1
|
Yadav H, Sharma RS, Singh R. Immunotoxicity of radiofrequency radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119793. [PMID: 35863710 DOI: 10.1016/j.envpol.2022.119793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence recommends that radiofrequency radiations might be a new type of environmental pollutant. The consequences of RFR on the human immune system have gained considerable interest in recent years, not only to examine probable negative effects on health but also to understand if RFR can modulate the immune response positively. Although several studies have been published on the immune effects of RFR but no satisfactory agreement has been reached. Hence this review aims to evaluate the RFR modulating impacts on particular immune cells contributing to various innate or adaptive immune responses. In view of existing pieces of evidence, we have suggested an intracellular signaling cascade responsible for RFR action. The bio-effects of RFR on immune cell morphology, viability, proliferation, genome integrity, and immune functions such as ROS, cytokine secretion, phagocytosis, apoptosis, etc. are discussed. The majority of existing evidence point toward the possible shifts in the activity, number, and/or function of immunocompetent cells, but the outcome of several studies is still contradictory and needs further studies to reach a conclusion. Also, the direct association of experimental studies to human risks might not be helpful as exposure parameters vary in real life. On the basis of recent available literature, we suggest that special experiments should be designed to test each particular signal utilized in communication technologies to rule out the hypothesis that longer exposure to RFR emitting devices would affect the immunity by inducing genotoxic effects in human immune cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | | | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
2
|
Lai H, Levitt BB. The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagn Biol Med 2022; 41:230-255. [PMID: 35438055 DOI: 10.1080/15368378.2022.2065683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the literature on three important exposure metrics that are inadequately represented in most major radiofrequency radiation (RFR) exposure guidelines today: intensity, exposure duration, and signal modulation. Exposure intensity produces unpredictable effects as demonstrated by nonlinear effects. This is most likely caused by the biological system's ability to adjust and compensate but could lead to eventual biomic breakdown after prolonged exposure. A review of 112 low-intensity studies reveals that biological effects of RFR could occur at a median specific absorption rate of 0.0165 W/kg. Intensity and exposure duration interact since the dose of energy absorbed is the product of intensity and time. The result is that RFR behaves like a biological "stressor" capable of affecting numerous living systems. In addition to intensity and duration, man-made RFR is generally modulated to allow information to be encrypted. The effects of modulation on biological functions are not well understood. Four types of modulation outcomes are discussed. In addition, it is invalid to make direct comparisons between thermal energy and radiofrequency electromagnetic energy. Research data indicate that electromagnetic energy is more biologically potent in causing effects than thermal changes. The two likely functionthrough different mechanisms. As such, any current RFR exposure guidelines based on acute continuous-wave exposure are inadequate for health protection.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
3
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
4
|
Asano M, Tanaka S, Sakaguchi M, Matsumura H, Yamaguchi T, Fujita Y, Tabuse K. Normothermic Microwave Irradiation Induces Death of HL-60 Cells through Heat-Independent Apoptosis. Sci Rep 2017; 7:11406. [PMID: 28900243 PMCID: PMC5595850 DOI: 10.1038/s41598-017-11784-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/21/2017] [Indexed: 11/21/2022] Open
Abstract
Microwaves have been used in various cancer therapies to generate heat and increase tumor cell temperature; however, their use is limited by their side-effects in normal cells and the acquisition of heat resistance. We previously developed a microwave irradiation method that kills cultured cancer cells, including a human promyelomonocytic leukemia (HL-60) cell line, by maintaining a cellular temperature of 37 °C during treatment. In the present study, we investigated the mechanisms underlying HL-60 cell death during this treatment. The microwave-irradiated HL-60 cells appear to undergo caspase-independent apoptosis, whereby DNA fragmentation was induced by mitochondrial dysfunction-related expression of apoptosis-inducing factor (AIF). Caspase-dependent apoptosis was also interrupted by the loss of apoptotic protease-activating factor 1 (Apaf-1) and caspase 9. Moreover, these cells did not exhibit a heat-stress response, as shown by the lack of heat shock protein 70 (HSP70) upregulation. Alternatively, in HL-60 cells heated at 42.5 °C, HSP70 expression was upregulated and a pathway resembling death receptor-induced apoptosis was activated while mitochondrial function was maintained. Collectively, these results suggest that the cell death pathway activated by our 37 °C microwave irradiation method differs from that induced during other heating methods and support the use of normothermic microwave irradiation in clinical cancer treatments.
Collapse
Affiliation(s)
- Mamiko Asano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan. .,Laboratory for Nano-Bio Probes, Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Japan.
| | - Satoshi Tanaka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Minoru Sakaguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Hitoshi Matsumura
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Takako Yamaguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Yoshikazu Fujita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Katsuyoshi Tabuse
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| |
Collapse
|
5
|
Effects of Normothermic Conditioned Microwave Irradiation on Cultured Cells Using an Irradiation System with Semiconductor Oscillator and Thermo-regulatory Applicator. Sci Rep 2017; 7:41244. [PMID: 28145466 PMCID: PMC5286535 DOI: 10.1038/srep41244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/19/2016] [Indexed: 01/30/2023] Open
Abstract
We investigated the effects of microwave irradiation under normothermic conditions on cultured cells. For this study, we developed an irradiation system constituted with semiconductor microwave oscillator (2.45 GHz) and thermos-regulatory applicator, which could irradiate microwaves at varied output powers to maintain the temperature of cultured cells at 37 °C. Seven out of eight types of cultured cells were killed by microwave irradiation, where four were not affected by thermal treatment at 42.5 °C. Since the dielectric properties such as ε’, ε” and tanδ showed similar values at 2.45 GHz among cell types and media, the degree of microwave energy absorbed by cells might be almost the same among cell types. Thus, the vulnerability of cells to microwave irradiation might be different among cell types. In HL-60 cells, which were the most sensitive to microwave irradiation, the viability decreased as irradiation time and irradiation output increased; accordingly, the decrease in viability was correlated to an increase in total joule. However, when a high or low amount of joules per minute was supplied, the correlation between cellular viability and total joules became relatively weak. It is hypothesized that kinds of cancer cells are efficiently killed by respective specific output of microwave under normothermic cellular conditions.
