1
|
Yoshida K, Misumi M, Hamasaki K, Kyoizumi S, Satoh Y, Tsuruyama T, Uchimura A, Kusunoki Y. High-dose radiation preferentially induces the clonal expansion of hematopoietic progenitor cells over mature T and B cells in mouse bone marrow. Stem Cell Reports 2025; 20:102423. [PMID: 40020684 PMCID: PMC11960520 DOI: 10.1016/j.stemcr.2025.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025] Open
Abstract
Radiation induces clonal hematopoiesis (CH) involving high-frequency somatic mutations in hematopoietic cells. However, the effects of radiation on clonal expansion of hematopoietic progenitor cells and lymphocytes remain elusive. Here, we investigate CH mutations and T cell receptor (TCR) and B cell receptor (BCR) sequences within the bone marrow cells of mice 18 months after irradiation (3 Gy) and age-matched controls. Two to six CH mutations were identified in the irradiated mice (N = 5), while only one of the four control mice carried a CH mutation. These CH mutations detected in the bone marrow were also identified in the splenic CD11b+ myeloid cell population. Meanwhile, the cumulative size of the ten largest TCR and BCR clones, as well as their clonality, did not differ significantly between irradiated and control mice. Our findings suggest that radiation preferentially induces clonal expansion of hematopoietic progenitor cells over mature lymphocytes in the bone marrow.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kanya Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yasunari Satoh
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tatsuaki Tsuruyama
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Arikuni Uchimura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| |
Collapse
|
2
|
Long-Term Immunological Consequences of Radiation Exposure in a Diverse Cohort of Rhesus Macaques. Int J Radiat Oncol Biol Phys 2023; 115:945-956. [PMID: 36288757 PMCID: PMC9974872 DOI: 10.1016/j.ijrobp.2022.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to develop an improved understanding of the delayed immunologic effects of acute total body irradiation (TBI) using a diverse cohort of nonhuman primates as a model for an irradiated human population. METHODS AND MATERIALS Immune recovery was evaluated in 221 rhesus macaques either left unirradiated (n = 36) or previously irradiated (n = 185) at 1.1 to 8.5 Gy TBI (median, 6.5 Gy) when aged 2.1 to 15.5 years (median, 4.2 years). Blood was drawn annually for up to 5 years total between 0.5 and 14.3 years after exposure. Blood was analyzed by complete blood count, immunophenotyping of monocytes, dendritic cells (DC) and lymphocytes by flow cytometry, and signal joint T-cell receptor exclusion circle quantification in isolated peripheral blood CD4 and CD8 T cells. Animals were categorized by age, irradiation status, and time since irradiation. Sex-adjusted means of immune metrics were evaluated by generalized estimating equation models to identify cell populations altered by TBI. RESULTS Overall, the differences between irradiated and nonirradiated animals were subtle and largely restricted to younger animals and select cell populations. Subsets of monocytes, DC, T cells, and B cells showed significant interaction effects between radiation dose and age after adjustment for sex. Irradiation at a young age caused transient increases in the percentage of peripheral blood myeloid DC and dose-dependent changes in monocyte balance for at least 5 years after TBI. TBI also led to a sustained decrease in the percentage of circulating memory B cells. Young irradiated animals exhibited statistically significant and prolonged disruption of the naïve/effector memory/central memory CD4 and CD8 T-cell equilibrium and exhibited a dose-dependent increase in thymopoiesis for 2 to 3 years after exposure. CONCLUSIONS This study indicates TBI subtly but significantly alters the circulating proportions of cellular mediators of adaptive immune memory for several years after irradiation, especially in macaques under 5 years of age and those receiving a high dose of radiation.
