1
|
Chembukavu SN, Lindsay AJ. Therapy-induced senescence in breast cancer: an overview. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:902-920. [PMID: 39280248 PMCID: PMC11390292 DOI: 10.37349/etat.2024.00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Outcomes for women with breast cancer have improved dramatically in recent decades. However, many patients present with intrinsic drug resistance and others are initially sensitive to anti-cancer drugs but acquire resistance during the course of their treatment, leading to recurrence and/or metastasis. Drug therapy-induced senescence (TIS) is a form of drug resistance characterised by the induction of cell cycle arrest and the emergence of a senescence-associated secretory phenotype (SASP) that can develop in response to chemo- and targeted- therapies. A wide range of anticancer interventions can lead to cell cycle arrest and SASP induction, by inducing genotoxic stress, hyperactivation of signalling pathways or oxidative stress. TIS can be anti-tumorigenic in the short-term, but pro-tumorigenic in the long-term by creating a pro-inflammatory and immunosuppressive microenvironment. Moreover, the SASP can promote angiogenesis and epithelial-mesenchymal transition in neighbouring cells. In this review, we will describe the characteristics of TIS in breast cancer and detail the changes in phenotype that accompany its induction. We also discuss strategies for targeting senescent cancer cells in order to prevent or delay tumour recurrence.
Collapse
Affiliation(s)
- Suraj Narayanan Chembukavu
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
2
|
Baldasso-Zanon A, Silva AO, Franco N, Picon RV, Lenz G, Lopez PLDC, Filippi-Chiela EC. The rational modulation of autophagy sensitizes colorectal cancer cells to 5-fluouracil and oxaliplatin. J Cell Biochem 2024; 125:e30517. [PMID: 38224178 DOI: 10.1002/jcb.30517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.
Collapse
Affiliation(s)
- Andréa Baldasso-Zanon
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Unidade Centro RS, Faculdade Estácio do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nayara Franco
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael V Picon
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Medicina Interna, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Departamento de Biofísica, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Luciana da Costa Lopez
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo C Filippi-Chiela
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Pesquisas Experimental, Laboratório de Biologia Celular e Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências Morfológicas, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Mirzayans R, Andrais B, Murray D. Single-Cell MTT: A Simple and Sensitive Assay for Determining the Viability and Metabolic Activity of Polyploid Giant Cancer Cells (PGCCs). Methods Mol Biol 2024; 2825:293-308. [PMID: 38913317 DOI: 10.1007/978-1-0716-3946-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Solid tumors and tumor-derived cell lines commonly contain highly enlarged (giant) cancer cells that enter a state of transient dormancy (active sleep) after they are formed, but retain viability, secrete growth promoting factors, and exhibit the ability to generate rapidly proliferating progeny with stem cell-like properties. Giant cells with a highly enlarged nucleus or multiple nuclei are often called polyploid giant cancer cells (PGCCs). Although PGCCs constitute only a subset of cells within a solid tumor/tumor-derived cell line, their frequency can increase markedly following exposure to ionizing radiation or chemotherapeutic drugs. In this chapter we outline a simple and yet highly sensitive cell-based assay, called single-cell MTT, that we have optimized for determining the viability and metabolic activity of PGCCs before and after exposure to anticancer agents. The assay measures the ability of individual PGCCs to convert the MTT tetrazolium salt to its water insoluble formazan metabolite. In addition to evaluating PGCCs, this assay is also a powerful tool for determining the viability and metabolic activity of cancer cells undergoing premature senescence following treatment with anticancer agents, as well as for distinguishing dead cancer cells and dying cells (e.g., exhibiting features of apoptosis, ferroptosis, etc.) that have the potential to resume proliferation through a process called anastasis.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada.
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
4
|
Saleh T, Bloukh S, Hasan M, Al Shboul S. Therapy-induced senescence as a component of tumor biology: Evidence from clinical cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188994. [PMID: 37806641 DOI: 10.1016/j.bbcan.2023.188994] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Therapy-Induced Senescence (TIS) is an established response to anticancer therapy in a variety of cancer models. Ample evidence has characterized the triggers, hallmarks, and functional outcomes of TIS in preclinical studies; however, limited evidence delineates TIS in clinical cancer (human tumor samples). We examined the literature that investigated the induction of TIS in samples derived from human cancers and highlighted the major findings that suggested that TIS represents a main constituent of tumor biology. The most frequently utilized approach to identify TIS in human cancers was to investigate the protein expression of senescence-associated markers (such as cyclins, cyclin-dependent kinase inhibitors, Ki67, DNA damage repair response markers, DEC1, and DcR1) via immunohistochemical techniques using formalin-fixed paraffin-embedded (FFPE) tissue samples and/or testing the upregulation of Senescence-Associated β-galactosidase (SA-β-gal) in frozen sections of unfixed tumor samples. Collectively, and in studies where the extent of TIS was determined, TIS was detected in 31-66% of tumors exposed to various forms of chemotherapy. Moreover, TIS was not only limited to both malignant and non-malignant components of tumoral tissue but was also identified in samples of normal (non-transformed) tissue upon chemo- or radiotherapy exposure. Nevertheless, the available evidence continues to be limited and requires a more rigorous assessment of in vivo senescence based on novel approaches and more reliable molecular signatures. The accurate assessment of TIS will be beneficial for determining its relevant contribution to the overall outcome of cancer therapy and the potential translatability of senotherapeutics.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan.
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mira Hasan
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan
| |
Collapse
|
5
|
Mirzayans R, Murray D. Intratumor Heterogeneity and Treatment Resistance of Solid Tumors with a Focus on Polyploid/Senescent Giant Cancer Cells (PGCCs). Int J Mol Sci 2023; 24:11534. [PMID: 37511291 PMCID: PMC10380821 DOI: 10.3390/ijms241411534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Single cell biology has revealed that solid tumors and tumor-derived cell lines typically contain subpopulations of cancer cells that are readily distinguishable from the bulk of cancer cells by virtue of their enormous size. Such cells with a highly enlarged nucleus, multiple nuclei, and/or multiple micronuclei are often referred to as polyploid giant cancer cells (PGCCs), and may exhibit features of senescence. PGCCs may enter a dormant phase (active sleep) after they are formed, but a subset remain viable, secrete growth promoting factors, and can give rise to therapy resistant and tumor repopulating progeny. Here we will briefly discuss the prevalence and prognostic value of PGCCs across different cancer types, the current understanding of the mechanisms of their formation and fate, and possible reasons why these tumor repopulating "monsters" continue to be ignored in most cancer therapy-related preclinical studies. In addition to PGCCs, other subpopulations of cancer cells within a solid tumor (such as oncogenic caspase 3-activated cancer cells and drug-tolerant persister cancer cells) can also contribute to therapy resistance and pose major challenges to the delivery of cancer therapy.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
6
|
Crescenzi E, Leonardi A, Pacifico F. Iron Metabolism in Cancer and Senescence: A Cellular Perspective. BIOLOGY 2023; 12:989. [PMID: 37508419 PMCID: PMC10376531 DOI: 10.3390/biology12070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment. Alterations in iron metabolism have been described in cellular senescence and in aging. For instance, iron has been shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies demonstrate increases in iron content in both replicative and stress-induced senescent cells. However, the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on senescence remain significantly less characterized. In this review, we first provide an overview of iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in cancer and senescence from a cellular point of view.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Martinez-Zubiaurre I, Hellevik T. Cancer-associated fibroblasts in radiotherapy: Bystanders or protagonists? Cell Commun Signal 2023; 21:108. [PMID: 37170098 PMCID: PMC10173661 DOI: 10.1186/s12964-023-01093-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/26/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The primary goal of radiotherapy (RT) is to induce cellular damage on malignant cells; however, it is becoming increasingly recognized the important role played by the tumor microenvironment (TME) in therapy outcomes. Therapeutic irradiation of tumor lesions provokes profound cellular and biological reconfigurations within the TME that ultimately may influence the fate of the therapy. MAIN CONTENT Cancer-associated fibroblasts (CAFs) are known to participate in all stages of cancer progression and are increasingly acknowledged to contribute to therapy resistance. Accumulated evidence suggests that, upon radiation, fibroblasts/CAFs avoid cell death but instead enter a permanent senescent state, which in turn may influence the behavior of tumor cells and other components of the TME. Despite the proposed participation of senescent fibroblasts on tumor radioprotection, it is still incompletely understood the impact that RT has on CAFs and the ultimate role that irradiated CAFs have on therapy outcomes. Some of the current controversies may emerge from generalizing observations obtained using normal fibroblasts and CAFs, which are different cell entities that may respond differently to radiation exposure. CONCLUSION In this review we present current knowledge on the field of CAFs role in radiotherapy; we discuss the potential tumorigenic functions of radiation-induced senescent fibroblasts and CAFs and we make an effort to integrate the knowledge emerging from preclinical experimentation with observations from the clinics. Video Abstract.
