1
|
Simonds WF, Li Y, Jha S. Genotype-Phenotype Correlations in the Hyperparathyroidism-Jaw Tumor Syndrome. J Clin Endocrinol Metab 2025; 110:931-939. [PMID: 39775826 PMCID: PMC11913099 DOI: 10.1210/clinem/dgae909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Establishing genotype-phenotype correlations in disorders of hereditary endocrine neoplasia is important for clinical screening, genetic counseling, prognostication, surveillance, and surgical strategy, and may also provide clues about disease pathogenesis. Important genotype-phenotype correlations are recognized, for example, in pheochromocytoma/paraganglioma and multiple endocrine neoplasia type 2A. The presence of such correlations has been less clear in other familial endocrine disorders associated with primary hyperparathyroidism including multiple endocrine neoplasia type 1, and the hyperparathyroidism-jaw tumor syndrome (HPT-JT). Characteristic features of HPT-JT, apart from fibro-osseous jaw tumors and uterine lesions, include renal neoplasms, such as Wilms tumor and mixed epithelial and stromal tumor ("renal hamartomas"), and a high incidence of parathyroid cancer. Emerging evidence suggests two different genotype-phenotype correlations in HPT-JT based on the type of variant in the CDC73 tumor suppressor gene. Although multiple CDC73 genotypes can give rise to the Wilms tumor phenotype in HPT-JT, the development of mixed epithelial and stromal tumor of the kidney specifically correlates with the presence of a start-loss variant affecting the initiator methionine codon of parafibromin, the protein product encoded by CDC73. Furthermore, the risk of parathyroid cancer in HPT-JT also appears to correlate with genotype: CDC73 frameshift indel, splice-site, and stop-gain genotypes are associated with a greatly increased risk of parathyroid carcinoma compared to carriers of CDC73 missense and nonframeshift indel variants. The recognition of such genotype-phenotype correlations in HPT-JT may impact genetic counseling, patient care and disease surveillance.
Collapse
Affiliation(s)
- William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Yulong Li
- Division of Endocrinology, Metabolism & Lipid Research, John T. Milliken Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Gheorghe AM, Sima OC, Florescu AF, Ciuche A, Nistor C, Sandru F, Carsote M. Insights into Hyperparathyroidism-Jaw Tumour Syndrome: From Endocrine Acumen to the Spectrum of CDC73 Gene and Parafibromin-Deficient Tumours. Int J Mol Sci 2024; 25:2301. [PMID: 38396977 PMCID: PMC10889221 DOI: 10.3390/ijms25042301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
A total of 1 out of 10 patients with primary hyperparathyroidism (PHP) presents an underlying genetic form, such as multiple endocrine neoplasia types 1, 2A, etc., as well as hyperparathyroidism-jaw tumour syndrome (HJT). We aimed to summarise the recent data, thus raising more awareness regarding HJT, from the clinical perspective of PHP in association with the challenges and pitfalls of CDC73 genetic testing and parafibromin staining. This narrative review included a sample-focused analysis from the past decade according to a PubMed search. We identified 17 original human studies (≥4 patients per article). The mean age at disease onset was between 20.8 and 39.5 years, while the largest study found that 71% of patients had HJT recognised before the age of 30. Males and females seemed to be equally affected, in contrast with sporadic PHP. PHP represented the central manifestation of HJT, occurring as the first manifestation in up to 85% of HJT cases. A biochemistry panel found a mean serum calcium level above the level of 12 mg/dL in PHP. PTH was elevated in HJT as well, with average values of at least 236.6 pg/mL. The most frequent pathological type in PHP was a parathyroid adenoma, but the incidence of a parathyroid carcinoma was much higher than in non-HJT cases (15% of all parathyroid tumours), with the diagnosis being established between the age of 15 and 37.5. In some families up to 85% of carriers suffered from a parathyroid carcinoma thus indicating that certain CDC73 pathogenic variants may harbour a higher risk. An important issue in HJT was represented by the parafibromin profile in the parathyroid tumours since in HJT both parathyroid adenomas and carcinomas might display a deficient immunoreactivity. Another frequent manifestation in HJT was ossifying fibromas of the jaw (affecting 5.4% to 50% of patients; the largest study found a prevalence of 15.4%). HJT was associated with a wide variety of kidney lesion (mostly: kidney cysts, with a prevalence of up to 75%, and renal tumours involved in 19% of patients). The risk of uterine lesions seemed increased in HJT, especially with concern to leiomyomas, adenofibromas, and adenomyosis. The underlying pathogenic mechanisms and the involvement of CDC73 pathogenic variants and parafibromin expression are yet to be explored. Currently, the heterogeneous expression of parafibromin status and, the wide spectrum of CDC73 mutations including the variety of clinical presentations in HJT, make it difficult to predict the phenotype based on the genotype. The central role of HJT-PHP is, however, the main clinical element, while the elevated risk of parathyroid carcinoma requires a special awareness.