Collapse
|
3
|
Kiuchi Y, Yanagi M, Itakura K, Takahashi I, Hida A, Ohishi W, Furukawa K. Association between radiation, glaucoma subtype, and retinal vessel diameter in atomic bomb survivors. Sci Rep 2019; 9:8642. [PMID: 31201344 PMCID: PMC6570769 DOI: 10.1038/s41598-019-45049-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
We examined the relationship between glaucoma subtype and retinal vascular caliber as markers of ocular circulation. Subjects were Japanese atomic bomb survivors in Hiroshima and Nagasaki. After a screening examination, potential cases were subjected to further definitive examination. The diameters of central retinal artery and vein equivalents (CRAE and CRVE) on digitized retinal photographs were measured using an established method. Generalized linear regression analyses were used to examine the associations among vessel diameters, radiation exposure, and prevalence of glaucoma subtypes among the study subjects. We identified 196 cases of glaucoma (12%) based on optic disc appearance, perimetry results, and other ocular findings. The main subtypes were primary angle-closure glaucoma, primary open-angle glaucoma and normal-tension glaucoma (NTG). NTG was the dominant subtype (78%). NTG was negatively associated with CRAE and CRVE, and positively associated with radiation dose. CRVE was negatively associated with radiation dose and the association was unclear for CRAE. The smaller retinal vessel caliber in NTG patients than in subjects without glaucoma may indicate an association between ocular blood flow and the pathogenesis of NTG. However, significant relationships among vessel calibers, NTG and radiation exposure were not clear.
Collapse
Affiliation(s)
- Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Masahide Yanagi
- Department of Ophthalmology and Visual Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Katsumasa Itakura
- Department of Ophthalmology and Visual Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ikuno Takahashi
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima, 732-0815, Japan
| | - Ayumi Hida
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima, 732-0815, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima, 732-0815, Japan
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
4
|
Hale LP, Rajam G, Carlone GM, Jiang C, Owzar K, Dugan G, Caudell D, Chao N, Cline JM, Register TC, Sempowski GD. Late effects of total body irradiation on hematopoietic recovery and immune function in rhesus macaques. PLoS One 2019; 14:e0210663. [PMID: 30759098 PMCID: PMC6373904 DOI: 10.1371/journal.pone.0210663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
While exposure to radiation can be lifesaving in certain settings, it can also potentially result in long-lasting adverse effects, particularly to hematopoietic and immune cells. This study investigated hematopoietic recovery and immune function in rhesus macaques Cross-sectionally (at a single time point) 2 to 5 years after exposure to a single large dose (6.5 to 8.4 Gray) of total body radiation (TBI) derived from linear accelerator-derived photons (2 MeV, 80 cGy/minute) or Cobalt 60-derived gamma irradiation (60 cGy/min). Hematopoietic recovery was assessed through measurement of complete blood counts, lymphocyte subpopulation analysis, and thymus function assessment. Capacity to mount specific antibody responses against rabies, Streptococcus pneumoniae, and tetanus antigens was determined 2 years after TBI. Irradiated macaques showed increased white blood cells, decreased platelets, and decreased frequencies of peripheral blood T cells. Effects of prior radiation on production and export of new T cells by the thymus was dependent on age at the time of analysis, with evidence of interaction with radiation dose for CD8+ T cells. Irradiated and control animals mounted similar mean antibody responses to proteins from tetanus and rabies and to 10 of 11 serotype-specific pneumococcal polysaccharides. However, irradiated animals uniformly failed to make antibodies against polysaccharides from serotype 5 pneumococci, in contrast to the robust responses of non-irradiated controls. Trends toward decreased serum levels of anti-tetanus IgM and slower peak antibody responses to rabies were also observed. Taken together, these data show that dose-related changes in peripheral blood cells and immune responses to both novel and recall antigens can be detected 2 to 5 years after exposure to whole body radiation. Longer term follow-up data on this cohort and independent validation will be helpful to determine whether these changes persist or whether additional changes become evident with increasing time since radiation, particularly as animals begin to develop aging-related changes in immune function.