Collapse
Affiliation(s)
- Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Postbox 6050, 9037, Langnes, Tromsö, Norway.
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of North Norway, Postbox 100, 9038, Tromsö, Norway
| |
Collapse
|
8
|
Biological Response of Human Cancer Cells to Ionizing Radiation in Combination with Gold Nanoparticles. Cancers (Basel) 2022; 14:cancers14205086. [PMID: 36291870 PMCID: PMC9600885 DOI: 10.3390/cancers14205086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Various types of metallic nanoparticles and especially gold nanoparticles (AuNPs) have been utilized in radiation studies to enhance the radiosensitization of cancer cells while minimizing detrimental effects in normal tissue. The aim of our study was to investigate the biological responses of various human cancer cells to gold-nanoparticle-induced radiosensitization. This was accomplished by using different AuNPs and several techniques in order to provide valuable insights regarding the multiple adverse biological effects, following ionizing radiation (IR) in combination with AuNPs. Insightful methodologies such as transmission electron microscopy were employed to identify comprehensively the complexity of the biological damage occurrence. Our findings confirm that AuNP radiosensitization may occur due to extensive and/or complex DNA damage, cell death, or cellular senescence. This multiparameter study aims to further elucidate the biological mechanisms and at the same time provide new information regarding the use of AuNPs as radiosensitizers in cancer treatment. Abstract In the context of improving radiation therapy, high-atomic number (Z) metallic nanoparticles and, more importantly, gold-based nanostructures are developed as radiation enhancers/radiosensitizers. Due to the diversity of cell lines, nanoparticles, as well as radiation types or doses, the resulting biological effects may differ and remain obscure. In this multiparameter study, we aim to shed light on these effects and investigate them further by employing X-irradiation and three human cancer cell lines (PC3, A549, and U2OS cells) treated by multiple techniques. TEM experiments on PC3 cells showed that citrate-capped AuNPs were found to be located mostly in membranous structures/vesicles or autophagosomes, but also, in the case of PEG-capped AuNPs, inside the nucleus as well. The colony-forming capability of cancer cells radiosensitized by AuNPs decreased significantly and the DNA damage detected by cytogenetics, γH2AX immunostaining, and by single (γH2AX) or double (γH2AX and OGG1) immunolocalization via transmission electron microscopy (TEM) was in many cases higher and/or persistent after combination with AuNPs than upon individual exposure to ionizing radiation (IR). Moreover, different cell cycle distribution was evident in PC3 but not A549 cells after treatment with AuNPs and/or irradiation. Finally, cellular senescence was investigated by using a newly established staining procedure for lipofuscin, based on a Sudan Black-B analogue (GL13) which showed that based on the AuNPs’ concentration, an increased number of senescent cells might be observed after exposure to IR. Even though different cell lines or different types and concentrations of AuNPs may alter the levels of radiosensitization, our results imply that the complexity of damage might also be an important factor of AuNP-induced radiosensitization.
Collapse
|
9
|
Du S, Liu Y, Yuan Y, Wang Y, Chen Y, Wang S, Chi Y. Advances in the study of HSP70 inhibitors to enhance the sensitivity of tumor cells to radiotherapy. Front Cell Dev Biol 2022; 10:942828. [PMID: 36036010 PMCID: PMC9399644 DOI: 10.3389/fcell.2022.942828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is one of the most conserved proteins and a ubiquitous molecular chaperone that plays a role in the folding, remodeling, and degradation of various proteins to maintain proteostasis. It has been shown that HSP70 is abundantly expressed in cancer and enhances tumor resistance to radiotherapy by inhibiting multiple apoptotic pathways, such as interfering with the cellular senescence program, promoting angiogenesis, and supporting metastasis. Thus, HSP70 provides an effective target for enhancing the effects of radiation therapy in the clinical management of cancer patients. Inhibition of HSP70 enhances the radiation-induced tumor-killing effect and thus improves the efficacy of radiotherapy. This article reviews the sensitivity of Hsp70 and its related inhibitors to radiotherapy of tumor cells.
Collapse
Affiliation(s)
- Sihan Du
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Ying Liu
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuran Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yanfang Chen
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Shuai Wang, ; Yuhua Chi,
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Shuai Wang, ; Yuhua Chi,
| |
Collapse
|
10
|
Pacifico F, Mellone S, D'Incalci M, Stornaiuolo M, Leonardi A, Crescenzi E. Trabectedin suppresses escape from therapy-induced senescence in tumor cells by interfering with glutamine metabolism. Biochem Pharmacol 2022; 202:115159. [PMID: 35780827 DOI: 10.1016/j.bcp.2022.115159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
Conventional and targeted cancer therapies may induce a cellular senescence program termed therapy-induced senescence. However, unlike normal cells, cancer cells are able to evade the senescence cell cycle arrest and to resume proliferation, driving tumor recurrence after treatments. Cells that escape from therapy-induced senescence are characterized by a plastic, cancer stem cell-like phenotype, and recent studies are beginning to define their unique metabolic features, such as glutamine dependence. Here, we show that the antineoplastic drug trabectedin suppresses escape from therapy-induced senescence in all cell lines studied, and reduces breast cancer stem-like cells, at concentrations that do not affect the viability of senescent tumor cells. We demonstrate that trabectedin downregulates both the glutamine transporter SLC1A5 and glutamine synthetase, thereby interfering with glutamine metabolism. On the whole, our results indicate that trabectedin targets a glutamine-dependent cancer stem-like cell population involved in evasion from therapy-induced senescence and suggest a therapeutic potential for trabectedin combined with pro-senescence chemotherapy in tumor treatment.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, IRCCS Humanitas Research Hospital, 20072 Pieve Emanuele, Milan, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80149 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, 80131 Naples, Italy.
| | - Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy.
| |
Collapse
|
11
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
12
|
Glutamine promotes escape from therapy-induced senescence in tumor cells. Aging (Albany NY) 2021; 13:20962-20991. [PMID: 34492636 PMCID: PMC8457561 DOI: 10.18632/aging.203495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/02/2021] [Indexed: 01/16/2023]
Abstract
Therapy-induced senescence (TIS) is a major cellular response to anticancer therapies. While induction of a persistent growth arrest would be a desirable outcome in cancer therapy, it has been shown that, unlike normal cells, cancer cells are able to evade the senescence cell cycle arrest and to resume proliferation, likely contributing to tumor relapse. Notably, cells that escape from TIS acquire a plastic, stem cell-like phenotype. The metabolic dependencies of cells that evade senescence have not been thoroughly studied. In this study, we show that glutamine depletion inhibits escape from TIS in all cell lines studied, and reduces the stem cell subpopulation. In line with a metabolic reliance on glutamine, escaped clones overexpress the glutamine transporter SLC1A5. We also demonstrate a central role of glutamine synthetase that mediates resistance to glutamine deprivation, conferring independence from exogenous glutamine. Finally, rescue experiments demonstrate that glutamine provides nitrogen for nucleotides biosynthesis in cells that escape from TIS, but also suggest a critical involvement of glutamine in other metabolic and non-metabolic pathways. On the whole, these results reveal a metabolic vulnerability of cancer stem cells that recover proliferation after exposure to anticancer therapies, which could be exploited to prevent tumor recurrence.
