Compared with RIF counts of 177Lu-DOTATOC, those of 177Lu-PSMA were significantly higher at 5 min after injection and significantly lower at 72 h after injection. These differences could not be fully explained by blood doses and dose rates, which were significantly higher for 177Lu-PSMA than for 177Lu-DOTATOC treatment at every time point. RIF counts overall correlated with dose rates across all time points (Pearson r = 0.78; P < 0.01) and with absorbed dose until 4 h after injection only (Pearson r = 0.42; P < 0.01). Declines in platelet concentration correlated significantly with RIFs at 72 h after injection (Pearson r = -0.34; P < 0.05). Conclusion: Although values generated by the currently used blood dosimetry model correlated with RIF counts, the difference observed in 177Lu-DOTATOC and 177Lu-PSMA treatment groups was unexplained. Significantly more RIFs were found in 177Lu-DOTATOC recipients by comparison, despite lower dose rates and blood doses, exposing a potential limitation.
Collapse
Affiliation(s)
- Philipp Ritt
- Clinic of Nuclear Medicine, University Hospital Erlangen, Erlangen Germany; and
| | - Camille Jobic
- Clinic of Nuclear Medicine, University Hospital Erlangen, Erlangen Germany; and
| | - Michael Beck
- Clinic of Nuclear Medicine, University Hospital Erlangen, Erlangen Germany; and
| | | | - Torsten Kuwert
- Clinic of Nuclear Medicine, University Hospital Erlangen, Erlangen Germany; and
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Brand
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Zhao H, Huang X, Halicka HD, Darzynkiewicz Z. Detection of Histone H2AX Phosphorylation on Ser-139 as an Indicator of DNA Damage. ACTA ACUST UNITED AC 2020; 89:e55. [PMID: 31237414 DOI: 10.1002/cpcy.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This unit describes immunocytochemical detection of histone H2AX phosphorylated on Ser-139 (γH2AX) to reveal DNA damage, particularly when the damage involves the presence of DNA double-strand breaks (DSBs). These breaks often result from DNA damage induced by ionizing radiation or by treatment with anticancer drugs such as DNA topoisomerase inhibitors. Furthermore, DSBs are generated in the course of DNA fragmentation during apoptosis. The unit presents strategies to distinguish radiation- or drug-induced DNA breaks from those intrinsically formed in untreated cells or associated with apoptosis. The protocol describes immunocytochemical detection of γH2AX combined with measurement of DNA content to identify cells that have DNA damage and concurrently to assess their cell-cycle phase. The detection is based on indirect immunofluorescence using FITC- or Alexa Fluor 488-labeled antibody, with DNA counterstained with propidium iodide and cellular RNA removed with RNase A. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| | - Xuan Huang
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| | - H Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| |
Collapse
|
11
|
Ohba S, Johannessen TCA, Chatla K, Yang X, Pieper RO, Mukherjee J. Phosphoglycerate Mutase 1 Activates DNA Damage Repair via Regulation of WIP1 Activity. Cell Rep 2020; 31:107518. [PMID: 32294440 DOI: 10.1016/j.celrep.2020.03.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic enzyme phosphoglycerate mutase 1 (PGAM1) is overexpressed in several types of cancer, suggesting an additional function beyond its established role in the glycolytic pathway. We here report that PGAM1 is overexpressed in gliomas where it increases the efficiency of the DNA damage response (DDR) pathway by cytoplasmic binding of WIP1 phosphatase, thereby preventing WIP1 nuclear translocation and subsequent dephosphorylation of the ATM signaling pathway. Silencing of PGAM1 expression in glioma cells consequently decreases formation of γ-H2AX foci, increases apoptosis, and decreases clonogenicity following irradiation (IR) and temozolomide (TMZ) treatment. Furthermore, mice intracranially implanted with PGAM1-knockdown cells have significantly improved survival after treatment with IR and TMZ. These effects are counteracted by exogenous expression of two kinase-dead PGAM1 mutants, H186R and Y92F, indicating an important non-enzymatic function of PGAM1. Our findings identify PGAM1 as a potential therapeutic target in gliomas.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Tor-Christian Aase Johannessen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Kamalakar Chatla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaodong Yang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020; 9:200. [PMID: 31947601 PMCID: PMC7016612 DOI: 10.3390/cells9010200] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of value in developing techniques to protect ovaries against chemotherapy and in advancing clinical approaches to regulate primordial follicle activation.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
- Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
| | - Evelyn E. Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
13
|
Assani G, Segbo J, Yu X, Yessoufou A, Xiong Y, Zhou F, Zhou Y. Downregulation of TMPRSS4 Enhances Triple-Negative Breast Cancer Cell Radiosensitivity Through Cell Cycle and Cell Apoptosis Process Impairment. Asian Pac J Cancer Prev 2019; 20:3679-3687. [PMID: 31870109 PMCID: PMC7173382 DOI: 10.31557/apjcp.2019.20.12.3679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Indexed: 12/09/2022] Open
Abstract
Background: Radioresistance remains a challenge for cancer radiotherapy. The present study aims to investigate the role of TMPRSS4 in triple negative breast cancer (TNBC) cell radiosensitivity. Materials and Methods: After transfection of MDA-MD-468 triple negative breast cancer cells line by using the lentivirus vector, the effect of TMPRSS4 down-regulation on TNBC radiosensitivity was evaluated by using cloning assay and CCK-8 assay. The CCK-8 assay was also used for performing cell proliferation analysis. Western blot was carried out to detect the expression of certain proteins related to cell cycle pathways (cyclin D1), cell apoptosis pathways (Bax, Bcl2, and Caspase3), DNA damage and DNA damage repair (TRF2, Ku80 , ˠH2AX) . The cell cycle and cell apoptosis were also investigated using flow cytometer analysis. Results: TMPRSS4 expression was down-regulated in MDA-MB-468 cells which enhanced MDA-MB-468 cells radiosensitivity. TMPRSS4 silencing also improved IR induced cell proliferation ability reduction and promoted cell arrested at G2/M phase mediated by 6 Gy IR associated with cyclin D1 expression inhibition. Moreover, TMPRSS4 inhibition enhanced TNBC apoptosis induced by 6 Gy IR following by over-expression of (Bax, Caspase3) and down-regulation of Bcl2 as the pro-apoptotic and anti-apoptotic proteins, respectively. Otherwise, TMPRSS4 down-regulation increases DNA damage induced by 6 Gy IR and delays DNA damage repair respectively illustrated by downregulation of TRF2 and permanent increase of Ku80 and ˠH2AX expression at 1 h and 10 h post-IR. Conclusion: Down-regulation of TMPRSS4 increases triple negative breast cancer cell radiosensitivity and the use of TMPRSS4 inhibitor can be encouraged for improving radiotherapy effectiveness in TNBC radioresistant patients.