Collapse
Affiliation(s)
- Laura P. Hale
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- * E-mail:
| | - Gowrisankar Rajam
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - George M. Carlone
- Immunobiology Laboratory, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - Chen Jiang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Nelson Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Thomas C. Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Gregory D. Sempowski
- Department of Pathology and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
5
|
Impact of early life exposure to ionizing radiation on influenza vaccine response in an elderly Japanese cohort. Vaccine 2018; 36:6650-6659. [PMID: 30274868 DOI: 10.1016/j.vaccine.2018.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 01/10/2023]
Abstract
The objective of this study was to evaluate effects of whole body radiation exposure early in life on influenza vaccination immune responses much later in life. A total of 292 volunteers recruited from the cohort members of ongoing Adult Health Study (AHS) of Japanese atomic bomb (A-bomb) survivors completed this observational study spanning two influenza seasons (2011-2012 and 2012-2013). Peripheral blood samples were collected prior to and three weeks after vaccination. Serum hemagglutination inhibition (HAI) antibody titers were measured as well as concentrations of 25 cytokines and chemokines in culture supernatant from peripheral blood mononuclear cells, with and without in vitro stimulation with influenza vaccine. We found that influenza vaccination modestly enhanced serum HAI titers in this unique cohort of elderly subjects, with seroprotection ranging from 18 to 48% for specific antigen/season combinations. Twelve percent of subjects were seroprotected against all three vaccine antigens post-vaccination. Males were generally more likely to be seroprotected for one or more antigens post-vaccination, with no differences in vaccine responses based on age at vaccination or radiation exposure in early life. These results show that early life exposure to ionizing radiation does not prevent responses of elderly A-bomb survivors to seasonal influenza vaccine.
Collapse
|
6
|
Yoshida K, Nakashima E, Kyoizumi S, Hakoda M, Hayashi T, Hida A, Ohishi W, Kusunoki Y. Metabolic Profile as a Potential Modifier of Long-Term Radiation Effects on Peripheral Lymphocyte Subsets in Atomic Bomb Survivors. Radiat Res 2016; 186:275-82. [PMID: 27541825 DOI: 10.1667/rr14336.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.
Collapse
Affiliation(s)
| | | | | | - Masayuki Hakoda
- e Department of Nutritional Sciences, Faculty of Human Ecology, Yasuda Women's University, Hiroshima, Japan
| | | | - Ayumi Hida
- d Department of Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan; and
| | - Waka Ohishi
- c Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | | |
Collapse
|
7
|
Kreuzer M, Auvinen A, Cardis E, Hall J, Jourdain JR, Laurier D, Little MP, Peters A, Raj K, Russell NS, Tapio S, Zhang W, Gomolka M. Low-dose ionising radiation and cardiovascular diseases – Strategies for molecular epidemiological studies in Europe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:90-100. [DOI: 10.1016/j.mrrev.2015.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022]
|
8
|
Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, Mabuchi K, Marks LB, Mettler FA, Pierce LJ, Trott KR, Yeh ETH, Shore RE. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 2010; 76:656-65. [PMID: 20159360 PMCID: PMC3910096 DOI: 10.1016/j.ijrobp.2009.09.064] [Citation(s) in RCA: 449] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/03/2009] [Accepted: 09/09/2009] [Indexed: 02/07/2023]
Abstract
The heart has traditionally been considered a radio-resistant organ that would be unaffected by cardiac doses below about 30 Gray. During the last few years, however, evidence that radiation-related heart disease can occur following lower doses has emerged from several sources. These include studies of breast cancer patients, who received mean cardiac doses of 3–17 Gray when given radiotherapy following surgery, and studies of survivors of the atomic bombings of Japan who received doses of up to 4 Gray. At doses above 30 Gray, radiation-related heart disease may occur within a year or two of exposure and risk increases with higher radiotherapy dose, younger age at irradiation, and the presence of conventional risk factors. At lower doses the typical latent period is much longer and is often more than a decade. However, the nature and magnitude of the risk following lower doses is not well characterized, and it is not yet clear whether there is a threshold dose below which there is no risk. The evidence regarding radiation-related heart disease comes from several different disciplines. The present review brings together information from pathology, radiobiology, cardiology, radiation oncology and epidemiology. It summarises current knowledge, identifies gaps in that knowledge, and outlines some potential strategies for filling them. Further knowledge about the nature and magnitude of radiation-related heart disease would have immediate application in radiation oncology. It would also provide a basis for radiation protection policies for use in diagnostic radiology and occupational exposure.