Collapse
|
6
|
Woelders H, de Wit A, Lourens A, Stockhofe N, Engel B, Hulsegge I, Schokker D, van Heijningen P, Vossen S, Bekers D, Zwamborn P. Study of potential health effects of electromagnetic fields of telephony and Wi-Fi, using chicken embryo development as animal model. Bioelectromagnetics 2017; 38:186-203. [PMID: 28092407 DOI: 10.1002/bem.22026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/19/2016] [Indexed: 11/10/2022]
Abstract
The objective of this study is to investigate possible biological effects of radiofrequency electromagnetic fields (RF-EMF) as used in modern wireless telecommunication in a well-controlled experimental environment using chicken embryo development as animal model. Chicken eggs were incubated under continuous experimental exposure to GSM (1.8 GHz), DECT (1.88 GHz), UMTS (2.1 GHz), and WLAN (5.6 GHz) radiation, with the appropriate modulation protocol, using a homogeneous field distribution at a field strength of approximately 3 V/m, representing the maximum field level in a normal living environment. Radiation-shielded exposure units/egg incubators were operating in parallel for exposed and control eggs in a climatized homogeneous environment, using 450 eggs per treatment in three successive rounds per treatment. Dosimetry of the exposure (field characteristics and specific absorption rate) were studied. Biological parameters studied included embryo death during incubation, hatching percentage, and various morphological and histological parameters of embryos and chicks and their organs, and gene expression profiles of embryos on day 7 and day 18 of incubation by microarray and qPCR. No conclusive evidence was found for induced embryonic mortality or malformations by exposure to the used EMFs, or for effects on the other measured parameters. Estimated differences between treatment groups were always small and the effect of treatment was not significant. In a statistical model that ignored possible interaction between rounds and exposure units, some of the many pairwise comparisons of exposed versus control had P-values lower than 0.05, but were not significant after correction for multiple testing. Bioelectromagnetics. 38:186-203, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henri Woelders
- Wageningen Livestock Research, Wageningen, the Netherlands
| | - Agnes de Wit
- Wageningen Livestock Research, Wageningen, the Netherlands
| | | | | | - Bas Engel
- Biometris, Wageningen University, Wageningen, the Netherlands
| | - Ina Hulsegge
- Wageningen Livestock Research, Wageningen, the Netherlands
| | | | - Paula van Heijningen
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
7
|
Kim HS, Paik MJ, Lee YH, Lee YS, Choi HD, Pack JK, Kim N, Ahn YH. Eight hours of nocturnal 915 MHz radiofrequency identification (RFID) exposure reduces urinary levels of melatonin and its metabolite via pineal arylalkylamine N-acetyltransferase activity in male rats. Int J Radiat Biol 2016; 91:898-907. [PMID: 26189731 DOI: 10.3109/09553002.2015.1075075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE We investigated the effects of whole-body exposure to the 915 MHz radiofrequency identification (RFID) on melatonin biosynthesis and the activity of rat pineal arylalkylamine N-acetyltransferase (AANAT). MATERIALS AND METHODS Rats were exposed to RFID (whole-body specific absorption rate, 4 W/kg) for 8 h/day, 5 days/week, for weeks during the nighttime. Total volume of urine excreted during a 24-h period was collected after RFID exposure. Urinary melatonin and 6-hydroxymelatonin sulfate (6-OHMS) was measured by gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. AANAT enzyme activity was measured using liquid biphasic dif-13 fusion assay. Protein levels and mRNA expression of AANAT was 14 measured by Western blot and reverse transcription polymerase 15 chain reaction (RT-PCR) analysis, respectively. RESULTS Eight hours of nocturnal RFID exposure caused a significant reduction in both urinary melatonin (p = 0. 003) and 6-OHMS (p = 0. 026). Activity, protein levels, and mRNA expression of AANAT were suppressed by exposure to RFID (p < 0. 05). CONCLUSIONS Our results suggest that nocturnal RFID exposure can cause reductions in the levels of both urinary melatonin and 6-OHMS, possibly due to decreased melatonin biosynthesis via suppression of Aanat gene transcription in the rat pineal gland.
Collapse
Affiliation(s)
- Hye Sun Kim
- a Department of Neurosurgery , Ajou University School of Medicine , Suwon
| | - Man-Jeong Paik
- b College of Pharmacy , Sunchon National University , Sunchon
| | - Yu Hee Lee
- a Department of Neurosurgery , Ajou University School of Medicine , Suwon ;,c Neuroscience Graduate Program, Department of Biomedical Sciences , Graduate School of Ajou University , Suwon
| | - Yun-Sil Lee
- d Division of Life Science and Pharmaceuticals, College of Pharmacy , Ewha Woman's University , Seoul
| | - Hyung Do Choi
- e Radio Technology Research Department , Electronics and Telecommunications Research Institute , Daejeon
| | - Jeong-Ki Pack
- f Department of Radio Sciences and Engineering, College of Engineering , Chungnam National University , Daejeon
| | - Nam Kim
- g School of Electrical and Computer Engineering , Chungbuk National University , Cheongju , Republic of Korea
| | - Young Hwan Ahn
- a Department of Neurosurgery , Ajou University School of Medicine , Suwon ;,c Neuroscience Graduate Program, Department of Biomedical Sciences , Graduate School of Ajou University , Suwon
| |
Collapse
|
8
|
Gao Y, Lu Y, Yi J, Li Z, Gao D, Yu Z, Wu T, Zhang C. A Genome-Wide mRNA Expression Profile in Caenorhabditis elegans under Prolonged Exposure to 1750MHz Radiofrequency Fields. PLoS One 2016; 11:e0147273. [PMID: 26811916 PMCID: PMC4727783 DOI: 10.1371/journal.pone.0147273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE C. elegans has been used as a biomonitor for microwave-induced stress. However, the RF (radiofrequency) fields that have been used in previous studies were weak (≤1.8W/kg), and the bio-effects on C. elegans were mostly negative or ambiguous. Therefore, this study used more intense RF fields (SAR = 3W/kg) and longer time course of exposure (60h at 25°C, L1 stage through adult stage) to investigate the biological consequences of 1750 MHz RF fields in wild-type worms. METHODS The growth rates and lifespans of RF-exposure group and the control group were carefully recorded. RNA samples were collected at L4 (35h) and gravid adult (50h) stages for further high-throughput sequencing, focusing on differences between the RF-exposure and the sham control groups. RESULTS The RF-exposed and sham control groups developed at almost the same rate and had similar longevity curves. In L4 stage worms, 94 up-regulated and 17 down-regulated genes were identified, while 186 up-regulated and 3 down-regulated genes were identified in adult stage worms. GO analysis showed that the differentially expressed genes at 35h were associated with growth, body morphogenesis and collagen and cuticle-based development. Genes that were linked to growth rate and reproductive development were differentially expressed at 50h. Some embryonic and larval development genes in the offspring were also differentially expressed at 50h. Ten genes were differentially expressed at both 35h and 50h, most of which were involved in both embryonic and larval developmental processes. Although prolonged RF fields did not induce significant temperature increase in RF exposure groups, the temperature inside worms during exposure was unknown. CONCLUSIONS No harmful effects were observed in prolonged exposure to 1750 MHz RF fields at SAR of 3W/kg on development and longevity of C. elegans. Although some differentially expressed genes were found after prolonged RF exposure, these differences were ascribed to oscillating gene expression patterns in L4 and gravid adult worms. It was also difficult to rule out a weak thermal effect caused by prolonged RF exposure inside the worms.