Collapse
Affiliation(s)
- Ganiou Assani
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Julien Segbo
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Xiaoyan Yu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | | | - Yudi Xiong
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Fuxiang Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunfeng Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors; Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Dziegielewski J, Bońkowska MA, Poniecka EA, Heo J, Du K, Crittenden RB, Bender TP, Brautigan DL, Larner JM. Deletion of the SAPS1 subunit of protein phosphatase 6 in mice increases radiosensitivity and impairs the cellular DNA damage response. DNA Repair (Amst) 2019; 85:102737. [PMID: 31751917 DOI: 10.1016/j.dnarep.2019.102737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022]
Abstract
Cellular responses to DNA damage include activation of DNA-dependent protein kinase (DNA-PK) through, among others, the serine/threonine protein phosphatase 6 (PP6). We previously showed that recognition of DNA-PKcs is mediated by the SAPS1 PP6 regulatory subunit. Here, we report and characterize a SAPS1 null mouse and investigate the effects of deletion on DNA damage signaling and repair. Strikingly, neither SAPS1-null animals nor cells derived from them show gross defects, unless subjected to DNA damage by radiation or chemical agents. The overall survival of SAPS1-null animals following whole body irradiation is significantly shortened as compared to wild-type mice, and the clonogenic survival of null cells subjected to ionizing radiation is reduced. The dephosphorylation of DNA damage/repair markers, such as γH2AX, p53 and Kap1, is diminished in SAPS1-null cells as compared to wild-type controls. Our results demonstrate that loss of SAPS1 confers sensitivity to DNA damage and confirms previously reported cellular phenotypes of SAPS1 knock-down in human glioma cells. The results support a role for PP6 regulatory subunit SAPS1 in DNA damage responses, and offer a novel target for sensitization to enhance current tumor therapies, with a potential for limited deleterious side effects.
Collapse
Affiliation(s)
- Jaroslaw Dziegielewski
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Magdalena A Bońkowska
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ewa A Poniecka
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jinho Heo
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kangping Du
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rowena B Crittenden
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Timothy P Bender
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David L Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James M Larner
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:1397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of "deleted chromosomes" and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
16
|
Martin JH, Bromfield EG, Aitken RJ, Lord T, Nixon B. Double Strand Break DNA Repair occurs via Non-Homologous End-Joining in Mouse MII Oocytes. Sci Rep 2018; 8:9685. [PMID: 29946146 PMCID: PMC6018751 DOI: 10.1038/s41598-018-27892-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
The unique biology of the oocyte means that accepted paradigms for DNA repair and protection are not of direct relevance to the female gamete. Instead, preservation of the integrity of the maternal genome depends on endogenous protein stores and/or mRNA transcripts accumulated during oogenesis. The aim of this study was to determine whether mature (MII) oocytes have the capacity to detect DNA damage and subsequently mount effective repair. For this purpose, DNA double strand breaks (DSB) were elicited using the topoisomerase II inhibitor, etoposide (ETP). ETP challenge led to a rapid and significant increase in DSB (P = 0.0002) and the consequential incidence of metaphase plate abnormalities (P = 0.0031). Despite this, ETP-treated MII oocytes retained their ability to participate in in vitro fertilisation, though displayed reduced developmental competence beyond the 2-cell stage (P = 0.02). To account for these findings, we analysed the efficacy of DSB resolution, revealing a significant reduction in DSB lesions 4 h post-ETP treatment. Notably, this response was completely abrogated by pharmacological inhibition of key elements (DNA-PKcs and DNA ligase IV) of the canonical non-homologous end joining DNA repair pathway, thus providing the first evidence implicating this reparative cascade in the protection of the maternal genome.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tessa Lord
- School of Molecular Biosciences, Centre for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Preganancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
17
|
Oleson BJ, Naatz A, Proudfoot SC, Yeo CT, Corbett JA. Role of Protein Phosphatase 1 and Inhibitor of Protein Phosphatase 1 in Nitric Oxide-Dependent Inhibition of the DNA Damage Response in Pancreatic β-Cells. Diabetes 2018; 67:898-910. [PMID: 29444892 PMCID: PMC5909998 DOI: 10.2337/db17-1062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022]
Abstract
Nitric oxide is produced at micromolar levels by pancreatic β-cells during exposure to proinflammatory cytokines. While classically viewed as damaging, nitric oxide also activates pathways that promote β-cell survival. We have shown that nitric oxide, in a cell type-selective manner, inhibits the DNA damage response (DDR) and, in doing so, protects β-cells from DNA damage-induced apoptosis. This study explores potential mechanisms by which nitric oxide inhibits DDR signaling. We show that inhibition of DDR signaling (measured by γH2AX formation and the phosphorylation of KAP1) is selective for nitric oxide, as other forms of reactive oxygen/nitrogen species do not impair DDR signaling. The kinetics and broad range of DDR substrates that are inhibited suggest that protein phosphatase activation may be one mechanism by which nitric oxide attenuates DDR signaling in β-cells. While protein phosphatase 1 (PP1) is a primary regulator of DDR signaling and an inhibitor of PP1 (IPP1) is selectively expressed only in β-cells, disruption of either IPP1 or PP1 does not modify the inhibitory actions of nitric oxide on DDR signaling in β-cells. These findings support a PP1-independent mechanism by which nitric oxide selectively impairs DDR signaling and protects β-cells from DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Sarah C Proudfoot
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
18
|
Noda A. Radiation-induced unrepairable DSBs: their role in the late effects of radiation and possible applications to biodosimetry. JOURNAL OF RADIATION RESEARCH 2018; 59:ii114-ii120. [PMID: 29281054 PMCID: PMC5941153 DOI: 10.1093/jrr/rrx074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Indexed: 05/21/2023]
Abstract
Although the vast majority of DNA damage induced by radiation exposure disappears rapidly, some lesions remain in the cell nucleus in very small quantities for days to months. These lesions may cause a considerable threat to an organism and include certain types of DNA double-strand breaks (DSBs) called 'unrepairable DSBs'. Unrepairable DSBs are thought to cause persistent malfunctioning of cells and tissues or cause late effects of radiation, especially the induction of delayed cell death, mutation, senescence, or carcinogenesis. Moreover, the measurement of unrepairable DSBs could potentially be used for retrospective biodosimetry or for identifying individuals at greater risk for developing the adverse effects associated with radiotherapy or chemotherapy. This review summarizes the concept of unrepairable DSBs in the context of persistent repair foci formed at DSBs.