Collapse
|
13
|
Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:243. [PMID: 34325734 PMCID: PMC8323321 DOI: 10.1186/s13046-021-02035-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a complex physiological state whose main feature is proliferative arrest. Cellular senescence can be considered the reverse of cell immortalization and continuous tumor growth. However, cellular senescence has many physiological functions beyond being a putative tumor suppressive trait. It remains unknown whether low levels of oxygen or hypoxia, which is a feature of every tissue in the organism, modulate cellular senescence, altering its capacity to suppress the limitation of proliferation. It has been observed that the lifespan of mammalian primary cells is increased under low oxygen conditions. Additionally, hypoxia promotes self-renewal and pluripotency maintenance in adult and embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (CSCs). In this study, we discuss the role of hypoxia facilitating senescence bypass during malignant transformation and acquisition of stemness properties, which all contribute to tumor development and cancer disease aggressiveness.
Collapse
Affiliation(s)
- Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
14
|
Radiation-Induced Senescence Reprograms Secretory and Metabolic Pathways in Colon Cancer HCT-116 Cells. Int J Mol Sci 2021; 22:ijms22094835. [PMID: 34063570 PMCID: PMC8124941 DOI: 10.3390/ijms22094835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
Understanding the global metabolic changes during the senescence of tumor cells can have implications for developing effective anti-cancer treatment strategies. Ionizing radiation (IR) was used to induce senescence in a human colon cancer cell line HCT-116 to examine secretome and metabolome profiles. Control proliferating and senescent cancer cells (SCC) exhibited distinct morphological differences and expression of senescent markers. Enhanced secretion of pro-inflammatory chemokines and IL-1, anti-inflammatory IL-27, and TGF-β1 was observed in SCC. Significantly reduced levels of VEGF-A indicated anti-angiogenic activities of SCC. Elevated levels of tissue inhibitors of matrix metalloproteinases from SCC support the maintenance of the extracellular matrix. Adenylate and guanylate energy charge levels and redox components NAD and NADP and glutathione were maintained at near optimal levels indicating the viability of SCC. Significant accumulation of pyruvate, lactate, and suppression of the TCA cycle in SCC indicated aerobic glycolysis as the predominant energy source for SCC. Levels of several key amino acids decreased significantly, suggesting augmented utilization for protein synthesis and for use as intermediates for energy metabolism in SCC. These observations may provide a better understanding of cellular senescence basic mechanisms in tumor tissues and provide opportunities to improve cancer treatment.
Collapse
|
15
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
16
|
Storozynsky Q, Hitt MM. The Impact of Radiation-Induced DNA Damage on cGAS-STING-Mediated Immune Responses to Cancer. Int J Mol Sci 2020; 21:E8877. [PMID: 33238631 PMCID: PMC7700321 DOI: 10.3390/ijms21228877] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is a major modality used to combat a wide range of cancers. Classical radiobiology principles categorize ionizing radiation (IR) as a direct cytocidal therapeutic agent against cancer; however, there is an emerging appreciation for additional antitumor immune responses generated by this modality. A more nuanced understanding of the immunological pathways induced by radiation could inform optimal therapeutic combinations to harness radiation-induced antitumor immunity and improve treatment outcomes of cancers refractory to current radiotherapy regimens. Here, we summarize how radiation-induced DNA damage leads to the activation of a cytosolic DNA sensing pathway mediated by cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING). The activation of cGAS-STING initiates innate immune signaling that facilitates adaptive immune responses to destroy cancer. In this way, cGAS-STING signaling bridges the DNA damaging capacity of IR with the activation of CD8+ cytotoxic T cell-mediated destruction of cancer-highlighting a molecular pathway radiotherapy can exploit to induce antitumor immune responses. In the context of radiotherapy, we further report on factors that enhance or inhibit cGAS-STING signaling, deleterious effects associated with cGAS-STING activation, and promising therapeutic candidates being investigated in combination with IR to bolster immune activation through engaging STING-signaling. A clearer understanding of how IR activates cGAS-STING signaling will inform immune-based treatment strategies to maximize the antitumor efficacy of radiotherapy, improving therapeutic outcomes.
Collapse
Affiliation(s)
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| |
Collapse
|
17
|
Yang Y, Luo J, Chen X, Yang Z, Mei X, Ma J, Zhang Z, Guo X, Yu X. CDK4/6 inhibitors: a novel strategy for tumor radiosensitization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:188. [PMID: 32933570 PMCID: PMC7490904 DOI: 10.1186/s13046-020-01693-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023]
Abstract
Recently, the focus of enhancing tumor radiosensitivity has shifted from chemotherapeutics to targeted therapies. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are a novel class of selective cell cycle therapeutics that target the cyclin D-CDK4/6 complex and induce G1 phase arrest. These agents have demonstrated favorable effects when used as monotherapy or combined with endocrine therapy and targeted inhibitors, stimulating further explorations of other combination strategies. Multiple preclinical studies have indicated that CDK4/6 inhibitors exhibit a synergistic effect with radiotherapy both in vitro and in vivo. The principal mechanisms of radiosensitization effects include inhibition of DNA damage repair, enhancement of apoptosis, and blockade of cell cycle progression, which provide the rationale for clinical use. CDK4/6 inhibitors also induce cellular senescence and promote anti-tumor immunity, which might represent potential mechanisms for radiosensitization. Several small sample clinical studies have preliminarily indicated that the combination of CDK4/6 inhibitors and radiotherapy exhibited well-tolerated toxicity and promising efficacy. However, most clinical trials in combined therapy remain in the recruitment stage. Further work is required to seek optimal radiotherapy-drug combinations. In this review, we describe the effects and underlying mechanisms of CDK4/6 inhibitors as a radiosensitizer and discuss previous clinical studies to evaluate the prospects and challenges of this combination.
Collapse
Affiliation(s)
- Yilan Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jurui Luo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Patel NH, Sohal SS, Manjili MH, Harrell JC, Gewirtz DA. The Roles of Autophagy and Senescence in the Tumor Cell Response to Radiation. Radiat Res 2020; 194:103-115. [PMID: 32845995 PMCID: PMC7482104 DOI: 10.1667/rade-20-00009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/15/2020] [Indexed: 01/10/2023]
Abstract
Radiation is a critical pillar in cancer therapeutics, exerting its anti-tumor DNA-damaging effects through various direct and indirect mechanisms. Radiation has served as an effective mode of treatment for a number of cancer types, providing both curative and palliative treatment; however, resistance to therapy persists as a fundamental limitation. While cancer cell death is the ideal outcome of any anti-tumor treatment, radiation induces several responses, including apoptotic cell death, mitotic catastrophe, autophagy and senescence, where autophagy and senescence may promote cell survival. In most cases, autophagy, a conventionally cytoprotective mechanism, is a "first" responder to damage incurred from chemotherapy and radiation treatment. The paradigm developed on the premise that autophagy is cytoprotective in nature has provided the rationale for current clinical trials designed with the goal of radiosensitizing cancer cells through the use of autophagy inhibitors; however, these have failed to produce consistent results. Delving further into pre-clinical studies, autophagy has actually been shown to take diverse, sometimes opposing, forms, such as acting in a cytotoxic or nonprotective fashion, which may be partially responsible for the inconsistency of clinical outcomes. Furthermore, autophagy can have both pro- and anti-tumorigenic effects, while also having an important immune modulatory function. Senescence often occurs in tandem with autophagy, which is also the case with radiation. Radiation-induced senescence is frequently followed by a phase of proliferative recovery in a subset of cells and has been proposed as a tumor dormancy model, which can contribute to resistance to therapy and possibly also disease recurrence. Senescence induction is often accompanied by a unique secretory phenotype that can either promote or suppress immune functions, depending on the expression profile of cytokines and chemokines. Novel therapeutics selectively cytotoxic to senescent cells (senolytics) may prove to prolong remission by delaying disease recurrence in patients. Accurate assessment of primary responses to radiation may provide potential targets that can be manipulated for therapeutic benefit to sensitize cancer cells to radiotherapy, while sparing normal tissue.