Collapse
Affiliation(s)
- Yan Gao
- Beijing Institute of Radiation Medicine, Cognitive and Mental Health Research Center, State Key Laboratory of Proteomics, State Key Laboratory of Millimeter Wave, Beijing, 100850, China
| | - Yiming Lu
- Beijing Institute of Radiation Medicine, Cognitive and Mental Health Research Center, State Key Laboratory of Proteomics, State Key Laboratory of Millimeter Wave, Beijing, 100850, China
| | - Jianming Yi
- Beijing Institute of Radiation Medicine, Cognitive and Mental Health Research Center, State Key Laboratory of Proteomics, State Key Laboratory of Millimeter Wave, Beijing, 100850, China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, Cognitive and Mental Health Research Center, State Key Laboratory of Proteomics, State Key Laboratory of Millimeter Wave, Beijing, 100850, China
| | - Dawen Gao
- Beijing Institute of Radiation Medicine, Cognitive and Mental Health Research Center, State Key Laboratory of Proteomics, State Key Laboratory of Millimeter Wave, Beijing, 100850, China
| | - Zhoulong Yu
- Beijing Institute of Radiation Medicine, Cognitive and Mental Health Research Center, State Key Laboratory of Proteomics, State Key Laboratory of Millimeter Wave, Beijing, 100850, China
| | - Tongning Wu
- China Academy of Telecommunication Research of Ministry of Industry and Information Technology, No. 52 Huayuanbei Road, Beijing, 100191, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, Cognitive and Mental Health Research Center, State Key Laboratory of Proteomics, State Key Laboratory of Millimeter Wave, Beijing, 100850, China
| |
Collapse
|
9
|
Paffi A, Liberti M, Apollonio F, Sheppard A, Balzano Q. In vitro exposure: Linear and non-linear thermodynamic events in Petri dishes. Bioelectromagnetics 2015; 36:527-37. [PMID: 25995097 DOI: 10.1002/bem.21923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 05/04/2015] [Indexed: 11/10/2022]
Abstract
We conducted an electromagnetic-thermal analysis of Petri dishes filled with different medium volumes under different radio frequency exposure conditions with the aim of identifying linear and non-linear parameters that might explain contradictory results of many in vitro bioelectromagnetic experiments. We found that power loss density and temperature depend on shape, size, and orientation of the exposed sample with respect to direction of incident energy, showing that the liquid medium acts as a receiving antenna. In addition, we investigated the possibility of convection from thermodynamic principles within the liquid medium. For a 35 mm diameter Petri dish, a 2 or 4 ml medium volume is too small to support vertical convection. Conversely, horizontal convective motion is possible for H-polarization exposures at 1.8 GHz.
Collapse
Affiliation(s)
- Alessandra Paffi
- ICEmB (Italian Interuniversity Center Electromagnetic Field and Biosystems) at "La Sapienza", University of Rome, Rome, Italy
| | - Micaela Liberti
- ICEmB (Italian Interuniversity Center Electromagnetic Field and Biosystems) at "La Sapienza", University of Rome, Rome, Italy
| | - Francesca Apollonio
- ICEmB (Italian Interuniversity Center Electromagnetic Field and Biosystems) at "La Sapienza", University of Rome, Rome, Italy
| | | | - Quirino Balzano
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland
| |
Collapse
|
10
|
Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant. Int Arch Occup Environ Health 2015; 89:33-42. [DOI: 10.1007/s00420-015-1049-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
|
11
|
Schmid G, Kuster N. The discrepancy between maximum in vitro exposure levels and realistic conservative exposure levels of mobile phones operating at 900/1800 MHz. Bioelectromagnetics 2015; 36:133-48. [DOI: 10.1002/bem.21895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS); Zurich Switzerland
- Swiss Federal Institute of Technology (ETH); Zurich Switzerland
| |
Collapse
|
12
|
Glushkova OV, Khrenov MO, Novoselova TV, Lunin SM, Parfenyuk SB, Alekseev SI, Fesenko EE, Novoselova EG. The role of the NF-κB, SAPK/JNK, and TLR4 signalling pathways in the responses of RAW 264.7 cells to extremely low-intensity microwaves. Int J Radiat Biol 2015; 91:321-8. [DOI: 10.3109/09553002.2014.996261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Sagioglou NE, Manta AK, Giannarakis IK, Skouroliakou AS, Margaritis LH. Apoptotic cell death duringDrosophilaoogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure. Electromagn Biol Med 2014; 35:40-53. [DOI: 10.3109/15368378.2014.971959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Kim HS, Paik MJ, Kim YJ, Lee G, Lee YS, Choi HD, Kim BC, Pack JK, Kim N, Ahn YH. Effects of whole-body exposure to 915 MHz RFID on secretory functions of the thyroid system in rats. Bioelectromagnetics 2013; 34:521-9. [PMID: 23744731 DOI: 10.1002/bem.21797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/23/2013] [Indexed: 11/08/2022]
Abstract
As a part of an investigation on the potential risks of radiofrequency identification (RFID) on human health, we studied whether exposure to 915 MHz RFID in rats significantly affected the secretory function of the thyroid system. A reverberation chamber was used as a whole-body exposure system. Male Sprague-Dawley rats were exposed for 8 h per day, 5 days per week, for a duration of 2, 4, 8, or 16 weeks. The estimated whole-body average specific absorption rate (SAR) varied from 3.2 to 4.6 W/kg depending on the age/mass of the animals for the field of the 915 MHz RFID reader. Plasma levels of triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were evaluated via enzyme-linked immunosorbent assay. Morphological changes in the thyroid gland were then analyzed. No changes in T3, T4, or TSH were observed over time between the sham- and RFID-exposed groups. We suggest that subchronic exposure to 915 MHz RFID at a SAR of 4 W/kg does not cause significant effects on thyroid secretory function.