Collapse
Affiliation(s)
- Asao Noda
- Department of Molecular Bioscience, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815, Japan
- Corresponding Author. Tel: 082-261-3131; Fax: +082-263-7279;
| |
Collapse
|
19
|
Nayak AA, Mumbrekar KD, Rao BSS. Pharmacological approach to increasing the retention of radiation-induced γ-H2AX foci using phosphatase inhibitors: significance in radiation biodosimetry. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:318-328. [PMID: 29447119 DOI: 10.1088/1361-6498/aaa97a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In a scenario of accidental mass radiation exposure transportation and analysis of samples may take some time, resulting in loss of biomarker information over this period. The present study aims to use phosphatase inhibitors for longer retention of focal signals to adopt γ-H2AX as a biodosimetric biomarker for the management of early triage. Peripheral blood lymphocytes isolated from healthy individuals were irradiated in vitro with x-rays and γ-H2AX foci were analysed using fluorescent microscopy and flow cytometric methods. Further, the effect of protein phosphatase 2A inhibitors such as calyculin A, fostriecin and okadiac acid on the retention of foci was studied. Fluorescent microscopy was found to be a more sensitive method than flow cytometry. Calyculin A showed significant retention of focal signals at 6 h with 1.5-fold increased retention compared to radiation alone; this may prove beneficial in early triage management because of a better dose approximation.
Collapse
Affiliation(s)
- Akshaykumar A Nayak
- Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | | | | |
Collapse
|
20
|
Liang S, Ju X, Zhou Y, Chen Y, Ke G, Wen H, Wu X. Downregulation of eukaryotic initiation factor 4A1 improves radiosensitivity by delaying DNA double strand break repair in cervical cancer. Oncol Lett 2017; 14:6976-6982. [PMID: 29163714 DOI: 10.3892/ol.2017.7040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Expression of eukaryotic initiation factor 4A1 (eIF4A1) following brachytherapy has been reported to predict improved radiosensitivity and tumor-specific survival in cervical cancer. Therefore, the present study investigated the function of eIF4A1 in cervical cancer and the mechanism by which eIF4A1 regulates cervical cancer radiosensitivity. It was determined that the downregulation of eIF4A1 in HeLa and SiHa cells notably attenuated cell proliferation, in addition to repressing cervical cancer migration and invasion, and promoting cell apoptosis. In vitro and in vivo studies have demonstrated that silencing eIF4A1 improves cervical cancer radiosensitivity. Detection of γ-H2AX using western blot analysis at 0, 0.5, 1, 6 and 24 h following the exposure of cervical cancer cells to X-rays illustrated that eIF4A1-knockdown results in postponed radiation-induced DNA double strand break (DSB) repair. Overall, the results of the present study demonstrated that downregulated eIF4A1 improves cervical cancer radiosensitivity by delaying cancer cell DSB repair. In conclusion, the data indicated that eIF4A1 performs a vital role in cervical cancer progression and radiosensitivity. Therefore, eIF4A1 may be a potential therapeutic target in patients with cervical cancer.
Collapse
Affiliation(s)
- Shanhui Liang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuqi Zhou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yiran Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Guihao Ke
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
21
|
Martin JH, Nixon B, Lord T, Bromfield EG, Aitken RJ. Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes. Dev Biol 2016; 417:63-76. [DOI: 10.1016/j.ydbio.2016.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
|
22
|
Raschke S, Spickermann S, Toncian T, Swantusch M, Boeker J, Giesen U, Iliakis G, Willi O, Boege F. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci Rep 2016; 6:32441. [PMID: 27578260 PMCID: PMC5006042 DOI: 10.1038/srep32441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 10(7)-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential.