Collapse
Affiliation(s)
- Nipa H. Patel
- Departments of Pharmacology and Toxicology, Richmond, Virginia 23298
| | - Sahib S. Sohal
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Masoud H Manjili
- Departments of Microbiology and Immunology, Massey Cancer Center, Richmond, Virginia 23298
| | - J. Chuck Harrell
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - David A. Gewirtz
- Departments of Pharmacology and Toxicology, Richmond, Virginia 23298
| |
Collapse
|
19
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
20
|
Tong J, Hei TK. Aging and age-related health effects of ionizing radiation. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Murray D, Mirzayans R. Nonlinearities in the cellular response to ionizing radiation and the role of p53 therein. Int J Radiat Biol 2020; 97:1088-1098. [PMID: 31986075 DOI: 10.1080/09553002.2020.1721602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Many aspects of the cellular response to agents such as ionizing radiation that cause genotoxic and/or oxidative stress exhibit a nonlinear relationship to the applied stress level. These include elements of the antioxidant response and of the damage-signaling pathways that determine cell fate decisions. The wild-type p53 protein, which is mutated in many cancers, coordinates these responses and is a key determinant of this nonlinearity. Indeed, p53 has been referred to as a 'cellular rheostat' that favors antioxidant/cytoprotective functions at low stress levels while switching to a pro-oxidant/cytotoxic role under high-stress conditions. For solid tumor-derived cell lines, moderate doses of radiation, typical of those used to generate clonogenic survival curves (i.e. ≤10 Gy), predominantly invoke a dose-dependent cytostatic response. For cancer cell lines with wild-type p53, cytostasis is primarily associated with features of senescence, whereas cancer cells with aberrant p53 primarily undergo endopolyploidization and enlargement. In line with a commentary by Meyn et al. [Int J Radiat Biol. 2009, 85:107-115] concluding that apoptosis is not the primary cause of radiation-induced loss of clonogenicity in solid tumor-derived cell lines, significant levels of apoptosis are typically seen only after higher doses (≥5 Gy) and this is almost all of the delayed (rather than primary) type. Nonlinearity of the oxidative/genotoxic stress response is already apparent in the early antioxidant events activated by transcription factors such as p53 and Nrf2 and the Ref1 transcription coactivator. These cytoprotective pathways serve to minimize damage to important cellular targets caused by reactive oxygen species (ROS) and other electrophiles. After high/supra-lethal levels of stress these inducible antioxidant pathways can be deactivated in a manner that would reinforce the establishment of the pro-oxidant state, resulting in elevated ROS levels and to cytostasis or apoptosis. Understanding the complex regulation of these damage-signaling pathways in relation to the stress levels is important for the optimal utilization of radiation therapy for cancer.
Collapse
Affiliation(s)
- David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020; 77:213-229. [PMID: 31414165 PMCID: PMC6970957 DOI: 10.1007/s00018-019-03261-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
In contrast to the well-recognized replicative and stress-induced premature senescence of normal somatic cells, mechanisms and clinical implications of senescence of cancer cells are still elusive and uncertain from patient-oriented perspective. Moreover, recent years provided multiple pieces of evidence that cancer cells may undergo senescence not only in response to chemotherapy or ionizing radiation (the so-called therapy-induced senescence) but also spontaneously, without any external insults. Since the molecular nature of the latter process is poorly recognized, the significance of spontaneously senescent cancer cells for tumor progression, therapy effectiveness, and patient survival is purely speculative. In this review, we summarize the most up-to-date research regarding therapy-induced and spontaneous senescence of cancer cells, by delineating the most important discoveries regarding the occurrence of these phenomena in vivo and in vitro. This review provides data collected from studies on various cancer cell models, and the narration is presented from the broader perspective of the most critical findings regarding the senescence of normal somatic cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland.
| |
Collapse
|
23
|
Liu X, Zhao Y, Zhang W, Gao Y, Huo M, Liu M, Xiao Z, Liang S, Xu N, Zhu H. Inhibition of survivin enhances radiosensitivity of esophageal cancer cells by switching radiation-induced senescence to apoptosis. Onco Targets Ther 2018; 11:3087-3100. [PMID: 29872320 PMCID: PMC5975611 DOI: 10.2147/ott.s166798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Strategies to increase radiosensitivity are urgently needed. Combining radiosensitizing reagents with radiotherapy could improve the outcome of cancer treatment. Some preclinical studies showed that sepantronium bromide (YM155) could sensitize cancer cells to radiation by inhibiting the survivin protein. In this study, we try to investigate the function of YM155 on radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells. Materials and methods ESCC cell lines were treated with radiation and YM155, and the radiation efficacy was evaluated by cell counting kit-8 assay and clonogenic survival assay. Cell senescence was measured by senescence-associated β-galactosidase staining. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, fluorescein isothiocyanate-labeled Annexin V/propidium iodide assay, and poly ADP-ribose polymerase cleavage were used to detect apoptosis. KYSE150 xenografts model was used to test the efficacy of radiation combined with YM155. Results YM155 could inhibit the upregulation of survivin induced by radiation in all ESCC cell lines, but the efficacy of radiosensitization varied in different cell lines. Radiation-induced senescence in KYSE150 and KYSE410 cells, and the combination with YM155 inhibited senescence and promoted apoptosis of ESCC cells, thereby enhancing radiosensitivity. Combination with YM155 and radiation delayed the growth of KYSE150 xenografts in nude mice by switching radiation-induced senescence to apoptosis. When p21 was inhibited in KYSE150 cells, radiation did not induce senescence, and the radiosensitization of YM155 was also attenuated. In KYSE510 and KYSE180 cells, radiation did not induce senescence, and YM155 could not enhance the radiosensitivity. Conclusion Our results suggest a new mechanism that YM155 might sensitize ESCC cells to radiation by switching radiation-induced senescence to apoptosis. The major determinant of radiosensitization by YM155 might be the induction of senescence by radiation.
Collapse
Affiliation(s)
- Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weina Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefen Xiao
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Mirzayans R, Andrais B, Murray D. Impact of Premature Senescence on Radiosensitivity Measured by High Throughput Cell-Based Assays. Int J Mol Sci 2017; 18:ijms18071460. [PMID: 28684684 PMCID: PMC5535951 DOI: 10.3390/ijms18071460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 01/07/2023] Open
Abstract
In most p53 wild-type human cell types, radiosensitivity evaluated by the colony formation assay predominantly reflects stress-induced premature senescence (SIPS) and not cell death (Int. J. Mol. Sci. 2017, 18, 928). SIPS is a growth-arrested state in which the cells acquire flattened and enlarged morphology, remain viable, secrete growth-promoting factors, and can give rise to tumor-repopulating progeny. The impact of SIPS on radiosensitivity measured by short-term assays remains largely unknown. We report that in four p53 wild-type human solid tumor-derived cell lines (HCT116, SKNSH, MCF7 and A172): (i) the conventional short-term growth inhibition assay (3 days post-irradiation) generates radiosensitivity data comparable to that measured by the laborious and time-consuming colony formation assay; (ii) radiation dose-response curves obtained by multiwell plate colorimetric/fluorimetric assays are markedly skewed towards radioresistance, presumably reflecting the emergence of highly enlarged, growth-arrested and viable cells; and (iii) radiation exposure (e.g., 8 Gy) does not trigger apoptosis or loss of viability over a period of 3 days post-irradiation. Irrespective of the cell-based assay employed, caution should be exercised to avoid misinterpreting radiosensitivity data in terms of loss of viability and, hence, cell death.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - David Murray
- Department of Oncology University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
25
|
Francica P, Aebersold DM, Medová M. Senescence as biologic endpoint following pharmacological targeting of receptor tyrosine kinases in cancer. Biochem Pharmacol 2016; 126:1-12. [PMID: 27574725 DOI: 10.1016/j.bcp.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Cellular senescence was first described in 1961 in a seminal study by Hayflick and Moorhead as a limit to the replicative lifespan of somatic cells after serial cultivation. Since then, major advances in our understanding of senescence have been achieved suggesting that this mechanism is activated also by oncogenic stimuli, oxidative stress and DNA damage, giving rise to the concept of premature senescence. Regardless of the initial trigger, numerous experimental observations have been provided to support the notion that both replicative and premature senescence play pivotal roles in early stages of tumorigenesis and in response of tumor cells to anticancer treatments. Moreover, various studies have suggested that the induction of senescence by both chemo- and radiotherapy in a variety of cancer types correlates with treatment outcome. As it is widely accepted that cellular senescence may function as a fundamental barrier of tumor progression, the significance of senescence for clinical interventions that make use of novel molecular targeting-based modalities needs to be well defined. Interestingly, despite numerous studies evaluating efficacies of receptor tyrosine kinases (RTKs) targeting strategies in both preclinical and clinical settings, the relevance of RTKs inhibition-associated senescence in tumors remains less characterized. Here we review the available literature that describes premature senescence as a major mechanism following targeting of RTKs in preclinical as well as in clinical settings. Additionally, we discuss the possible role of diverse RTKs in regulating the induction of senescence following cellular stress and possible implications of this crosstalk in identification of biomarkers of inhibitor-mediated chemo- and radiosensitization approaches.