Collapse
Affiliation(s)
- Ana-Maria Gheorghe
- PhD Doctoral School of “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.G.); (O.-C.S.)
| | - Oana-Claudia Sima
- PhD Doctoral School of “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.G.); (O.-C.S.)
| | - Alexandru Florin Florescu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania;
- Endocrinology Department, “Sf. Spiridon” Emergency County Clinical Hospital, 700111 Iasi, Romania
| | - Adrian Ciuche
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Claudiu Nistor
- Department 4—Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatovenerology, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Tora R, Welch J, Sun J, Agarwal SK, Bell DA, Merino M, Weinstein LS, Simonds WF, Jha S. Phenotypic Profiling and Molecular Mechanisms in Hyperparathyroidism-jaw Tumor Syndrome. J Clin Endocrinol Metab 2023; 108:3165-3177. [PMID: 37339334 PMCID: PMC10655532 DOI: 10.1210/clinem/dgad368] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
CONTEXT Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is a heritable form of primary hyperparathyroidism caused by germline inactivating mutations in CDC73 encoding parafibromin and is associated with an increased risk of parathyroid cancer. There is little evidence to guide the management of patients with the disease. OBJECTIVE (1) Characterize the natural history of HPT-JT, (2) correlate genotype and histology of parathyroid tumors with parafibromin immunostaining, (3) understand molecular changes downstream to CDC73 loss. DESIGN Retrospective study of patients with HPT-JT syndrome (genetically confirmed or affected first-degree relatives). Independent review of uterine tumor from 2 patients and staining for parafibromin on parathyroid tumors from 19 patients (13 adenomas, 6 carcinomas) was performed. RNA-sequencing was performed in 21 parathyroid samples (8 HPT-JT-related adenomas, 6 HPT-JT-related carcinomas, and 7 sporadic carcinomas with wild-type CDC73). RESULTS We identified 68 patients from 29 kindreds with HPT-JT with median age at last follow-up of 39 [interquartile range, 29-53] years. A total of 55/68 (81%) developed primary hyperparathyroidism; 17/55 (31%) had parathyroid carcinoma. Twelve of 32 (38%) females developed uterine tumors. Of the 11 patients who had surgical resection for uterine tumors, 12/24 (50%) tumors were rare mixed epithelial mesenchymal polypoid lesions. Four of 68 patients (6%) developed solid kidney tumors; 3/4 had a CDC73 variant at p.M1 residue. Parafibromin staining of parathyroid tumors did not correlate with tumor histology or genotype. RNA-sequencing showed a significant association of HPT-JT-related parathyroid tumors with transmembrane receptor protein tyrosine kinase signaling pathway, mesodermal commitment pathway, and cell-cell adhesion. CONCLUSIONS Multiple, recurrent atypical adenomyomatous uterine polyps appear to be enriched in women with HPT-JT and appear characteristic of the disease. Patients with CDC73 variants at p.M1 residue appear predisposed to kidney tumors. CLINICAL TRIAL NUMBER NCT04969926.