Collapse
Affiliation(s)
- S. Raschke
- Institute for Laser and Plasma Physics, University of Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Chemistry and Laboratory Diagnostics, University of Düsseldorf, Medical Faculty, Germany
- Institute of Medical Radiation Biology, University of Duisburg-Essen, Medical School, Essen, Germany
| | - S. Spickermann
- Institute for Laser and Plasma Physics, University of Düsseldorf, Düsseldorf, Germany
| | - T. Toncian
- Institute for Laser and Plasma Physics, University of Düsseldorf, Düsseldorf, Germany
| | - M. Swantusch
- Institute for Laser and Plasma Physics, University of Düsseldorf, Düsseldorf, Germany
| | - J. Boeker
- Institute for Laser and Plasma Physics, University of Düsseldorf, Düsseldorf, Germany
| | - U. Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - G. Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, Medical School, Essen, Germany
| | - O. Willi
- Institute for Laser and Plasma Physics, University of Düsseldorf, Düsseldorf, Germany
| | - F. Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, University of Düsseldorf, Medical Faculty, Germany
| |
Collapse
|
23
|
Johmura Y, Yamashita E, Shimada M, Nakanishi K, Nakanishi M. Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Sci Rep 2016; 6:31194. [PMID: 27507734 PMCID: PMC4979019 DOI: 10.1038/srep31194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023] Open
Abstract
Susceptibility to senescence caused by defective DNA repair is a major hallmark of progeroid syndrome patients, but molecular mechanisms of how defective DNA repair predisposes to senescence are largely unknown. We demonstrate here that suppression of DNA repair pathways extends the duration of Chk1-dependent G2 checkpoint activation and sensitizes cells to senescence through enhancement of mitosis skipping. Extension of G2 checkpoint activation by introduction of the TopBP1 activation domain and the nondegradable mutant of Claspin sensitizes cells to senescence. In contrast, a shortening of G2 checkpoint activation by expression of SIRT6 or depletion of OTUB2 reduces susceptibility to senescence. Fibroblasts from progeroid syndromes tested shows a correlation between an extension of G2 checkpoint activation and an increase in the susceptibility to senescence. These results suggest that extension of G2 checkpoint activation caused by defective DNA repair is critical for senescence predisposition in progeroid syndrome patients.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Emiri Yamashita
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
24
|
Enns L, Rasouli-Nia A, Hendzel M, Marples B, Weinfeld M. Association of ATM activation and DNA repair with induced radioresistance after low-dose irradiation. RADIATION PROTECTION DOSIMETRY 2015; 166:131-6. [PMID: 25904696 PMCID: PMC4572139 DOI: 10.1093/rpd/ncv203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mammalian cells often exhibit a hyper-radiosensitivity (HRS) to radiation doses <20 cGy, followed by increased radioresistance (IRR) at slightly higher doses (∼20-30 cGy). Here, the influence of DNA double-strand break repair (DSBR) on IRR was examined. The failure of Ataxia telangiectasia (AT) cells to undergo IRR reported by others was confirmed. Flow cytometric analysis indicated that normal cells fail to show a measurable increase in serine 1981 phosphorylated AT-mutated (ATM) protein after 10 cGy up to 4 h post irradiation, but a two- to fourfold increase after 25 cGy. Similarly, more proficient reduction of phosphorylated histone H2AX was observed 24 h after 25 cGy than after 10 cGy, suggesting that DSBR is more efficient during IRR than HRS. A direct examination of the consequences of inefficient DNA repair per se (as opposed to ATM-mediated signal transduction/cell cycle responses), by determining the clonogenic survival of cells lacking the DNA repair enzyme polynucleotide kinase/phosphatase, indicated that these cells have a response similar to AT cells, i.e. HRS but no IRR, strongly linking IRR to DSBR.
Collapse
Affiliation(s)
- L Enns
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| | - A Rasouli-Nia
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| | - M Hendzel
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| | - B Marples
- Department of Radiation Oncology, William Beaumont Hospital, 3811 W. Thirteen Mile Rd., 105-RI, Royal Oak, MI 48073, USA
| | - M Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
25
|
Maluchenko NV, Kulaeva OI, Kotova EY, Chupyrkina AA, Nikitin DV, Kirpichnikov MP, Studitsky VM. Molecular mechanisms of transcriptional regulation by Poly(ADP-ribose) polymerase 1. Mol Biol 2015. [DOI: 10.1134/s0026893315010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Histone variants: the artists of eukaryotic chromatin. SCIENCE CHINA-LIFE SCIENCES 2015; 58:232-9. [DOI: 10.1007/s11427-015-4817-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
27
|
Taricani L, Shanahan F, Malinao MC, Beaumont M, Parry D. A functional approach reveals a genetic and physical interaction between ribonucleotide reductase and CHK1 in mammalian cells. PLoS One 2014; 9:e111714. [PMID: 25375241 PMCID: PMC4222937 DOI: 10.1371/journal.pone.0111714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/07/2014] [Indexed: 11/30/2022] Open
Abstract
Ribonucleotide reductase (RNR) enzyme is composed of the homodimeric RRM1 and RRM2 subunits, which together form a heterotetramic active enzyme that catalyzes the de novo reduction of ribonucleotides to generate deoxyribonucleotides (dNTPs), which are required for DNA replication and DNA repair processes. In this study, we show that ablation of RRM1 and RRM2 by siRNA induces G1/S phase arrest, phosphorylation of Chk1 on Ser345 and phosphorylation of γ-H2AX on S139. Combinatorial ablation of RRM1 or RRM2 and Chk1 causes a dramatic accumulation of γ-H2AX, a marker of double-strand DNA breaks, suggesting that activation of Chk1 in this context is essential for suppression of DNA damage. Significantly, we demonstrate for the first time that Chk1 and RNR subunits co-immunoprecipitate from native cell extracts. These functional genomic studies suggest that RNR is a critical mediator of replication checkpoint activation.
Collapse
Affiliation(s)
- Lorena Taricani
- Merck Research Laboratories, Palo Alto, California, United States of America
| | - Frances Shanahan
- Merck Research Laboratories, Palo Alto, California, United States of America
| | | | - Maribel Beaumont
- Merck Research Laboratories, Palo Alto, California, United States of America
| | - David Parry
- Merck Research Laboratories, Palo Alto, California, United States of America
| |
Collapse
|
28
|
Menezes DL, Holt J, Tang Y, Feng J, Barsanti P, Pan Y, Ghoddusi M, Zhang W, Thomas G, Holash J, Lees E, Taricani L. A Synthetic Lethal Screen Reveals Enhanced Sensitivity to ATR Inhibitor Treatment in Mantle Cell Lymphoma with ATM Loss-of-Function. Mol Cancer Res 2014; 13:120-9. [DOI: 10.1158/1541-7786.mcr-14-0240] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells. Exp Mol Med 2013; 45:e38. [PMID: 23989060 PMCID: PMC3789262 DOI: 10.1038/emm.2013.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/03/2013] [Accepted: 06/21/2013] [Indexed: 01/23/2023] Open
Abstract
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.