Collapse
Affiliation(s)
- Hye Sun Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang XS, He GL, Hao YT, Xiao Y, Chen CH, Zhang GB, Yu ZP. Exposure to 2.45GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 2012; 88:371-8. [DOI: 10.1016/j.brainresbull.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/08/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
|
16
|
Terro F, Magnaudeix A, Crochetet M, Martin L, Bourthoumieu S, Wilson CM, Yardin C, Leveque P. GSM-900MHz at low dose temperature-dependently downregulates α-synuclein in cultured cerebral cells independently of chaperone-mediated-autophagy. Toxicology 2012; 292:136-44. [PMID: 22185909 DOI: 10.1016/j.tox.2011.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/09/2011] [Accepted: 12/05/2011] [Indexed: 12/24/2022]
Abstract
The expanding use of GSM devices has resulted in public concern. Chaperone-mediated autophagy (CMA) is a way for protein degradation in the lysosomes and increases under stress conditions as a cell defense response. α-synuclein, a CMA substrate, is a component of Parkinson disease. Since GSM might constitute a stress signal, we raised the possibility that GSM could alter the CMA process. Here, we analyzed the effects of chronic exposure to a low GSM-900MHz dose on apoptosis and CMA. Cultured cerebral cortical cells were sham-exposed or exposed to GSM-900MHz at specific absorption rate (SAR): 0.25W/kg for 24 h using a wire-patch cell. Apoptosis was analyzed by DAPI stain of the nuclei and western blot of cleaved caspase-3. The expression of proteins involved in CMA (HSC70, HSP40, HSP90 and LAMP-2A) and α-synuclein were analyzed by western blot. CMA was also quantified in situ by analyzing the cell localization of active lysosomes. 24 h exposure to GSM-900MHz resulted in ∼0.5°C temperature rise. It did not induce apoptosis but increased HSC70 by 26% and slightly decreased HSP90 (<10%). It also decreased α-synuclein by 24% independently of CMA, since the localization of active lysosomes was not altered. Comparable effects were observed in cells incubated at 37.5°C, a condition that mimics the GSM-generated temperature rise. The GSM-induced changes in HSC70, HSP90 and α-synuclein are most likely linked to temperature rise. We did not observe any immediate effect on cell viability. However, the delayed and long term consequences (protective or deleterious) of these changes on cell fate should be examined.
Collapse
Affiliation(s)
- Faraj Terro
- Groupe de Neurobiologie Cellulaire - EA3842 Homéostasie cellulaire et pathologies, Faculté de Médecine, 2 rue du Dr Raymond Marcland, 87025 Limoges Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim HN, Han NK, Hong MN, Chi SG, Lee YS, Kim T, Pack JK, Choi HD, Kim N, Lee JS. Analysis of the cellular stress response in MCF10A cells exposed to combined radio frequency radiation. JOURNAL OF RADIATION RESEARCH 2012; 53:176-183. [PMID: 22510589 DOI: 10.1269/jrr.11048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Exposure to environmental stressors can be measured by monitoring the cellular stress response in target cells. Here, we used the cellular stress response to investigate whether single or combined radio frequency (RF) radiation could induce stress response in human cells. Cellular stress responses in MCF10A human breast epithelial cells were characterized after exposure to 4 h of RF radiation [code division multiple access (CDMA) or CDMA plus wideband CDMA (WCDMA)] or 2 h RF radiation on 3 consecutive days. Specific absorption rate (SAR) was 4.0 W/kg for CDMA signal alone exposure and 2.0 W/kg each, 4.0 W/kg in total for combined CDMA plus WCDMA signals. Expression levels and phosphorylation states of specific heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs) were analyzed by Western blot. It was found that HSP27 and ERK1/2 phosphorylations are the most sensitive markers of the stress response in MCF10A cells exposed to heat shock or ionizing radiation. Using these markers, we demonstrated that neither one-time nor repeated single (CDMA alone) or combined (CDMA plus WCDMA) RF radiation exposure significantly altered HSP27 and ERK1/2 phosphorylations in MCF10A cells (p > 0.05). The lack of a statistically significant alteration in HSP27 and ERK1/2 phosphorylations suggests that single or combined RF radiation exposure did not elicit activation of HSP27 and ERK1/2 in MCF10A cells.
Collapse
Affiliation(s)
- Han-Na Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Juutilainen J, Höytö A, Kumlin T, Naarala J. Review of possible modulation-dependent biological effects of radiofrequency fields. Bioelectromagnetics 2011; 32:511-34. [PMID: 21480304 DOI: 10.1002/bem.20652] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/04/2011] [Indexed: 12/13/2022]
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
19
|
Effect of electromagnetic field induced by radio frequency waves at 900 to 1800 MHz on bone mineral density of iliac bone wings. J Craniofac Surg 2010; 20:1556-60. [PMID: 19816295 DOI: 10.1097/scs.0b013e3181b78559] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Telecommunication has gained a different meaning in daily life with the introduction of the mobile phone system. However, electromagnetic pollution has increased in parallel to this improvement. In this study, we aimed to investigate the effects of electromagnetic waves emitted from cellular phones operating at a frequency of 900 to 1800 MHz on the bone mineral density of the human iliac bone wings, which are the most common carriage sites for mobile phones. MATERIALS AND METHODS A total of 150 male volunteer participants were included in this study. The mean age was 31.85 years, and the age range was between 21 and 57 years. The participants were separated into 2 groups based on as follows: iliac side exposed to electromagnetic wave (group 1) and unexposed side (group 2). Of the total number of participants, 122 were carrying their phones on their right iliac wings, whereas 28 were carrying their phones on their left iliac wings. The mean daily carriage duration was 14.7 hours (between 12 and 20 h), and the mean duration for cellular phone use was 6.2 years (between 4 and 9 yr). Mineral bone density was measured using dual-energy x-ray absorptiometry in the right and the left iliac wings of all the participants. The SPSS 15 software (SPSS Inc, Chicago, IL) was used for statistical analysis. In the comparison of the 2 sides, Student t test was performed and P < 0.05 was considered significant. RESULTS The mean dual-energy x-ray absorptiometry values measured from group 1 were slightly lower than those from group 2, but there was no statistically significant difference between the groups (P > 0.05). In addition, the mean values of group 1 were not as low as those measured in osteopeny or osteoporosis cases. CONCLUSIONS Current data may suggest that taking into consideration cellular phone use when iliac bone graft is necessary in clinical practice would constitute an important factor for more favorable outcomes.