Collapse
Affiliation(s)
- Rana Tora
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Welch
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Sun
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra A Bell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
5
|
Ababneh E, Nosé V. Para This, Fibromin That: The Role of CDC73 in Parathyroid Tumors and Familial Tumor Syndromes. Surg Pathol Clin 2023; 16:97-105. [PMID: 36739170 DOI: 10.1016/j.path.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CDC73 alterations are associated with three main parathyroid lesions according to the World Health Organization (WHO) classification of tumors of the endocrine system. These include hyperparathyroidism-jaw tumor (HPT-JT) syndrome-associated adenomas, atypical parathyroid tumors (APTs), and parathyroid carcinomas (PCs). The loss of nuclear parafibromin expression, which serves as a surrogate marker for the underlying CDC73 alteration, encompasses these tumors under the term parafibromin-deficient parathyroid tumors. They have distinct morphologic features of more abundant eosinophilic cytoplasm with perinuclear clearing surrounding a large nucleus as well as prominent dilated branching "hemangiopericytoma-like" vasculature and a thick capsule as well as variably sized cystic spaces. These tumors include cases that show unequivocal histologic features fulfilling the criteria for PCs with growing data indicating a higher rate of recurrence or metastasis compared with parafibromin intact PCs. More importantly, the loss of parafibromin expression can be used in clinical practice to recognize APTs that fall short of a conclusive diagnosis of PCs, but clinically behave akin to them. Moreover, recognizing these tumors can lead to an underlying germline mutation and a diagnosis of HPT-JT, which impacts long-term treatment and surveillance for patients and close family.
Collapse
Affiliation(s)
- Emad Ababneh
- Department of Pathology, Warren 214, Massachusetts General Hospital, 55 Fruit street, Boston, MA 02114, USA; Pathology and Laboratory medicine Institute, L25, Cleveland Clinic foundation, 9500 Euclid ave, Cleveland, OH 44118, USA
| | - Vania Nosé
- Department of Pathology, Warren 214, Massachusetts General Hospital, 55 Fruit street, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Erickson LA, Mete O, Juhlin CC, Perren A, Gill AJ. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr Pathol 2022; 33:64-89. [PMID: 35175514 DOI: 10.1007/s12022-022-09709-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
Abstract
The 2022 WHO classification reflects increases in the knowledge of the underlying pathogenesis of parathyroid disease. In addition to the classic characteristic features of parathyroid neoplasms, subtleties in histologic features which may indicate an underlying genetic abnormality reflect increased understanding of the clinical manifestations, histologic, and genetic correlation in parathyroid disease. The importance of underlying genetic aberrancies is emphasized due to their significance to the care of the patient. Traditionally, the term "parathyroid hyperplasia" has been applied to multiglandular parathyroid disease; however, the concept of hyperplasia is generally no longer supported in the context of primary hyperparathyroidism since affected glands are usually composed of multiple "clonal" neoplastic proliferations. In light of these findings and management implications for patient care, the 2022 WHO classification endorses primary hyperparathyroidism-related multiglandular parathyroid disease (multiglandular multiple parathyroid adenomas) as a germline susceptibility-driven multiglandular parathyroid neoplasia. From such a perspective, pathologists can provide additional value to genetic triaging by recognizing morphological and immunohistochemical harbingers of MEN1, CDKN1B, MAX, and CDC73-related manifestations. In the current WHO classification, the term "parathyroid hyperplasia" is now used primarily in the setting of secondary hyperplasia which is most often caused by chronic renal failure. In addition to expansion in the histological features, including those that may be suggestive of an underlying genetic abnormality, there are additional nomenclature changes in the 2022 WHO classification reflecting increased understanding of the underlying pathogenesis of parathyroid disease. The new classification no longer endorses the use of "atypical parathyroid adenoma". This entity is now being replaced with the term of "atypical parathyroid tumor" to reflect a parathyroid neoplasm of uncertain malignant potential. The differential