Collapse
|
30
|
Schwab SA, Brand M, Schlude IK, Wuest W, Meier-Meitinger M, Distel L, Schulz-Wendtland R, Uder M, Kuefner MA. X-ray induced formation of γ-H2AX foci after full-field digital mammography and digital breast-tomosynthesis. PLoS One 2013; 8:e70660. [PMID: 23936236 PMCID: PMC3723730 DOI: 10.1371/journal.pone.0070660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/20/2013] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM) and to estimate foci after FFDM and digital breast-tomosynthesis (DBT) using a biological phantom model. MATERIALS AND METHODS The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified. RESULTS Median in-vivo foci level/cell was 0.086 (range 0.067-0.116) before and 0.094 (0.076-0.126) after FFDM (p = 0.0004). In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086-0.140) at skin level and 0.035 (range 0.030-0.050) at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040-0.081) at skin level and 0.015 (range 0.006-0.020) at glandular level. CONCLUSION In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.
Collapse
Affiliation(s)
- Siegfried A Schwab
- Institute of Radiology, University Erlangen/Nuremberg, Erlangen, Bavaria, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuefner MA, Brand M, Engert C, Kappey H, Uder M, Distel LV. The effect of calyculin A on the dephosphorylation of the histone γ-H2AX after formation of X-ray-induced DNA double-strand breaks in human blood lymphocytes. Int J Radiat Biol 2013; 89:424-32. [PMID: 23363014 DOI: 10.3109/09553002.2013.767991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effect of calyculin A on the number of γ-H2AX foci (phosphorylated histone variant 2AX) in lymphocytes after in vitro and in vivo irradiation with rather low doses as they are used in diagnostic and interventional radiology. MATERIALS AND METHODS For in vitro experiments blood samples of 14 healthy volunteers were irradiated with different doses (10, 50, 100 mGy) and incubated with (0.01, 0.1, 1, 10 nM) or without calyculin A for up to 2 hours. Non-irradiated samples with and without calyculin A served as controls. For in vivo evaluation blood samples were collected from seven patients undergoing computed tomography (CT) both with 1 nM calyculin A containing vials and vials without calyculin A. Foci were quantified in isolated lymphocytes using γ-H2AX immunofluorescence microscopy. RESULTS 1 nM calyculin A led to a complete inhibition of γ-H2AX foci loss in irradiated samples whereas no inhibition of p53 binding protein 1 (53 BP1) foci was found. Lower concentrations of the phosphatase inhibitor did not have a sufficient effect on foci decrease. Calyculin A did not affect foci levels in non-irradiated samples. If no calyculin A was added into the vial before the blood draws detectable CT-induced foci levels were lower in all patients with a reduction of the medians of 35%. CONCLUSIONS Using γ-H2AX immunofluorescence microscopy calyculin A can be a useful tool to mark the induced γ-H2AX foci after low dose irradiation and to avoid an underestimation of the real deoxyribonucleic acid (DNA) damage in in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Michael A Kuefner
- Department of Radiology, University Hospital of Erlangen-Nürnberg, Maximiliansplatz 1, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Targeting DNA damage response: threshold, chromatin landscape and beyond. Pharmacol Ther 2013; 138:46-52. [PMID: 23291058 DOI: 10.1016/j.pharmthera.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/24/2022]
Abstract
Cells are continually exposed to DNA assaults from exogenous and endogenous sources. To maintain genomic integrity, cells have evolved a highly conserved mechanism for repairing DNA lesions and, in particular, DNA double strand breaks (DSBs). Emerging evidence indicates that DNA repair/signaling machinery acts in an integrated fashion with chromatin structure at damaged sites. This review focuses on the interplay between histone modifications and the chromatin-mediated response to DNA damage.
Collapse
|
33
|
Kim YB, Jeung HC, Jeong I, Lee K, Rha SY, Chung HC, Kim GE. Mechanism of enhancement of radiation-induced cytotoxicity by sorafenib in colorectal cancer. JOURNAL OF RADIATION RESEARCH 2013; 54:52-60. [PMID: 22923745 PMCID: PMC3534276 DOI: 10.1093/jrr/rrs074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Sorafenib, an orally available multikinase inhibitor, combined with radiation has shown potential as an anticancer treatment in an in vitro and in vivo colon cancer model. In this study, we investigated the mechanism of enhancement of radiation-induced cytotoxicity by sorafenib in colorectal cancer. The effects of sorafenib on radiation-induced cytotoxicity of DLD-1 and HT-29 were evaluated via clonogenic assay. The impact of sorafenib on radiation-induced cell cycle kinetics and on apoptosis was analyzed using flow cytometry. Cyclin B1 was examined by western blot. As a measure of DNA damage after treatment, γ-H2AX foci and nuclear fragmentation were determined as a function of time after irradiation plus sorafenib combination. Tumor growth delay was used to evaluate the effects of sorafenib on in vivo radiation-induced cytotoxicity. Exposure of each cell line to sorafenib combined with irradiation resulted in an increased radiation-induced cytotoxicity with dose enhancement factors at a surviving fraction of 0.37 ranging from 1.13 to 1.76. Sorafenib strengthened radiation-induced accumulation of tumor cells in the G2-M phase with attenuated expression of cyclin B1, but had no effect on radiation-induced apoptosis. Exposure to sorafenib and radiation resulted in a greater number of remaining γ-H2AX foci and fragmented nuclei than radiation alone. In vivo tumor xenograft study confirmed that administration of sorafenib results in significant tumor growth inhibition when combined with radiation. These results indicate that sorafenib enhances radiation-induced cytotoxicity in colorectal cancer and suggest that the mechanism is associated with delaying repair of radiation-induced DNA damage and down-regulation of cyclin B1.