Collapse
|
20
|
Ding GR, Wang XW, Li KC, Qiu LB, Xu SL, Tan J, Guo GZ. Comparison of Hsps expression after radio-frequency field exposure in three human glioma cell lines. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:374-380. [PMID: 20163061 DOI: 10.1016/s0895-3988(10)60014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). METHODS Cells were exposed to sham or 1950 MHz continuous-wave for 1 h. Specific absorption rates (SARs) were 1 and 10 W/kg. Localization and expression of Hsp27 and phosphorylated Hsp27 ((78) Ser) (p-Hsp27) were examined by immunocytochemistry. Expression levels of Hsp27, p-Hs27, and Hsp70 were determined by Western blotting. RESULTS The Hsp27 was primarily located within the cytoplasm, p-Hsp27 in both cytoplasm and nuclei of MO54, A172, and T98 cells. RF field exposure did not affect the distribution or expression of Hsp27. In addition, Western blotting showed no significant differences in protein expression of Hsp27 or Hsp70 between sham- and RF field-exposed cells at a SAR of 1 W/kg and 10 W/kg for 1 h in three cells lines. Exposure to RF field at a SAR of 10 W/kg for 1 h slightly decreased the protein level of phosphorylated Hsp27 in MO54 cells. CONCLUSION The 1950 MHz RF field has only little or no apparent effect on Hsp70 and Hsp27 expression in MO54, A172, and T98 cells.
Collapse
Affiliation(s)
- Gui-Rong Ding
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi 'an 710032, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
21
|
McNamee JP, Chauhan V. Radiofrequency Radiation and Gene/Protein Expression: A Review. Radiat Res 2009; 172:265-87. [DOI: 10.1667/rr1726.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Sanchez S, Masuda H, Ruffié G, De Gannes FP, Billaudel B, Haro E, Lévêque P, Lagroye I, Veyret B. Effect of GSM-900 and -1800 signals on the skin of hairless rats. III: Expression of heat shock proteins. Int J Radiat Biol 2009; 84:61-8. [PMID: 17852563 DOI: 10.1080/09553000701616098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE We previously reported the inability of Global System for Mobile communication (GSM) signals at 900 (GSM-900) and 1800 (GSM-1800) MegaHertz (MHz) to induce morphological and physiological changes in epidermis of Hairless rats. The present work aimed at investigating heat shock proteins (HSP) expression--as a cellular stress marker--in the skin of Hairless rats exposed to GSM-900 and -1800 signals. MATERIALS AND METHODS We studied the expression of the Heat-shock cognate (Hsc) 70, and the inducible forms of the Heat-shock proteins (Hsp) 25 and 70. Rat skin was locally exposed using loop antenna and restrain rockets to test several Specific Absorption Rates (SAR) and exposure durations: (i) single exposure: 2 hours at 0 and 5 W/kg; (ii) repeated exposure: 2 hours per day, 5 days per week, for 12 weeks, at 0, 2.5, and 5 W/kg. HSP expression was detected on skin slices using immunolabeling in the epidermal area. RESULTS Our data indicated that neither single nor repeated exposures altered HSP expression in rat skin, irrespective of the GSM signal or SAR considered. CONCLUSIONS Under our experimental conditions (local SAR < 5 W/kg), there was no evidence that GSM signals alter HSP expression in rat skin.
Collapse
Affiliation(s)
- Sandrine Sanchez
- University of Bordeaux 1, IMS, ENSCPB, Bioelectromagnetics Group, Pessac, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Habash RWY, Elwood JM, Krewski D, Lotz WG, McNamee JP, Prato FS. Recent advances in research on radiofrequency fields and health: 2004-2007. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:250-288. [PMID: 20183523 DOI: 10.1080/10937400903094125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread use of wireless telecommunications devices, particularly mobile phones and wireless networks, has resulted in increased human exposure to radiofrequency (RF) fields. Although national and international agencies have established safety guidelines for exposure to RF fields, concerns remain about the potential for adverse health outcomes to occur in relation to RF field exposure. The extensive literature on RF fields and health was reviewed by a number of authorities, including the Royal Society of Canada (1999). This report is the third in a series of updates to the original report of the Royal Society of Canada, covering the period 2004-2007. In particular, the present study examined new data on (1) dosimetry and exposure assessment, (2) biological effects of RF fields such as enzyme induction, and (3) toxicological effects, including genotoxicity and carcinogenicity. Epidemiological studies of the potential health effects of RF exposure, particularly from mobile phones, were determined, along with human and animal studies of neurological and behavioural effects. Within the last 4 yrs investigators concluded that there is no clear evidence of adverse health effects associated with RF fields, although continued research is recommended to address specific areas of concern, including exposure to RF fields among children using mobile phones. The results of the ongoing 13-country World Health Organization INTERPHONE study of mobile phones may provide important new information on the potential cancer risks associated with mobile phone use.
Collapse
Affiliation(s)
- Riadh W Y Habash
- R. Samuel McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Lee JJ, Kwak HJ, Lee YM, Lee JW, Park MJ, Ko YG, Choi HD, Kim N, Pack JK, Hong SI, Lee JS. Acute radio frequency irradiation does not affect cell cycle, cellular migration, and invasion. Bioelectromagnetics 2008; 29:615-25. [DOI: 10.1002/bem.20427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Valbonesi P, Franzellitti S, Piano A, Contin A, Biondi C, Fabbri E. Evaluation of HSP70 Expression and DNA Damage in Cells of a Human Trophoblast Cell Line Exposed to 1.8 GHz Amplitude-Modulated Radiofrequency Fields. Radiat Res 2008; 169:270-9. [DOI: 10.1667/rr1061.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 10/05/2007] [Indexed: 11/03/2022]
|
26
|
Dawe AS, Nylund R, Leszczynski D, Kuster N, Reader T, De Pomerai DI. Continuous wave and simulated GSM exposure at 1.8 W/kg and 1.8 GHz do not inducehsp16-1 heat-shock gene expression inCaenorhabditis elegans. Bioelectromagnetics 2008; 29:92-9. [PMID: 17902155 DOI: 10.1002/bem.20366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent data suggest that there might be a subtle thermal explanation for the apparent induction by radiofrequency (RF) radiation of transgene expression from a small heat-shock protein (hsp16-1) promoter in the nematode, Caenorhabditis elegans. The RF fields used in the C. elegans study were much weaker (SAR 5-40 mW kg(-1)) than those routinely tested in many other published studies (SAR approximately 2 W kg(-1)). To resolve this disparity, we have exposed the same transgenic hsp16-1::lacZ strain of C. elegans (PC72) to higher intensity RF fields (1.8 GHz; SAR approximately 1.8 W kg(-1)). For both continuous wave (CW) and Talk-pulsed RF exposures (2.5 h at 25 degrees C), there was no indication that RF exposure could induce reporter expression above sham control levels. Thus, at much higher induced RF field strength (close to the maximum permitted exposure from a mobile telephone handset), this particular nematode heat-shock gene is not up-regulated. However, under conditions where background reporter expression was moderately elevated in the sham controls (perhaps as a result of some unknown co-stressor), we found some evidence that reporter expression may be reduced by approximately 15% following exposure to either Talk-pulsed or CW RF fields.