diagnoses of atypical parathyroid tumor are discussed along with the details of worrisome clinical and laboratory findings, and also features that define atypical histological and immunohistochemical findings to qualify for this diagnosis. The histological definition of parathyroid carcinoma still requires one of the following findings: (i) angioinvasion (vascular invasion) characterized by tumor invading through a vessel wall and associated thrombus, or intravascular tumor cells admixed with thrombus, (ii) lymphatic invasion, (iii) perineural (intraneural) invasion, (iv) local malignant invasion into adjacent anatomic structures, or (v) histologically/cytologically documented metastatic disease. In parathyroid carcinomas, the documentation of mitotic activity (e.g., mitoses per 10mm2) and Ki67 labeling index is recommended. Furthermore, the importance of complete submission of parathyroidectomy specimens for microscopic examination, and the crucial role of multiple levels along with ancillary biomarkers have expanded the diagnostic workup of atypical parathyroid tumors and parathyroid carcinoma to ensure accurate characterization of parathyroid neoplasms. The concept of parafibromin deficiency has been expanded upon and term "parafibromin deficient parathyroid neoplasm" is applied to a parathyroid neoplasm showing complete absence of nuclear parafibromin immunoreactivity. Nucleolar loss is considered as abnormal finding that requires further molecular testing to confirm its biological significance. The 2022 WHO classification emphasizes the role of molecular immunohistochemistry in parathyroid disease. By adopting a question-answer framework, this review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the underlying pathogenesis of parathyroid disease that are now reflected in the updated classification and new entities in the 2022 WHO classification.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55901, USA.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Anthony J Gill
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Marini F, Giusti F, Palmini G, Perigli G, Santoro R, Brandi ML. Genetics and Epigenetics of Parathyroid Carcinoma. Front Endocrinol (Lausanne) 2022; 13:834362. [PMID: 35282432 PMCID: PMC8908968 DOI: 10.3389/fendo.2022.834362] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Parathyroid carcinoma (PC) is an extremely rare malignancy, accounting less than 1% of all parathyroid neoplasms, and an uncommon cause of primary hyperparathyroidism (PHPT), characterized by an excessive secretion of parathyroid hormone (PTH) and severe hypercalcemia. As opposed to parathyroid hyperplasia and adenomas, PC is associated with a poor prognosis, due to a commonly unmanageable hypercalcemia, which accounts for death in the majority of cases, and an overall survival rate of 78-85% and 49-70% at 5 and 10 years after diagnosis, respectively. No definitively effective therapies for PC are currently available. The mainly employed treatment for PC is the surgical removal of tumoral gland(s). Post-surgical persistent or recurrent disease manifest in about 50% of patients. The comprehension of genetic and epigenetic bases and molecular pathways that characterize parathyroid carcinogenesis is important to distinguish malignant PCs from benign adenomas, and to identify specific targets for novel therapies. Germline heterozygote inactivating mutations of the CDC73 tumor suppressor gene, with somatic loss of heterozygosity at 1q31.2 locus, account for about 50-75% of familial cases; over 75% of sporadic PCs harbor biallelic somatic inactivation/loss of CDC73. Recurrent mutations of the PRUNE2 gene, a recurrent mutation in the ADCK1 gene, genetic amplification of the CCND1 gene, alterations of the PI3K/AKT/mTOR signaling pathway, and modifications of microRNA expression profile and gene promoter methylation pattern have all been detected in PC. Here, we review the current knowledge on gene mutations and epigenetic changes that have been associated with the development of PC, in both familial and sporadic forms of this malignancy.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Fondazione Italiana per la Ricerca sulle Malattie dell'Osso (F.I.R.M.O.) Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuliano Perigli
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero-Universitaria (AOU)-Careggi, Florence, Italy
| | - Roberto Santoro
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero-Universitaria (AOU)-Careggi, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione Italiana per la Ricerca sulle Malattie dell'Osso (F.I.R.M.O.) Italian Foundation for the Research on Bone Diseases, Florence, Italy