Collapse
Affiliation(s)
- Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University, College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dynamics of γH2AX formation and elimination in mammalian cells after X-irradiation. Biochimie 2012; 94:2416-22. [DOI: 10.1016/j.biochi.2012.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 06/19/2012] [Indexed: 11/18/2022]
|
35
|
Firsanov D, Kropotov A, Tomilin N. Phosphorylation of histone H2AX in human lymphocytes as a possible marker of effective cellular response to ionizing radiation. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1990519x1106006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues. Clin Epigenetics 2011; 2:283-97. [PMID: 22704343 PMCID: PMC3365398 DOI: 10.1007/s13148-011-0044-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022] Open
Abstract
A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues.
Collapse
|
37
|
Abstract
Manipulation of chromatin, in which genomic DNA is packaged, is a fundamental requirement for all DNA-based metabolic processes in eukayotic cells. Histone variant incorporation, histone post-translational modifications, and ATP-dependent chromatin remodeling are three major strategies for chromatin manipulation, and are relatively well characterized in transcriptional regulation. Emerging lines of evidence indicate that histone variants (H2AX and H2A.Z), histone post-translational modifications (acetylation, phosphorylation, methylation and ubiquitination) and chromatin-remodeling complexes (INO80, SWR1, SWI/SNF, RSC and NuRD) are important and direct players in the DNA double-strand break (DSB) response as well. New studies also reveal that incorporation of histone variants into nucleosomes, histone modifications and ATP-dependent chromatin remodeling are specifically and intimately connected during the DSB damage response. This article summarizes the recent advances in our understanding of the relationship between chromatin modifications and the DSB damage response.
Collapse
Affiliation(s)
- Yunhe Bao
- MD Anderson Cancer Center, Department of Molecular Carcinogenesis, 1808 Park Road 1-C, Smithville, TX 78957, USA
| |
Collapse
|
38
|
Abstract
Genome integrity is constantly monitored by sophisticated cellular networks, collectively termed the DNA damage response (DDR). A common feature of DDR proteins is their mobilization in response to genotoxic stress. Here, we outline how the development of various complementary methodologies has provided valuable insights into the spatiotemporal dynamics of DDR protein assembly/disassembly at sites of DNA strand breaks in eukaryotic cells. Considerable advances have also been made in understanding the underlying molecular mechanisms for these events, with post-translational modifications of DDR factors being shown to play prominent roles in controlling the formation of foci in response to DNA-damaging agents. We review these regulatory mechanisms and discuss their biological significance to the DDR.
Collapse
Affiliation(s)
- Sophie E. Polo
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Stephen P. Jackson
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
39
|
Zwicker F, Ebert M, Huber PE, Debus J, Weber KJ. A specific inhibitor of protein kinase CK2 delays gamma-H2Ax foci removal and reduces clonogenic survival of irradiated mammalian cells. Radiat Oncol 2011; 6:15. [PMID: 21310046 PMCID: PMC3045342 DOI: 10.1186/1748-717x-6-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 02/10/2011] [Indexed: 11/18/2022] Open
Abstract
Background The protein kinase CK2 sustains multiple pro-survival functions in cellular DNA damage response and its level is tightly regulated in normal cells but elevated in cancers. Because CK2 is thus considered as potential therapeutic target, DNA double-strand break (DSB) formation and rejoining, apoptosis induction and clonogenic survival was assessed in irradiated mammalian cells upon chemical inhibition of CK2. Methods MRC5 human fibroblasts and WIDR human colon carcinoma cells were incubated with highly specific CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB), or mock-treated, 2 hours prior to irradiation. DSB was measured by pulsed-field electrophoresis (PFGE) as well as gamma-H2AX foci formation and removal. Apoptosis induction was tested by DAPI staining and sub-G1 flow cytometry, survival was quantified by clonogenic assay. Results TBB treatment did not affect initial DNA fragmention (PFGE; up to 80 Gy) or foci formation (1 Gy). While DNA fragment rejoining (PFGE) was not inhibited by the drug, TBB clearly delayed gamma-H2AX foci disappearence during postirradiation incubation. No apoptosis induction could be detected for up to 38 hours for both cell lines and exposure conditions (monotherapies or combination), but TBB treatment at this moderately toxic concentration of 20 μM (about 40% survival) enhanced radiation-induced cell killing in the clonogenic assay. Conclusions The data imply a role of CK2 in gamma-H2AX dephosporylation, most likely through its known ability to stimulate PP2A phosphatase, rather than DSB rejoining. The slight but definite clonogenic radiosensitization by TBB does apparently not result from interference with an apoptosis suppression function of CK2 in these cells but could reflect inhibitor-induced uncoupling of DNA damage response decay from break ligation.
Collapse
Affiliation(s)
- Felix Zwicker
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
40
|
Chu PM, Chiou SH, Su TL, Lee YJ, Chen LH, Chen YW, Yen SH, Chen MT, Chen MH, Shih YH, Tu PH, Ma HI. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response. Radiat Oncol 2011; 6:7. [PMID: 21244709 PMCID: PMC3033832 DOI: 10.1186/1748-717x-6-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/19/2011] [Indexed: 12/29/2022] Open
Abstract
Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Graduate Institutes of Life Sciences, National Defense Medical Center & Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, de Seze R, Tenforde T, van Rongen E, Veyret B, Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 2010; 705:252-68. [PMID: 20955816 DOI: 10.1016/j.mrrev.2010.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/17/2022]
Abstract
There has been growing concern about the possibility of adverse health effects resulting from exposure to radiofrequency radiations (RFR), such as those emitted by wireless communication devices. Since the introduction of mobile phones many studies have been conducted regarding alleged health effects but there is still some uncertainty and no definitive conclusions have been reached so far. Although thermal effects are well understood they are not of great concern as they are unlikely to result from the typical low-level RFR exposures. Concern rests essentially with the possibility that RFR-exposure may induce non-thermal and/or long-term health effects such as an increased cancer risk. Consequently, possible genetic effects have often been studied but with mixed results. In this paper we review the data on alleged RFR-induced genetic effects from in vitro and in vivo investigations as well as from human cytogenetic biomonitoring surveys. Attention is also paid to combined exposures of RFR with chemical or physical agents. Again, however, no entirely consistent picture emerges. Many of the positive studies may well be due to thermal exposures, but a few studies suggest that biological effects can be seen at low levels of exposure. Overall, however, the evidence for low-level genotoxic effects is very weak.