Collapse
Affiliation(s)
- Adam S Dawe
- Institute of Genetics, School of Biology, University of Nottingham, University Park, Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Chauhan V, Qutob SS, Lui S, Mariampillai A, Bellier PV, Yauk CL, Douglas GR, Williams A, McNamee JP. Analysis of gene expression in two human-derived cell lines exposedin vitro to a 1.9 GHz pulse-modulated radiofrequency field. Proteomics 2007; 7:3896-905. [PMID: 17902192 DOI: 10.1002/pmic.200700215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is considerable controversy surrounding the biological effects of radiofrequency (RF) fields, as emitted by mobile phones. Previous work from our laboratory has shown no effect related to the exposure of 1.9 GHz pulse-modulated RF fields on the expression of 22,000 genes in a human glioblastoma-derived cell-line (U87MG) at 6 h following a 4 h RF field exposure period. As a follow-up to this study, we have now examined the effect of RF field exposure on the possible expression of late onset genes in U87MG cells after a 24 h RF exposure period. In addition, a human monocyte-derived cell-line (Mono-Mac-6, MM6) was exposed to intermittent (5 min ON, 10 min OFF) RF fields for 6 h and then gene expression was assessed immediately after exposure and at 18 h postexposure. Both cell lines were exposed to 1.9 GHz pulse-modulated RF fields for 6 or 24 h at specific absorption rates (SARs) of 0.1-10.0 W/kg. In support of our previous results, we found no evidence that nonthermal RF field exposure could alter gene expression in either cultured U87MG or MM6 cells, relative to nonirradiated control groups. However, exposure of both cell-lines to heat-shock conditions (43 degrees C for 1 h) caused an alteration in the expression of a number of well-characterized heat-shock proteins.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sanchez S, Haro E, Ruffié G, Veyret B, Lagroye I. In vitro study of the stress response of human skin cells to GSM-1800 mobile phone signals compared to UVB radiation and heat shock. Radiat Res 2007; 167:572-80. [PMID: 17474794 DOI: 10.1667/rr0802.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/13/2006] [Indexed: 11/03/2022]
Abstract
The evolution of mobile phone technology is toward an increase of the carrier frequency up to 2.45 GHz. Absorption of radiofrequency (RF) radiation becomes more superficial as the frequency increases. This increasingly superficial absorption of RF radiation by the skin, which is the first organ exposed to RF radiation, may lead to stress responses in skin cells. We thus investigated the expression of three heat-shock proteins (HSP70, HSC70, HSP27) using immunohistochemistry and induction of apoptosis by flow cytometry on human primary keratinocytes and fibroblasts. A well-characterized exposure system, SXC 1800, built by the IT'IS foundation was used at 1800 MHz, with a 217 Hz modulation. We tested a 48-h exposure at an SAR of 2 W/kg (ICNIRP local exposure limit). Skin cells were also irradiated with a 600 mJ/cm2 single dose of UVB radiation and subjected to heat shock (45 degrees C, 20 min) as positive controls for apoptosis and HSP expression, respectively. The results showed no effect of a 48-h GSM-1800 exposure at 2 W/kg on either keratinocytes or fibroblasts, in contrast to UVB-radiation or heat-shock treatments, which injured cells. We thus conclude that the GSM-1800 signal does not act as a stress factor on human primary skin cells in vitro.
Collapse
Affiliation(s)
- S Sanchez
- University of Bordeaux 1, IMS Laboratory, UMR 5218 CNRS, EPHE Bioelectromagnetics Group, Pessac, France.
| | | | | | | | | |
Collapse
|
29
|
Wang J, Koyama S, Komatsubara Y, Suzuki Y, Taki M, Miyakoshi J. Effects of a 2450 MHz high-frequency electromagnetic field with a wide range of SARs on the induction of heat-shock proteins in A172 cells. Bioelectromagnetics 2006; 27:479-86. [PMID: 16622864 DOI: 10.1002/bem.20226] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we investigated whether exposure to 2450 MHz high-frequency electromagnetic fields (HFEMFs) could act as an environmental insult to evoke a stress response in A172 cells, using HSP70 and HSP27 as stress markers. The cells were exposed to a 2450 MHz HFEMF with a wide range of specific absorption rates (SARs: 5-200 W/kg) or sham conditions. Because exposure to 2450 MHz HFEMF at 50-200 W/kg SAR causes temperature increases in culture medium, appropriate heat control groups (38-44 degrees C) were also included. The expression of HSP 70 and HSP 27, as well as the level of phosphorylated HSP 27 ((78)Ser) (p-HSP27), was determined by Western blotting. Our results showed that the expression of HSP 70 increased in a time and dose-dependent manner at >50 W/kg SAR for 1-3 h. A similar effect was also observed in corresponding heat controls. There was no significant change in HSP 27 expression caused by HFEMF at 5-200 W/kg or by comparable heating for 1-3 h. However, HSP 27 phosphorylation increased transiently at 100 and 200 W/kg to a greater extent than at 40-44 degrees C. Phosphorylation of HSP 27 reached a maximum after 1 h exposure at 100 W/kg HFEMF. Our results suggest that exposure to a 2450 MHz HFEMF has little or no apparent effect on HSP70 and HSP27 expression, but it may induce a transient increase in HSP27 Phosphorylation in A172 cells at very high SAR (>100 W/kg).