- *Correspondence: Maria Luisa Brandi,
| |
Collapse
|
8
|
Le Collen L, Barraud S, Braconnier A, Coppin L, Zachar D, Boulagnon C, Deguelte S, Souchon PF, Spodenkiewicz M, Poirsier C, Aubert S, Odou MF, Delemer B. A large extended family with hyperparathyroidism-jaw tumor syndrome due to deletion of the third exon of CDC73: clinical and molecular features. Endocrine 2021; 73:693-701. [PMID: 33999366 DOI: 10.1007/s12020-021-02756-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We described the phenotype of a large 4-generation family with Hyperparathyrodism-Jaw Tumor syndrome (HPT-JT) associated with a rare deletion of exon 3 of the CDC73 gene. METHODS We collected medical, genetic data on 24 family members descended from a common ancestor carrying a heterozygous deletion of exon 3. RESULTS Thirteen carried the deletion, the penetrance was estimated at 50% at 40 years. Seven patients (39 ± 14.5 years) presented with HPT which could start at 13. Median plasmatic calcium and PTH levels were 3.13 ± 0.7 mmol/L and 115 ± 406 pg/ml, respectively. Kidney disease related to hypercalcemia were present in 57.1% of patients. All seven patients underwent surgery to remove a single parathyroid adenoma. One recurrence occurred 7 years post-surgery. No parathyroid carcinoma has been found to date. We found two atypical parathyroid adenomas. We described an additional somatic variant in exon 1 of gene CDC73 in two tumors. Jaw tumors were not necessarily associated with hyperparathyroidism, as shown in one case. Two kidney cysts were also reported. Variable phenotype expressivity was emphasized by clinical presentations in 2 monozygotic twins: acute hypercalcemia, kidney failure and ossifying fibroma in one twin, versus normocalcemic parathyroid adenoma in the other one. CONCLUSION We report a family carrier of a deletion of exon 3 of the CDC73 gene. This is characterized by a high level of hypercalcemia, deleterious kidney effects and atypical parathyroid adenomas without carcinomas. Onset and intensity of HPT remain unpredictable. The additional somatic mutation found in the parathyroid tumor could lead to these phenotypical variations.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Department of Endocrinology Diabetology, University of Reims, Reims, France.
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille, France.
| | - Sara Barraud
- Department of Endocrinology Diabetology, University of Reims, Reims, France
- CRESTIC EA 3804, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de La Housse, BP 1039, 51687, Reims Cedex 2, France
| | | | - Lucie Coppin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | | | | | | | | | | | | | | | - Marie Françoise Odou
- Univ. Lille, Inserm, CHU Lille, U1286 - Infinite - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University of Reims, Reims, France.
- CRESTIC EA 3804, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de La Housse, BP 1039, 51687, Reims Cedex 2, France.
| |
Collapse
|
9
|
Roehrig AE, Klupsch K, Oses-Prieto JA, Chaib S, Henderson S, Emmett W, Young LC, Surinova S, Blees A, Pfeiffer A, Tijani M, Brunk F, Hartig N, Muñoz-Alegre M, Hergovich A, Jennings BH, Burlingame AL, Rodriguez-Viciana P. Cell-cell adhesion regulates Merlin/NF2 interaction with the PAF complex. PLoS One 2021; 16:e0254697. [PMID: 34424918 PMCID: PMC8382200 DOI: 10.1371/journal.pone.0254697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
The PAF complex (PAFC) coordinates transcription elongation and mRNA processing and its CDC73/parafibromin subunit functions as a tumour suppressor. The NF2/Merlin tumour suppressor functions both at the cell cortex and nucleus and is a key mediator of contact inhibition but the molecular mechanisms remain unclear. In this study we have used affinity proteomics to identify novel Merlin interacting proteins and show that Merlin forms a complex with multiple proteins involved in RNA processing including the PAFC and the CHD1 chromatin remodeller. Tumour-derived inactivating mutations in both Merlin and the CDC73 PAFC subunit mutually disrupt their interaction and growth suppression by Merlin requires CDC73. Merlin interacts with the PAFC in a cell density-dependent manner and we identify a role for FAT cadherins in regulating the Merlin-PAFC interaction. Our results suggest that in addition to its function within the Hippo pathway, Merlin is part of a tumour suppressor network regulated by cell-cell adhesion which coordinates post-initiation steps of the transcription cycle of genes mediating contact inhibition.