Collapse
Affiliation(s)
- Paola Francica
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
26
|
Mirzayans R, Andrais B, Kumar P, Murray D. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival? Int J Mol Sci 2016; 17:ijms17050708. [PMID: 27187358 PMCID: PMC4881530 DOI: 10.3390/ijms17050708] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Piyush Kumar
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
27
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
28
|
Ninomiya Y, Cui X, Yasuda T, Wang B, Yu D, Sekine-Suzuki E, Nenoi M. Arsenite induces premature senescence via p53/p21 pathway as a result of DNA damage in human malignant glioblastoma cells. BMB Rep 2015; 47:575-80. [PMID: 24499675 PMCID: PMC4261516 DOI: 10.5483/bmbrep.2014.47.10.254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 01/17/2023] Open
Abstract
In this study, we investigate whether arsenite-induced DNA damage leads to p53-dependent premature senescence using human glioblastoma cells with p53-wild type (U87MG-neo) and p53 deficient (U87MG-E6). A dose dependent relationship between arsenite and reduced cell growth is demonstrated, as well as induced γH2AX foci formation in both U87MG-neo and U87MG-E6 cells at low concentrations of arsenite. Senescence was induced by arsenite with senescence-associated β-galactosidase staining. Dimethyl- and trimethyl-lysine 9 of histone H3 (H3DMK9 and H3TMK9) foci formation was accompanied by p21 accumulation only in U87MG-neo but not in U87MG-E6 cells. This suggests that arsenite induces premature senescence as a result of DNA damage with heterochromatin forming through a p53/p21 dependent pathway. p21 and p53 siRNA consistently decreased H3TMK9 foci formation in U87M G-neo but not in U87MG-E6 cells after arsenite treatment. Taken together, arsenite reduces cell growth independently of p53 and induces premature senescence via p53/p21-dependent pathway following DNA damage. [BMB Reports 2014; 47(10): 575-580]
Collapse
Affiliation(s)
- Yasuharu Ninomiya
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Xing Cui
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takeshi Yasuda
- Radiation Emergency Medicine Research Program, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Dong Yu
- School of Radiological Medicine and Protection, Medical College of Soochow University, 199 Ren Ai Rd, Suzhou Industrial Park, Suzhou 215123, China
| | - Emiko Sekine-Suzuki
- Research Program for Application of Heavy ions and Medical Science, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
29
|
Dolan DWP, Zupanic A, Nelson G, Hall P, Miwa S, Kirkwood TBL, Shanley DP. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21-Mediated Early Senescence Signalling. PLoS Comput Biol 2015; 11:e1004246. [PMID: 26020242 PMCID: PMC4447392 DOI: 10.1371/journal.pcbi.1004246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/17/2015] [Indexed: 02/02/2023] Open
Abstract
Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.
Collapse
Affiliation(s)
- David W P Dolan
- School of Biological and Biomedical Biosciences, Durham University, Durham, United Kingdom; Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anze Zupanic
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom; Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Glyn Nelson
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philip Hall
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas B L Kirkwood
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daryl P Shanley
- Centre for Integrative Systems Biology of Ageing and Nutrition, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Mirzayans R, Andrais B, Scott A, Wang YW, Weiss RH, Murray D. Spontaneous γH2AX Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression. Int J Mol Sci 2015; 16:11609-28. [PMID: 26006237 PMCID: PMC4463719 DOI: 10.3390/ijms160511609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation of H2AX on Ser139 (γH2AX) after exposure to ionizing radiation produces nuclear foci that are detectable by immunofluorescence microscopy. These so-called γH2AX foci have been adopted as quantitative markers for DNA double-strand breaks. High numbers of spontaneous γH2AX foci have also been reported for some human solid tumor-derived cell lines, but the molecular mechanism(s) for this response remains elusive. Here we show that cancer cells (e.g., HCT116; MCF7) that constitutively express detectable levels of p21WAF1 (p21) exhibit low numbers of γH2AX foci (<3/nucleus), whereas p21 knockout cells (HCT116p21−/−) and constitutively low p21-expressing cells (e.g., MDA-MB-231) exhibit high numbers of foci (e.g., >50/nucleus), and that these foci are not associated with apoptosis. The majority (>95%) of cells within HCT116p21−/− and MDA-MB-231 cultures contain high levels of phosphorylated p53, which is localized in the nucleus. We further show an inverse relationship between γH2AX foci and nuclear accumulation of WIP1, an oncogenic phosphatase. Our studies suggest that: (i) p21 deficiency might provide a selective pressure for the emergence of apoptosis-resistant progeny exhibiting genomic instability, manifested as spontaneous γH2AX foci coupled with phosphorylation and nuclear accumulation of p53; and (ii) p21 might contribute to positive regulation of WIP1, resulting in dephosphorylation of γH2AX.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - April Scott
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Ying W Wang
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Robert H Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
- Department of Medicine, Mather VA Medical Center, Sacramento, CA 95655, USA.
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
31
|
Murray D, McBride WH, Schwartz JL. Radiation biology in the context of changing patterns of radiotherapy. Radiat Res 2014; 182:259-72. [PMID: 25029108 DOI: 10.1667/rr13740.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The last decade has witnessed a revolution in the clinical application of high-dose "ablative" radiation therapy. Initially this approach was limited to the treatment of brain tumors, but more recently we have seen its successful extension to tumors outside the brain, e.g., for small lung nodules. These advances have been driven largely by improvements in image-guided inverse treatment planning that allow the dose per fraction to the tumor to be increased over the conventional 2 Gy dose while keeping the late normal tissue complications at an acceptable level by dose limitation. Despite initial concerns about excessive late complications, as might be expected based on dose extrapolations using the linear-quadratic equation, these approaches have shown considerable clinical promise. Our knowledge of the biological consequences of high-doses of ionizing radiation in normal and cancerous tissues has lagged behind these clinical advances. Our intent here is to survey recent experimental findings from the perspective of better understanding the biological effects of high-dose therapy and whether they are truly different from conventional doses. We will also consider the implications of this knowledge for further refining and improving these approaches on the basis of underlying mechanisms.
Collapse
Affiliation(s)
- David Murray
- a Department of Oncology, Division of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
32
|
Anderson DL, Mirzayans R, Andrais B, Siegbahn EA, Fallone BG, Warkentin B. Spatial and temporal distribution of γH2AX fluorescence in human cell cultures following synchrotron-generated X-ray microbeams: lack of correlation between persistent γH2AX foci and apoptosis. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:801-810. [PMID: 24971978 DOI: 10.1107/s1600577514011424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
Formation of γH2AX foci (a marker of DNA double-strand breaks), rates of foci clearance and apoptosis were investigated in cultured normal human fibroblasts and p53 wild-type malignant glioma cells after exposure to high-dose synchrotron-generated microbeams. Doses up to 283 Gy were delivered using beam geometries that included a microbeam array (50 µm wide, 400 µm spacing), single microbeams (60-570 µm wide) and a broad beam (32 mm wide). The two cell types exhibited similar trends with respect to the initial formation and time-dependent clearance of γH2AX foci after irradiation. High levels of γH2AX foci persisted as late as 72 h post-irradiation in the majority of cells within cultures of both cell types. Levels of persistent foci after irradiation via the 570 µm microbeam or broad beam were higher when compared with those observed after exposure to the 60 µm microbeam or microbeam array. Despite persistence of γH2AX foci, these irradiation conditions triggered apoptosis in only a small proportion (<5%) of cells within cultures of both cell types. These results contribute to the understanding of the fundamental biological consequences of high-dose microbeam irradiations, and implicate the importance of non-apoptotic responses such as p53-mediated growth arrest (premature senescence).