Collapse
Affiliation(s)
- J Wang
- Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Hirosaki University, Hirosaki, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Chauhan V, Mariampillai A, Gajda GB, Thansandote A, McNamee JP. Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Int J Radiat Biol 2006; 82:347-54. [PMID: 16782652 DOI: 10.1080/09553000600771549] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Several studies have reported that radiofrequency (RF) fields, as emitted by mobile phones, may cause changes in gene expression in cultured human cell-lines. The current study was undertaken to evaluate this possibility in two human-derived immune cell-lines. MATERIALS AND METHODS HL-60 and Mono-Mac-6 (MM6) cells were individually exposed to intermittent (5 min on, 10 min off) 1.9 GHz pulse-modulated RF fields at a average specific absorption rate (SAR) of 1 and 10 W/kg at 37 +/- 0.5 degrees C for 6 h. Concurrent negative and positive (heat-shock for 1 h at 43 degrees C) controls were conducted with each experiment. Immediately following RF field exposure (T = 6 h) and 18 h post-exposure (T = 24 h), cell pellets were collected from each of the culture dishes and analyzed for transcript levels of proto-oncogenes (c-jun, c-myc and c-fos) and the stress-related genes (heat shock proteins (HSP) HSP27 and HSP70B) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS No significant effects were observed in mRNA expression of HSP27, HSP70, c-jun, c-myc or c-fos between the sham and RF-exposed groups, in either of the two cell-lines. However, the positive (heat-shock) control group displayed a significant elevation in the expression of HSP27, HSP70, c-fos and c-jun in both cell-lines at T = 6 and 24 h, relative to the sham and negative control groups. CONCLUSION This study found no evidence that exposure of cells to non-thermalizing levels of 1.9 GHz pulse-modulated RF fields can cause any detectable change in stress-related gene expression.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Thorlin T, Rouquette JM, Hamnerius Y, Hansson E, Persson M, Björklund U, Rosengren L, Rönnbäck L, Persson M. Exposure of Cultured Astroglial and Microglial Brain Cells to 900 MHz Microwave Radiation. Radiat Res 2006; 166:409-21. [PMID: 16881742 DOI: 10.1667/rr3584.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be unaffected by microwave irradiation. Thus this study does not provide evidence for any effect of the microwave radiation used on damage-related factors in glial cells in culture.
Collapse
Affiliation(s)
- Thorleif Thorlin
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at Gothenburg University, S-41345 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Qutob SS, Chauhan V, Bellier PV, Yauk CL, Douglas GR, Berndt L, Williams A, Gajda GB, Lemay E, Thansandote A, McNamee JP. Microarray Gene Expression Profiling of a Human Glioblastoma Cell Line ExposedIn Vitroto a 1.9 GHz Pulse-Modulated Radiofrequency Field. Radiat Res 2006; 165:636-44. [PMID: 16802863 DOI: 10.1667/rr3561.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The widespread use of mobile phones has led to public concerns about the health effects associated with exposure to radiofrequency (RF) fields. The paramount concern of most persons relates to the potential of these fields to cause cancer. Unlike ionizing radiation, RF fields used for mobile telecommunications (800-1900 MHz) do not possess sufficient energy to directly damage DNA. Most rodent bioassay and in vitro genotoxicity/mutation studies have reported that RF fields at non-thermal levels have no direct mutagenic, genotoxic or carcinogenic effects. However, some evidence has suggested that RF fields may cause detectable postexposure changes in gene expression. Therefore, the purpose of this study was to assess the ability of exposure to a 1.9 GHz pulse-modulated RF field for 4 h at specific absorption rates (SARs) of 0.1, 1.0 and 10.0 W/kg to affect global gene expression in U87MG glioblastoma cells. We found no evidence that non-thermal RF fields can affect gene expression in cultured U87MG cells relative to the nonirradiated control groups, whereas exposure to heat shock at 43 degrees C for 1 h up-regulated a number of typical stress-responsive genes in the positive control group. Future studies will assess the effect of RF fields on other cell lines and on gene expression in the mouse brain after in vivo exposure.
Collapse
Affiliation(s)
- S S Qutob
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada, K1A 1C1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nasta F, Prisco MG, Pinto R, Lovisolo GA, Marino C, Pioli C. Effects of GSM-Modulated Radiofrequency Electromagnetic Fields on B-Cell Peripheral Differentiation and Antibody Production. Radiat Res 2006; 165:664-70. [PMID: 16802866 DOI: 10.1667/rr3555.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined the effects of in vivo exposure to a GSM-modulated 900 MHz RF field on B-cell peripheral differentiation and antibody production in mice. Our results show that exposure to a whole-body average specific absorption rate (SAR) of 2 W/kg, 2 h/day for 4 consecutive weeks does not affect the frequencies of differentiating transitional 1 (T1) and T2 B cells or those of mature follicular B and marginal zone B cells in the spleen. IgM and IgG serum levels are also not significantly different among exposed, sham-exposed and control mice. B cells from these mice, challenged in vitro with LPS, produce comparable amounts of IgM and IgG. Moreover, exposure of immunized mice to RF fields does not change the antigen-specific antibody serum level. Interestingly, not only the production of antigen-specific IgM but also that of IgG (which requires T-B-cell interaction) is not affected by RF-field exposure. This indicates that the exposure does not alter an ongoing in vivo antigen-specific immune response. In conclusion, our results do not indicate any effects of GSM-modulated RF radiation on the B-cell peripheral compartment and antibody production and thus provide no support for health-threatening effects.
Collapse
Affiliation(s)
- Francesca Nasta
- ENEA (Italian Agency for New Technologies, Environment and Energy), Section of Toxicology and Biomedicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Chauhan V, Mariampillai A, Bellier PV, Qutob SS, Gajda GB, Lemay E, Thansandote A, McNamee JP. Gene expression analysis of a human lymphoblastoma cell line exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Radiat Res 2006; 165:424-9. [PMID: 16579654 DOI: 10.1667/rr3531.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study was designed to determine whether radiofrequency (RF) fields of the type used for wireless communications could elicit a cellular stress response. As general indicators of a cellular stress response, we monitored changes in proto-oncogene and heat-shock protein expression. Exponentially growing human lymphoblastoma cells (TK6) were exposed to 1.9 GHz pulse-modulated RF fields at average specific absorption rates (SARs) of 1 and 10 W/kg. Perturbations in the expression levels of the proto-oncogenes FOS, JUN and MYC after exposure to sham and RF fields were assessed by real-time RT-PCR. In addition, the transcript levels of the cellular stress proteins HSP27 and inducible HSP70 were also monitored. We demonstrated that transcript levels of these genes in RF-field-exposed cells showed no significant difference in relation to the sham treatment group. However, concurrent positive (heat-shock) control samples displayed a significant elevation in the expression of HSP27, HSP70, FOS and JUN. Conversely, the levels of MYC mRNA were found to decline in the positive (heat-shock) control. In conclusion, our study found no evidence that the 1.9 GHz RF-field exposure caused a general stress response in TK6 cells under our experimental conditions.