Collapse
Affiliation(s)
- Sarah C Darby
- Clinical Trial Service Unit, Richard Doll Building, Roosevelt Drive, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kyoizumi S, Yamaoka M, Kubo Y, Hamasaki K, Hayashi T, Nakachi K, Kasagi F, Kusunoki Y. Memory CD4 T-cell subsets discriminated by CD43 expression level in A-bomb survivors. Int J Radiat Biol 2010; 86:56-62. [PMID: 20070216 DOI: 10.3109/09553000903272641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Our previous study showed that radiation exposure reduced the diversity of repertoires of memory thymus-derived cells (T cells) with cluster of differentiation (CD)- 4 among atomic-bomb (A-bomb) survivors. To evaluate the maintenance of T-cell memory within A-bomb survivors 60 years after radiation exposure, we examined functionally distinct memory CD4 T-cell subsets in the peripheral blood lymphocytes of the survivors. METHODS Three functionally different subsets of memory CD4 T cells were identified by differential CD43 expression levels and measured using flow cytometry. These subsets consist of functionally mature memory cells, cells weakly responsive to antigenic stimulation, and those cells functionally anergic and prone to spontaneous apoptosis. RESULTS The percentages of these subsets within the peripheral blood CD4 T-cell pool all significantly increased with age. Percentages of functionally weak and anergic subsets were also found to increase with radiation dose, fitting to a log linear model. Within the memory CD4 T-cell pool, however, there was an inverse association between radiation dose and the percentage of functionally mature memory cells. CONCLUSION These results suggest that the steady state of T cell memory, which is regulated by cell activation and/or cell survival processes in subsets, may have been perturbed by prior radiation exposure among A-bomb survivors.
Collapse
Affiliation(s)
- Seishi Kyoizumi
- Department of Radiobiology, Yasuda Women's University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kusunoki Y, Hayashi T. Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. Int J Radiat Biol 2008; 84:1-14. [PMID: 17852558 DOI: 10.1080/09553000701616106] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The immune systems of the atomic-bomb (A-bomb) survivors were damaged proportionately to irradiation levels at the time of the bombing over 60 years ago. Although the survivor's immune system repaired and regenerated as the hematopoietic system has recovered, significant residual injury persists, as manifested by abnormalities in lymphoid cell composition and function. This review summarizes the long-lasting alterations in immunological functions associated with atomic-bomb irradiation, and discusses the likelihood that damaging effects of radiation on the immune system may be involved partly in disease development so frequently observed in A-bomb survivors. CONCLUSIONS Significant immunological alterations noted include: (i) attrition of T-cell functions, as reductions in mitogen-dependent proliferation and interleukin-2 (IL-2) production; (ii) decrease in helper T-cell populations; and (iii) increase in blood inflammatory cytokine levels. These findings suggest that A-bomb radiation exposure perturbed one or more of the primary processes responsible for T-cell homeostasis and the balance between cell renewal and survival and cell death among naive and memory T cells. Such perturbed T-cell homeostasis may result in acceleration of immunological aging. Persistent inflammation, linked in some way to the perturbation of T-cell homeostasis, is key in addressing whether such noted immunological changes observed in A-bomb survivors are in fact associated with disease development.
Collapse
Affiliation(s)
- Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5-2, Hijiyama-Park, Minami-ward, Hiroshima 732, Japan.
| | | |
Collapse
|