Collapse
Affiliation(s)
- Danielle L Anderson
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Razmik Mirzayans
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Bonnie Andrais
- Experimental Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - E Albert Siegbahn
- Medical Physics, Stockholm University, Box 260, S-17176 Stockholm, Sweden
| | - B Gino Fallone
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Brad Warkentin
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
33
|
Mirzayans R, Andrais B, Scott A, Wang YW, Murray D. Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci 2013; 14:22409-35. [PMID: 24232458 PMCID: PMC3856071 DOI: 10.3390/ijms141122409] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell "death" are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21(WAF1) tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - April Scott
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - Ying W. Wang
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| |
Collapse
|
34
|
Citrin DE, Shankavaram U, Horton JA, Shield W, Zhao S, Asano H, White A, Sowers A, Thetford A, Chung EJ. Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst 2013; 105:1474-84. [PMID: 24052614 DOI: 10.1093/jnci/djt212] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Radiation is a commonly delivered therapeutic modality for cancer. The causes underlying the chronic, progressive nature of radiation injury in the lung are poorly understood. METHODS C57Bl/6NCr mice were exposed to thoracic irradiation (n = 3 per dose and time point for tissue collection). Microarray analysis of gene expression from irradiated murine lung was performed using one-way analysis of variance with post hoc Scheffe analysis. Senescence and type II airway epithelial cell (AECII) count were assayed in irradiated murine lung tissue (n = 3 per condition). Irradiated mice were treated with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase (NOX), and fibrosis was assessed by collagen assays. All statistical tests were two-tailed. RESULTS Gene expression in lung tissue from mice irradiated to 17.5 Gy clustered with that of aged unirradiated mice. Only fibrogenic exposures led to AECII senescence (0 Gy: 0.66% ± 0.67%; 5 Gy: 4.5% ± 1.19%; 17.5 Gy: 18.7% ± 3.05; P = .007) and depletion (0 Gy: 2.89 per alveolus ± 0.26; 5 Gy: 2.41 ± 0.19; 17.5 Gy: 1.6 ± 0.14; P < .001) at 30 weeks. Treatment of irradiated mice with DPI for 16 weeks markedly reduced collagen accumulation (5×6 Gy: 57.26 μg/lung ± 9.91; 5×6 Gy ± DPI: 36.54μg/lung ± 4.39; P = .03) and AECII senescence (5×6 Gy: 37.61% ± 4.82%; 5×6 Gy ± DPI: 12.38% ± 2.78; P < .001). CONCLUSIONS These studies identify senescence as an important process in AECII in vivo and indicate that NOX is a critical mediator of radiation-induced AECII senescence and pulmonary fibrosis.
Collapse
Affiliation(s)
- Deborah E Citrin
- Affiliations of authors: Radiation Oncology Branch (DEC, US, JAH, WS, SZ, HA, AY, EJC) and Radiation Biology Branch (AS, AT), Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS One 2013; 8:e74535. [PMID: 24040275 PMCID: PMC3770549 DOI: 10.1371/journal.pone.0074535] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/03/2013] [Indexed: 02/07/2023] Open
Abstract
Senescence is a recognized mechanism of cardiovascular diseases; however, its contribution to myocardial fibrosis and rupture after infarction and the underlying mechanisms remain unclear. Here we showed that senescent cardiac fibroblasts markedly accumulated in heart after myocardial infarction. The expression of key senescence regulators, especially p53, was significantly up-regulated in the infarcted heart or hypoxia-treated fibroblasts. Furthermore, knockdown of endogenous p53 by siRNA in fibroblasts markedly reduced hypoxia-induced cell senescence, cytokine expression but increased collagen expression, whereas increased expression of p53 protein by adenovirus infection had opposite effects. Consistent with in vitro results in cardiac fibroblasts, p53 deficiency in vivo significantly decreased the accumulation of senescent fibroblasts, the infiltration of macrophages and matrix metalloproteinases, but enhanced collagen deposition after myocardial infarction. In conclusion, these results suggest that the p53-mediated fibroblast senescence limits cardiac collagen production, and inhibition of p53 activity could represent a novel therapeutic target to increase reparative fibrosis and to prevent heart rupture after myocardial infarction.
Collapse
|
36
|
Crescenzi E, Raia Z, Pacifico F, Mellone S, Moscato F, Palumbo G, Leonardi A. Down-regulation of wild-type p53-induced phosphatase 1 (Wip1) plays a critical role in regulating several p53-dependent functions in premature senescent tumor cells. J Biol Chem 2013; 288:16212-16224. [PMID: 23612976 DOI: 10.1074/jbc.m112.435149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser(15) and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser(15) phosphorylation is associated with enhanced phosphorylation at Ser(46), increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Zelinda Raia
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, "Federico II" University of Naples, via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Fortunato Moscato
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Palumbo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, "Federico II" University of Naples, via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, "Federico II" University of Naples, via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
37
|
Makris N, Edgren M, Mavroidis P, Lind BK. Investigation of the dose- and time-dependence of the induction of different types of cell death in a small‑cell lung cancer cell line: Implementation of the repairable-conditionally repairable model. Int J Oncol 2013; 42:2019-27. [PMID: 23588899 DOI: 10.3892/ijo.2013.1888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to quantify and model various types of cell death for a small-cell lung cancer (SCLC) cell line (U1690) after exposure to a 137Cs source and as well as to compare the linear-quadratic (LQ) and repairable-conditionally repairable model (RCR). This study is based on four different experiments that were taken place at Cancer Centrum Karolinska (CCK). A human small-cell lung cancer (SCLC) cell line after the exposure to a 137Cs source was used for the extraction of the clonogenic cell survival curve. Additionally, for the determination and quantification of various modes of cell death the method of fluorescence staining was implemented, where the cell deaths were categorized based on morphological characteristics. The percentage of cells in each phase of the cell cycle was investigated with flow cytometry analysis. The quantification of senescent cells was performed by staining the samples with senescence-associated β-galactosidase (SA-β-Gal) solution and then scoring as senescent cells those that had incorporated the substance. These data were introduced into a maximum likelihood fitting to calculate the best estimates of the parameters used by the examined model. In this model, the modes of cell death are divided into three categories: apoptotic, senescent and other types of cell death (necrotic/apoptotic, necrotic, micronuclei and giant). In the clonogenic cell survival assay, the fitting of the RCR model gives a χ(2)-value of 6.10 whereas for the LQ model became 9.61. In the fluorescence microscopy and senescence assay, the probability of the three different modes of cell death on day 2 seems to increases with a dose up to about 10 Gy where there is saturation. On day 7 a significant induction of apoptosis in a dose- and time-dependent manner was evident, whereas senescence was slightly increased in response to dose but not to time. As for the 'other types of cell death' mode on day 7 showed a higher probability than the one on day 2 and as well as a prominent dose-dependence. The RCR model fits better to the experimental data than the LQ model. On day 2 there is a slight increase of the apoptotic and senescent probability with dose. On the other hand, on day 7 the shape of the curve of apoptosis differs and a sigmoidal increase with dose is observed. At both time-points, the present model fits the data reasonably well. Due to the fact that the clonogenic survival does not coincide with the one extracted from the fluorescence microscopy, a more accurate way to quantify cell death needs to be used, e.g. computerized video time-lapse (CVTL).
Collapse
Affiliation(s)
- Nikos Makris
- Department of Medical Physics, Medical School, University of Patras, 26504 Patras, Greece
| | | | | | | |
Collapse
|
38
|
1 0 7. Cancer Biomark 2012. [DOI: 10.1201/b14318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Grace MB, Singh VK, Rhee JG, Jackson WE, Kao TC, Whitnall MH. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis. JOURNAL OF RADIATION RESEARCH 2012; 53:840-53. [PMID: 22843381 PMCID: PMC3483857 DOI: 10.1093/jrr/rrs060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 05/18/2023]
Abstract
The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.