Collapse
Affiliation(s)
- L Verschaeve
- O.D. Public Health & Surveillance, Laboratory of Toxicology, Scientific Institute of Public Health, Brussels, and Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Freeman AK, Monteiro AN. Phosphatases in the cellular response to DNA damage. Cell Commun Signal 2010; 8:27. [PMID: 20860841 PMCID: PMC2954851 DOI: 10.1186/1478-811x-8-27] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/22/2010] [Indexed: 12/11/2022] Open
Abstract
In the last fifteen years, rapid progress has been made in delineating the cellular response to DNA damage. The DNA damage response network is composed of a large number of proteins with different functions that detect and signal the presence of DNA damage in order to coordinate DNA repair with a variety of cellular processes, notably cell cycle progression. This signal, which radiates from the chromatin template, is driven primarily by phosphorylation events, mainly on serine and threonine residues. While we have accumulated detailed information about kinases and their substrates our understanding of the role of phosphatases in the DNA damage response is still preliminary. Identifying the phosphatases and their regulation will be instrumental to obtain a complete picture of the dynamics of the DNA damage response. Here we give an overview of the DNA damage response in mammalian cells and then review the data on the role of different phosphatases and discuss their biological relevance.
Collapse
Affiliation(s)
- Alyson K Freeman
- Risk Assessment, Detection, and Intervention Program, H, Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, 33612, USA.
| | | |
Collapse
|
43
|
Abstract
The cellular response to DNA damage is a crucial surveillance mechanism that maintains genomic integrity and prevents cancer progression. Previous studies identified multiple Ser/Thr protein kinases that have pivotal roles in the activation of this response. It is interesting that a growing body of evidence suggests that these kinases and their substrates are under tight modulation by numerous Ser/Thr phosphatases. In this study, we review recent reports that reveal new functions and regulation of these phosphatases. Similar to the kinases in this pathway, phosphatases may also be intimately involved in cancer progression and present valuable targets for cancer therapy.
Collapse
|
44
|
He HT, Fokas E, You A, Engenhart-Cabillic R, An HX. Siah1 proteins enhance radiosensitivity of human breast cancer cells. BMC Cancer 2010; 10:403. [PMID: 20682032 PMCID: PMC2921397 DOI: 10.1186/1471-2407-10-403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 08/03/2010] [Indexed: 11/12/2022] Open
Abstract
Background Siah proteins play an important role in cancer progression. We evaluated the effect of Siah1, its splice variants Siah1L and the Siah1 mutant with the RING finger deleted (Siah1ΔR) on radiosensitization of human breast cancer cells. Methods The status of Siah1 and Siah1L was analysed in five breast cancer cell lines. To establish stable cells, SKBR3 cells were transfected with Siah1, Siah-1L and Siah1ΔR. Siah1 function was suppressed by siRNA in MCF-7 cells. The impact of Siah1 overexpression and silencing on apoptosis, proliferation, survival, invasion ability and DNA repair was assessed in SKBR3 and MCF-7 cells, also in regards to radiation. Results Siah1 and Siah1L mRNA expression was absent in four of five breast cancer cells lines analysed. Overexpression of Siah1 and Siah1L enhanced radiation-induced apoptosis in stable transfected SKBR3 cells, while Siah1ΔR failed to show this effect. In addition, Siah1 and Siah1L significantly reduced cell clonogenic survival and proliferation. Siah1L sensitization enhancement ratio values were over 1.5 and 4.0 for clonogenic survival and proliferation, respectively, pointing to a highly cooperative and potentially synergistic fashion with radiation. Siah1 or Siah1L significantly reduced invasion ability of SKBR3 and suppressed Tcf/Lef factor activity. Importantly, Siah1 siRNA demonstrated opposite effects in MCF-7 cells. Siah1 and Siah1L overexpression resulted in inhibition of DNA repair as inferred by increased levels of DNA double-strand breaks in irradiated SKBR3 cells. Conclusion Our results reveal for the first time how overexpression of Siah1L and Siah1 can determine radiosensitivity of breast cancer cells. These findings suggest that development of drugs augmenting Siah1 and Siah1L activity could be a novel approach in improving tumor cell kill.
Collapse
Affiliation(s)
- Hai-Tao He
- Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg, Baldingerstr, D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Constantinescu D, Csoka AB, Navara CS, Schatten GP. Defective DSB repair correlates with abnormal nuclear morphology and is improved with FTI treatment in Hutchinson-Gilford progeria syndrome fibroblasts. Exp Cell Res 2010; 316:2747-59. [PMID: 20599958 DOI: 10.1016/j.yexcr.2010.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 05/06/2010] [Accepted: 05/18/2010] [Indexed: 12/15/2022]
Abstract
Impaired DSB repair has been implicated as a molecular mechanism contributing to the accelerating aging phenotype in Hutchinson-Gilford progeria syndrome (HGPS), but neither the extent nor the cause of the repair deficiency has been fully elucidated. Here we perform a quantitative analysis of the steady-state number of DSBs and the repair kinetics of ionizing radiation (IR)-induced DSBs in HGPS cells. We report an elevated steady-state number of DSBs and impaired repair of IR-induced DSBs, both of which correlated strongly with abnormal nuclear morphology. We recreated the HGPS cellular phenotype in human coronary artery endothelial cells for the first time by lentiviral transduction of GFP-progerin, which also resulted in impaired repair of IR-induced DSBs, and which correlated with abnormal nuclear morphology. Farnesyl transferase inhibitor (FTI) treatment improved the repair of IR-induced DSBs, but only in HGPS cells whose nuclear morphology was also normalized. Interestingly, FTI treatment did not result in a statistically significant reduction in the higher steady-state number of DSBs. We also report a delay in localization of phospho-NBS1 and MRE11, MRN complex repair factors necessary for homologous recombination (HR) repair, to DSBs in HGPS cells. Our results demonstrate a correlation between nuclear structural abnormalities and the DSB repair defect, suggesting a mechanistic link that may involve delayed repair factor localization to DNA damage. Further, our results show that similar to other HGPS phenotypes, FTI treatment has a beneficial effect on DSB repair.