Collapse
Affiliation(s)
- V Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada K1A 1C1
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lantow M, Lupke M, Frahm J, Mattsson MO, Kuster N, Simko M. ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2006; 45:55-62. [PMID: 16552570 DOI: 10.1007/s00411-006-0038-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 02/20/2006] [Indexed: 05/07/2023]
Abstract
The aim of this study is to investigate if 1,800 MHz radiofrequency electromagnetic fields (RF-EMF) can induce reactive oxygen species (ROS) release and/or changes in heat shock protein 70 (Hsp70) expression in human blood cells, using different exposure and co-exposure conditions. Human umbilical cord blood-derived monocytes and lymphocytes were used to examine ROS release after exposure to continuous wave or different GSM signals (GSM-DTX and GSM-Talk) at 2 W/kg for 30 or 45 min of continuous or intermittent (5 min ON/5 min OFF) exposure. The cells were exposed to incubator conditions, to sham, to RF-EMF, or to chemicals in parallel. Cell stimulation with the phorbol ester phorbol-12-myristate-13-acetate (PMA; 1 microM) was used as positive control for ROS release. To investigate the effects on Hsp70 expression, the human monocytes were exposed to the GSM-DTX signal at 2 W/kg for 45 min, or to heat treatment (42 degrees C) as positive control. ROS production and Hsp70 expression were determined by flow cytometric analysis. The data were compared to sham and/or to control values and the statistical analysis was performed by the Student's t-test (P<0.05). The PMA treatment induced a significant increase in ROS production in human monocytes and lymphocytes when the data were compared to sham or to incubator controls. After continuous or intermittent GSM-DTX signal exposure (2 W/kg), a significantly different ROS production was detected in human monocytes if the data were compared to sham. However, this significant difference appeared due to the lowered value of ROS release during sham exposure. In human lymphocytes, no differences could be detected if data were compared either to sham or to incubator control. The Hsp70 expression level after 0, 1, and 2 h post-exposure to GSM-DTX signal at 2 W/kg for 1 h did not show any differences compared to the incubator or to sham control.
Collapse
Affiliation(s)
- M Lantow
- Division of Environmental Physiology, Institute of Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Street 3, 18059 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Robertson JA, Thomas AW, Bureau Y, Prato FS. The influence of extremely low frequency magnetic fields on cytoprotection and repair. Bioelectromagnetics 2006; 28:16-30. [PMID: 16917871 DOI: 10.1002/bem.20258] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ischemia-reperfusion injuries, such as those suffered from various types of cardiovascular disease, are major causes of death and disability. For relatively short periods of ischemia, much of the damage is potentially reversible and in fact, does not occur until the influx of oxygen during the reperfusion stage. Because of this, there is a window of opportunity to protect the ischemic tissue. Here, we review several mechanisms of protection, such as heat shock proteins, opioids, collateral blood flow, and nitric oxide induction, and the evidence indicating that magnetic fields may be used as a means of providing protection via each of these mechanisms. While there are few studies demonstrating direct protection with magnetic field therapies, there are a number of published reports indicating that electromagnetic fields may be able to influence some of the biochemical systems with protective applications.
Collapse
Affiliation(s)
- John A Robertson
- Department of Nuclear Medicine, Bioelectromagnetics, Lawson Health Research Institute, St. Joseph's Health Care, London, Ontario, Canada
| | | | | | | |
Collapse
|
37
|
Lee JS, Huang TQ, Kim TH, Kim JY, Kim HJ, Pack JK, Seo JS. Radiofrequency radiation does not induce stress response in human T-lymphocytes and rat primary astrocytes. Bioelectromagnetics 2006; 27:578-88. [PMID: 16838270 DOI: 10.1002/bem.20235] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heat shock proteins (HSPs) are rapidly induced by a variety of stressors, including heat shock, ethanol, heavy metals, UV, and gamma-radiation. Mitogen-activated protein kinases (MAPKs) are also involved in the stress transduction pathways in all eukaryotes. In this study, we attempted to determine whether radiofrequency (RF) radiation is able to induce a non-thermal stress response. Human T-lymphocyte Jurkat cells and rat primary astrocytes were exposed to 1763 MHz of RF radiation at an average specific absorption rate (SAR) of either 2 W/kg or 20 W/kg, for 30 min or 1 h. Temperature was completely controlled at 37 +/- 0.2 degrees C throughout the exposure period. The sham exposures were performed under exactly identical experimental conditions without exposure to RF radiation. We assessed alterations in the expression of HSPs and the activation of MAPKs in the RF-exposed cells. No detectable difference was observed in the expression levels of HSP90, HSP70, and HSP27. The phosphorylation status of MAPKs, extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal protein kinases (JNK1/2), or p38, did not change significantly. In order to determine whether RF radiation can promote the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on stress response, cells were exposed to RF radiation coupled with TPA treatment. When TPA alone was applied, the MAPKs were found to be phosphorylated in a dose-dependent manner. However, RF radiation did not result in any enhancement of TPA-induced MAPK phosphorylation. Neither TPA nor RF radiation exerted any detectable effect on the induction of HSPs. These results indicate that 1763 MHz RF radiation alone did not elicit any stress response, nor did it have any effect on TPA-induced MAPK phosphorylation, under our experimental conditions.
Collapse
Affiliation(s)
- Jae-Seon Lee
- Department of Biochemistry and Molecular Biology, ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Lantow M, Schuderer J, Hartwig C, Simkó M. Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation. Radiat Res 2006; 165:88-94. [PMID: 16392966 DOI: 10.1667/rr3476.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The goal of this study was to investigate whether radiofrequency (RF) electromagnetic-field (EMF) exposure at 1800 MHz causes production of free radicals and/or expression of heat-shock proteins (HSP70) in human immune-relevant cell systems. Human Mono Mac 6 and K562 cells were used to examine free radical release after exposure to incubator control, sham, RF EMFs, PMA, LPS, heat (40 degrees C) or co-exposure conditions. Several signals were used: continuous-wave, several typical modulations of the Global System for Mobile Communications (GSM): GSM-non DTX (speaking only), GSM-DTX (hearing only), GSM-Talk (34% speaking and 66% hearing) at specific absorption rates (SARs) of 0.5, 1.0, 1.5 and 2.0 W/kg. Heat and PMA treatment induced a significant increase in superoxide radical anions and in ROS production in the Mono Mac 6 cells when compared to sham and/or incubator conditions. No significant differences in free radical production were detected after RF EMF exposure or in the respective controls, and no additional effects on superoxide radical anion production were detected after co-exposure to RF EMFs+PMA or RF EMFs+LPS. The GSM-DTX signal at 2 W/kg produced a significant difference in free radical production when the data were compared to sham because of the decreasing sham value. This difference disappeared when data were compared to the incubator controls. To determine the involvement of heat-shock proteins as a possible inhibitor of free radical production, we investigated the HSP70 expression level after different RF EMF exposures; no significant effects were detected.
Collapse
Affiliation(s)
- M Lantow
- University of Rostock, Institute of Cell Biology and Biosystems Technology, Division of Environmental Physiology, D-18059 Rostock, Germany
| | | | | | | |
Collapse
|