Collapse
Affiliation(s)
- Marcy B. Grace
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Vijay K. Singh
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Juong G. Rhee
- Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201-1559, USA
| | - William E. Jackson
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Tzu-Cheg Kao
- Division of Epidemiology and Biostatistics, Department of Preventive Medicine and Biometrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mark H. Whitnall
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Corresponding author. Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave., Bethesda, MD 20889-5603. Phone: 1-301-295-9262; Fax: 1-301-295-6503; E-mail:
| |
Collapse
|
40
|
Role of p16(INK4A) in Replicative Senescence and DNA Damage-Induced Premature Senescence in p53-Deficient Human Cells. Biochem Res Int 2012; 2012:951574. [PMID: 22924132 PMCID: PMC3424640 DOI: 10.1155/2012/951574] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
The p16(INK4A) (hereafter p16) tumor suppressor is encoded by the INK4A/ARF locus which is among the most commonly dysregulated sequences in human cancer. By inhibiting cyclin-dependent kinases, p16 activates the G1-S checkpoint, and this response is often considered to be critical for establishing a senescence-like growth arrest. Not all studies support a universal role for p16 in senescence. Single-cell analysis of noncancerous human fibroblast cultures undergoing senescence as a function of culture age (replicative senescence) has revealed that p16 is not expressed in the majority (>90%) of cells that exhibit features of senescence (e.g., flattened and enlarged morphology coupled with senescence-associated β-galactosidase expression), ruling out a requirement for p16 in this process. In addition, ionizing radiation triggers premature senescence in human cancer cell lines that do not express p16. These observations are made with cells that express wild-type p53, a key mediator of the DNA damage response. In this paper, we examine the growing evidence suggesting a negative regulatory relationship between p16 and p53 and discuss recent reports that implicate a role for p16 in replicative senescence and ionizing radiation-induced premature senescence in human cells that lack wild-type p53 function.
Collapse
|
41
|
New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012; 2012:170325. [PMID: 22911014 PMCID: PMC3403320 DOI: 10.1155/2012/170325] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/17/2012] [Indexed: 02/06/2023] Open
Abstract
Activation of the p53 signaling pathway by DNA-damaging agents was originally proposed to result either in cell cycle checkpoint activation to promote survival or in apoptotic cell death. This model provided the impetus for numerous studies focusing on the development of p53-based cancer therapies. According to recent evidence, however, most p53 wild-type human cell types respond to ionizing radiation by undergoing stress-induced premature senescence (SIPS) and not apoptosis. SIPS is a sustained growth-arrested state in which cells remain viable and secrete factors that may promote cancer growth and progression. The p21(WAF1) (hereafter p21) protein has emerged as a key player in the p53 pathway. In addition to its well-studied role in cell cycle checkpoints, p21 regulates p53 and its upstream kinase (ATM), controls gene expression, suppresses apoptosis, and induces SIPS. Herein, we review these and related findings with human solid tumor-derived cell lines, report new data demonstrating dynamic behaviors of p53 and p21 in the DNA damage response, and examine the gain-of-function properties of cancer-associated p53 mutations. We point out obstacles in cancer-therapeutic strategies that are aimed at reactivating the wild-type p53 function and highlight some alternative approaches that target the apoptotic threshold in cancer cells with differing p53 status.
Collapse
|
42
|
Gordon RR, Nelson PS. Cellular senescence and cancer chemotherapy resistance. Drug Resist Updat 2012; 15:123-31. [PMID: 22365330 DOI: 10.1016/j.drup.2012.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 12/14/2022]
Abstract
Innate or acquired resistance to cancer therapeutics remains an important area of biomedical investigation that has clear ramifications for improving cancer specific death rates. Importantly, clues to key resistance mechanisms may lie in the well-orchestrated and highly conserved cellular and systemic responses to injury and stress. Many anti-neoplastic therapies typically rely on DNA damage, which engages potent DNA damage response signaling pathways that culminate in apoptosis or growth arrest at checkpoints to allow for damage repair. However, an alternative cellular response, senescence, can also be initiated when challenged with these internal/external pressures and in ideal situations acts as a self-protecting mechanism. Senescence-induction therapies are an attractive concept in that they represent a normal, highly conserved and commonly invoked tumor-suppressing response to overwhelming genotoxic stress or oncogene activation. Yet, such approaches should ensure that senescence by-pass or senescence re-emergence does not occur, as emergent cells appear to have highly drug resistant phenotypes. Further, cell non-autonomous senescence responses may contribute to therapy-resistance in certain circumstances. Here we provide an overview of mechanisms by which cellular senescence plausibly contributes to therapy resistance and concepts by which senescence responses can be influenced to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Ryan R Gordon
- Fred Hutchinson Cancer Research Center, Seattle, WA 91809, United States
| | | |
Collapse
|
43
|
Wilson EN, Bristol ML, Di X, Maltese WA, Koterba K, Beckman MJ, Gewirtz DA. A switch between cytoprotective and cytotoxic autophagy in the radiosensitization of breast tumor cells by chloroquine and vitamin D. HORMONES & CANCER 2011; 2:272-85. [PMID: 21887591 PMCID: PMC3277402 DOI: 10.1007/s12672-011-0081-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcitriol or 1,25-dihydroxyvitamin D3, the hormonally active form of vitamin D, as well as vitamin D analogs, has been shown to increase sensitivity to ionizing radiation in breast tumor cells. The current studies indicate that the combination of 1,25-dihydroxyvitamin D3 with radiation appears to kill p53 wild-type, estrogen receptor-positive ZR-75-1 breast tumor cells through autophagy. Minimal apoptosis was observed based on cell morphology by DAPI and TUNEL staining, annexin/PI analysis, caspase-3, and PARP cleavage as well as cell cycle analysis. Induction of autophagy was indicated by increased acridine orange staining, RFP-LC3 redistribution, and detection of autophagic vesicles by electron microscopy, while autophagic flux was monitored based on p62 degradation. The autophagy inhibitors, chloroquine and bafilomycin A1, as well as genetic suppression of the autophagic signaling proteins Atg5 or Atg 7 attenuated the impact of the combination treatment of 1,25 D3 with radiation. In contrast to autophagy mediating the effects of the combination treatment, the autophagy induced by radiation alone was apparently cytoprotective in that either pharmacological or genetic inhibition increased sensitivity to radiation. These studies support the potential utility of vitamin D for improving the impact of radiation for breast cancer therapy, support the feasibility of combining chloroquine with radiation for the treatment of breast cancer, and demonstrate the existence of an "autophagic switch" from cytoprotective autophagy with radiation alone to cytotoxic autophagy with the 1,25 D3-radiation combination.
Collapse
Affiliation(s)
- Eden N. Wilson
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, PO Box 980035, Richmond, VA 23298 USA
| | - Molly L. Bristol
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, PO Box 980035, Richmond, VA 23298 USA
| | - Xu Di
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, PO Box 980035, Richmond, VA 23298 USA
| | - William A. Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614 USA
| | - Kristen Koterba
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614 USA
| | - Matthew J. Beckman
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, PO Box 980035, Richmond, VA 23298 USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, PO Box 980035, Richmond, VA 23298 USA
| |
Collapse
|
44
|
Abstract
Cellular senescence is defined as the physiological program of terminal growth arrest, which can be triggered by various endogenous or exogenous stress signals. Cellular senescence can be induced in response to oncogenic activation and acts as a barrier to tumorigenesis. Moreover, tumor cells can undergo senescence when exposed to chemotherapeutic agents. In addition to suppressing tumorigenesis, senescent cells remain metabolically active and may contribute to tumor formation and to therapy resistance. In the current review, we discuss the molecular regulation of cellular senescence, the potential implications of senescence in human cancers, and the possibility of exploiting cellular senescence for the treatment of cancers.
Collapse
|
45
|
Sabin RJ, Anderson RM. Cellular Senescence - its role in cancer and the response to ionizing radiation. Genome Integr 2011; 2:7. [PMID: 21834983 PMCID: PMC3169443 DOI: 10.1186/2041-9414-2-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/11/2011] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is a normal biological process that is initiated in response to a range of intrinsic and extrinsic factors that functions to remove irreparable damage and therefore potentially harmful cells, from the proliferative pool. Senescence can therefore be thought of in beneficial terms as a tumour suppressor. In contrast to this, there is a growing body of evidence suggesting that senescence is also associated with the disruption of the tissue microenvironment and development of a pro-oncogenic environment, principally via the secretion of senescence-associated pro-inflammatory factors. The fraction of cells in a senescent state is known to increase with cellular age and from exposure to various stressors including ionising radiation therefore, the implications of the detrimental effects of the senescent phenotype are important to understand within the context of the increasing human exposure to ionising radiation. This review will discuss what is currently understood about senescence, highlighting possible associations between senescence and cancer and, how exposure to ionising radiation may modify this.