Collapse
Affiliation(s)
- Dan Constantinescu
- Department of Cell Biology-Physiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
46
|
Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M, Witt O, Deubzer HE, Kulozik AE, Debus J, Weber KJ. Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2010; 78:237-45. [PMID: 20646843 DOI: 10.1016/j.ijrobp.2010.03.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/01/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. METHODS AND MATERIALS Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. RESULTS SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). CONCLUSION Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.
Collapse
Affiliation(s)
- Claudia Blattmann
- Department of Pediatric Oncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ahmed EA, Philippens MEP, Kal HB, de Rooij DG, de Boer P. Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes. Mutat Res 2010; 688:12-18. [PMID: 20167225 DOI: 10.1016/j.mrfmmm.2010.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/28/2010] [Accepted: 02/09/2010] [Indexed: 05/28/2023]
Abstract
This study was designed to obtain a better insight into the relative contribution of homologous recombination (HR) and non-homologous end joining (NHEJ) to the repair of radiation-induced DNA double-strand breaks (DSBs) at first meiotic prophase. Early and late pachytene and early diplotene spermatocytes that had completed crossing over were sampled. We studied the kinetics of gamma-H2AX chromatin foci removal after irradiation of mice deficient for HR and mice deficient for NHEJ. Analyzing gamma-H2AX signals in unirradiated RAD54/RAD54B deficient spermatocytes indicated incomplete meiotic recombination repair due to the pronounced increase of gamma-H2AX foci in late prophase primary spermatocytes. In these mice, 8h after irradiation, early pachytene spermatocytes showed a reduction of the numbers of gamma-H2AX foci by 52% compared to 82% in the wild type, the difference being significant. However, after crossing over (in late pachytene and early diplotene), no effect of RAD54/RAD54B deficiency on the reduction of irradiation-induced foci was observed. In NHEJ deficient SCID mice, repair kinetics in early spermatocytes were similar to those in wild type mice. However, 1h after irradiation in late pachytene and early diplotene spermatocytes 1.7 times more foci were found than in wild type mice. This difference might be related to the absence of a DNA-PKcs dependent fast repair component in SCID mice. As subsequent repair is normal, HR likely is taking over. Taken together, the results obtained in RAD54/RAD54B deficient mice and in SCID mice indicate that DSB repair in early pachytene spermatocytes is mainly carried out through HR. In late spermatocytes (late pachytenes and early diplotenes) NHEJ is active. However, probably there is an interplay between these repair pathways and when in late spermatocytes the NHEJ pathway is compromised HR may take over.
Collapse
Affiliation(s)
- Emad A Ahmed
- Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Ho CY, Li HY. DNA damage during mitosis invokes a JNK-mediated stress response that leads to cell death. J Cell Biochem 2010; 110:725-31. [DOI: 10.1002/jcb.22583] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Ahmed EA, de Boer P, Philippens MEP, Kal HB, de Rooij DG. Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids. Mutat Res 2010; 683:84-90. [PMID: 19887075 DOI: 10.1016/j.mrfmmm.2009.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
Abstract
The repair of DNA double strand breaks (DSBs) in male germ cells is slower and differently regulated compared to that in somatic cells. Round spermatids show DSB repair and are radioresistant to apoptosis induction. Mutation induction studies using ionizing irradiation, indicated a high frequency of chromosome aberrations (CA) in the next generation. Since they are in a G1 comparable stage of the cell cycle, haploid spermatids are expected to repair DSBs by the non-homologous end-joining pathway (NHEJ). However, immunohistochemical evidence indicates that not all components of the classical NHEJ pathway are available since the presence of DNA-PKcs cannot be shown. Here, we demonstrate that round spermatids, as well as most other types of male germ cells express both Parp1 and XRCC1. Therefore, we have determined whether the alternative Parp1/XRCC1 dependent NHEJ pathway is active in these nuclei and also have tested for classical NHEJ activity by a genetic method. To evaluate DSB repair in SCID mice, deficient for DNA-PKcs, and to study the involvement of the Parp1/XRCC1 dependent NHEJ pathway in round spermatids, the loss of gamma-H2AX foci after irradiation has been determined in nucleus spreads of round spermatids of SCID mice and in nucleus spreads and histological sections of Parp1-inhibited mice and their respective controls. Results show that around half of the breaks in randomly selected round spermatids are repaired between 1 and 8h after irradiation. The repair of 16% of the induced DSBs requires DNA-PKcs and 21% Parp1. Foci numbers in the Parp1-inhibited testes tend to be higher in spermatids of all epithelial stages reaching significance in stages I-III which indicates an active Parp1/XRCC1 pathway in round spermatids and a decreased repair capacity in later round spermatid stages. In Parp1-inhibited SCID mice only 14.5% of the breaks were repaired 8h after irradiation indicating additivity of the two NHEJ pathways in round spermatids.
Collapse
Affiliation(s)
- Emad A Ahmed
- Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Cahuzac N, Studény A, Marshall K, Versteege I, Wetenhall K, Pfeiffer B, Léonce S, Hickman JA, Pierré A, Golsteyn RM. An unusual DNA binding compound, S23906, induces mitotic catastrophe in cultured human cells. Cancer Lett 2010; 289:178-87. [DOI: 10.1016/j.canlet.2009.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/04/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
|