Collapse
Affiliation(s)
- Rebecca J Sabin
- Centre for Cell and Chromosome Biology and Centre for Infection, Immunity and Disease Mechanisms, Division of Biosciences, Brunel University, West London, UB8 3PH, UK.
| | | |
Collapse
|
46
|
Kapty J, Murray D, Mercer J. Radiotracers for noninvasive molecular imaging of tumor cell death. Cancer Biother Radiopharm 2011; 25:615-28. [PMID: 21204755 DOI: 10.1089/cbr.2010.0793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The need to monitor cancer therapy-induced cellular and tissue changes using noninvasive imaging techniques continues to stimulate both basic and clinical research. Monitoring changes in cellular proliferative capacity that occur after treatment with radiation and/or chemotherapy has the potential to provide longitudinal information on the cellular dynamics of tumors before, during, and after therapeutic intervention. Cells can lose their reproductive potential through one of several mechanisms, including apoptosis and autophagy (which are forms of programmed cell death), premature senescence, or necrosis. When a tumor responds to therapy, current imaging methods do not provide information about the exact mechanism of cell death executed. We are now beginning to develop the molecular imaging tools that will enable us to noninvasively image cell death mechanisms both in experimental models and in the clinical cancer environment. Studies with these imaging tools will contribute to a better understanding of therapeutic responses and assist in the design and evaluation of more effective treatments. This review examines the state-of-the-art in the use of (radio)tracers for the purpose of imaging mechanisms of tumor cell inactivation (cell death) in animal models and in clinical trials.
Collapse
Affiliation(s)
- Janice Kapty
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
47
|
NF-κB-dependent cytokine secretion controls Fas expression on chemotherapy-induced premature senescent tumor cells. Oncogene 2011; 30:2707-17. [PMID: 21278794 DOI: 10.1038/onc.2011.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Induction of a senescent phenotype in tumor cells has been linked to anticancer immune response, however, the molecular mechanisms mediating these phenomenon have not yet been determined. In this study, we present evidence that induction of premature senescence in human cancer cell lines induces Fas expression, and loss of resistance to Fas-induced apoptosis. Triggering of Fas by using the agonistic antibody CH11 or the recombinant ligand APO010, activates an apoptotic pathway responsible for cell death. Secretion of pro-inflammatory cytokines by the senescent cells, particularly TNF-α and IFN-γ, mediates Fas upregulation. Indeed, treatment of proliferating cancer cell lines with TNF-α and IFN-γ, upregulates Fas expression, while blocking TNF-α and IFN-γ by using neutralizing antibodies, decreases Fas expression in senescent cells. We also demonstrate that NF-κB has a central role in controlling the senescence-associated secretory phenotype (SASP) by the premature senescent cells, and that TNF-α and IFN-γ, transcriptionally controlled by NF-κB, are the main mediators of Fas upregulation. Our data suggest the existence of an NF-κB-dependent autocrine loop, mediated by TNF-α and IFN-γ, responsible for expression of Fas on the surface of senescent cells, and for their killing.
Collapse
|
48
|
Gorjala P, Gary RK. Beryllium sulfate induces p21 CDKN1A expression and a senescence-like cell cycle arrest in susceptible cancer cell types. Biometals 2010; 23:1061-73. [PMID: 20549306 PMCID: PMC2976805 DOI: 10.1007/s10534-010-9352-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/29/2010] [Indexed: 12/22/2022]
Abstract
In fibroblasts, beryllium salt causes activation of the p53 transcription factor and induction of a senescence-like state. It is not known whether Be(2+) can affect the proliferation of cancer cells, which are generally unsusceptible to senescence. A172 glioblastoma and RKO colon carcinoma cell lines each have wildtype p53, so these cell types have the potential to be responsive to agents that activate p53. In A172 cells, BeSO(4) produced a G(0)/G(1)-phase cell cycle arrest and increased expression of senescence-associated β-galactosidase, an enzymatic marker of senescence. BeSO(4) caused phosphorylation of serine-15 of p53, accumulation of p53 protein, and expression of p21, the cyclin-dependent kinase inhibitor that is prominent during senescence. BeSO(4) inhibited A172 growth with an IC(50) = 4.7 μM in a 6-day proliferation assay. In contrast, BeSO(4) had no effect on RKO cells, even though Be(2+) uptake was similar for the two cell types. This differential responsiveness marks BeSO(4) as a reagent capable of activating a separable branch of the p53 signaling network. A172 and RKO cells are known to exhibit p53-dependent upregulation of p21 in response to DNA damage. The RKO cells produced high levels of p21 when exposed to DNA damaging agents, yet failed to express p21 when treated with BeSO(4). Conversely, BeSO(4) did not cause DNA damage in A172 cells, yet it was a potent inducer of p21 expression. These observations indicate that the growth control pathway affected by BeSO(4) is distinct from the DNA damage response pathway, even though both ultimately converge on p53 and p21.
Collapse
Affiliation(s)
- Priyatham Gorjala
- Department of Chemistry, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Ronald K. Gary
- Department of Chemistry, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| |
Collapse
|
49
|
von Guggenberg E, Shahhosseini S, Koslowsky I, Lavasanifar A, Murray D, Mercer J. In vitro characterization of two novel biodegradable vectors for the delivery of radiolabeled antisense oligonucleotides. Cancer Biother Radiopharm 2010; 25:723-31. [PMID: 21204767 PMCID: PMC6283271 DOI: 10.1089/cbr.2010.0813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of antisense oligonucleotides suitable for tumor targeting applications is hindered by low stability and bioavailability of oligonucleotides in vivo and by the absence of efficient and safe vectors for oligonucleotide delivery. Stabilization in vivo has been achieved through chemical modification of oligonucleotides by various means, but effective approaches to enhance their intracellular delivery are lacking. This study reports on the characterization in vitro of a fully phosphorothioated 20-mer oligonucleotide, complementary to p21 mRNA, radiolabeled with fluorine-18 using a thiol reactive prosthetic group. The potential of two novel synthetic block copolymers containing grafted polyamines on their hydrophobic blocks for vector-assisted cell delivery was studied in vitro. Extensive cellular uptake studies were performed in human colon carcinoma cell lines with enhanced or deficient p21 expression to evaluate and compare the uptake mechanism of naked and vectorized radiolabeled formulations. Uptake studies with the two novel biodegradable vectors showed a moderate increase in cell uptake of the radiofluorinated antisense oligonucleotide. The two vectors show, however, promising advantages over conventional lipidic vectors regarding their biocompatibility and subcellular distribution.
Collapse
Affiliation(s)
- E von Guggenberg
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - S Shahhosseini
- School of Cancer, Engineering and Imaging Sciences, University of Alberta, Edmonton AB, T6G 1Z2, Canada
| | - I Koslowsky
- School of Cancer, Engineering and Imaging Sciences, University of Alberta, Edmonton AB, T6G 1Z2, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2N8, Canada
| | - A Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2N8, Canada
| | - D Murray
- School of Cancer, Engineering and Imaging Sciences, University of Alberta, Edmonton AB, T6G 1Z2, Canada
| | - J Mercer
- School of Cancer, Engineering and Imaging Sciences, University of Alberta, Edmonton AB, T6G 1Z2, Canada
| |
Collapse
|
50
|
Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG. Alterations in DNA repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiat Res 2010; 174:703-11. [PMID: 21128793 DOI: 10.1667/rr2295.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To study radioresistance in esophageal adenocarcinoma, we generated an isogenic cell line model by exposing OE33 esophageal adenocarcinoma cells to clinically relevant fractionated doses of radiation (cumulative dose 50 Gy). A clonogenic assay confirmed enhanced survival of the radioresistant OE33 subline (OE33 R). To our knowledge, we are the first to generate an isogenic model of radioresistance in esophageal adenocarcinoma. This model system was characterized in terms of growth, cell cycle distribution and checkpoint operation, apoptosis, reactive oxygen species generation and scavenging, and DNA damage. While similar properties were found for both the parental OE33 (OE33 P) cells and radioresistant OE33 R cells, OE33 R cells demonstrated greater repair of radiation-induced DNA damage. Our results suggest that the radioresistance of OE33 R cells is due at least in part to increased DNA repair.
Collapse
Affiliation(s)
- Niamh Lynam-Lennon
- Department of Surgery, Trinity College Dublin, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | | | | | | | | | | |
Collapse
|