Collapse
Affiliation(s)
- Anne E. Roehrig
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Kristina Klupsch
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Selim Chaib
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Stephen Henderson
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Warren Emmett
- University College London Genetics Institute, London, United Kingdom
| | - Lucy C. Young
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Silvia Surinova
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Andreas Blees
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Anett Pfeiffer
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Maha Tijani
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Fabian Brunk
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Nicole Hartig
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | | | | | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | | |
Collapse
|
10
|
Juhlin CC, Erickson LA. Genomics and Epigenomics in Parathyroid Neoplasia: from Bench to Surgical Pathology Practice. Endocr Pathol 2021; 32:17-34. [PMID: 33269427 PMCID: PMC7960610 DOI: 10.1007/s12022-020-09656-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
The majority of parathyroid disease encountered in routine practice is due to single parathyroid adenoma, of which the majority arise as sporadic tumors. This is usually a straightforward diagnosis in endocrine pathology when in the appropriate clinical setting, although subsets of cases will exhibit atypical histological features that may warrant additional immunohistochemical and genetic analyses to estimate the malignant potential. Parathyroid carcinomas on the other hand, are bona fide malignant tumors characterized by their unequivocal invasion demonstrated through routine histology or metastasis. The ultimate endpoint for any molecular marker discovered through laboratory investigations is to be introduced in clinical routine practice and guide the surgical pathologist in terms of diagnostics and prognostication. For parathyroid tumors, the two main diagnostic challenges include the distinction between parathyroid adenoma and parathyroid carcinoma, as well as the pinpointing of hereditable disease for familial screening purposes. While numerous markers on genetic, epigenetic, and protein levels have been proposed as discriminative in these aspects, this review aims to condense the scientific coverage of these enigmatic topics and to propose a focused surgical pathology approach to the subject.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Li Y, Zhang J, Adikaram PR, Welch J, Guan B, Weinstein LS, Chen H, Simonds WF. Genotype of CDC73 germline mutation determines risk of parathyroid cancer. Endocr Relat Cancer 2020; 27:483-494. [PMID: 32590342 PMCID: PMC8802173 DOI: 10.1530/erc-20-0149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/25/2020] [Indexed: 11/08/2022]
Abstract
Mutation of the CDC73 gene, which encodes parafibromin, has been linked with parathyroid cancer. However, no correlation between genotypes of germline CDC73 mutations and the risk of parathyroid cancer has been known. In this study, subjects with germline CDC73 mutations were identified from the participants of two clinical protocols at National Institutes of Health (Discovery Cohort) and from the literature (Validation Cohort). The relative risk of developing parathyroid cancer was analyzed as a function of CDC73 genotype, and the impact of representative mutations on structure of parafibromin was compared between genotype groups. A total of 419 subjects, 68 in Discovery Cohort and 351 in Validation Cohort, were included. In both cohorts, percentages of CDC73 germline mutations that predicted significant conformational disruption or loss of expression of parafibromin (referred as 'high-impact mutations') were significantly higher among the subjects with parathyroid cancers compared to all other subjects. The Kaplan-Meier analysis showed that high-impact mutations were associated with a 6.6-fold higher risk of parathyroid carcinoma compared to low-impact mutations, despite a similar risk of developing primary hyperparathyroidism between two groups. Disruption of the C-terminal domain (CTD) of parafibromin is directly involved in predisposition to parathyroid carcinoma, since only the mutations impacting this domain were associated with an increased risk of parathyroid carcinoma. Structural analysis revealed that a conserved surface structure in the CTD is universally disrupted by the mutations affecting this domain. In conclusion, high-impact germline CDC73 mutations were found to increase risk of parathyroid carcinoma by disrupting the CTD of parafibromin.
Collapse
Affiliation(s)
- Yulong Li
- Division of Endocrinology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jianhua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Poorni R Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James Welch
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Guan
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Haobin Chen
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Verdelli C, Tavanti GS, Corbetta S. Intratumor heterogeneity in human parathyroid tumors. Histol Histopathol 2020; 35:1213-1228. [PMID: 32468569 DOI: 10.14670/hh-18-230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parathyroid tumors are the second most common endocrine neoplasia after thyroid neoplasia. They are mostly associated with impaired parathormone (PTH) synthesis and release determining the metabolic and clinical condition of primary hyperparathyroidism (PHPT). PHPT is the third most prevalent endocrine disorder, mainly affecting postmenopausal women. Parathyroid benign tumors, both adenomas of a single gland or hyperplasia involving all the glands, are the main histotypes, occurring in more than 95% of PHPT cases. The differential diagnosis between benign and malignant parathyroid lesions is a challenge for clinicians. It relies on histologic features, which display significant overlap between the histotypes with different clinical outcomes. Parathyroid adenomas and hyperplasia have been considered so far as a unique monoclonal/polyclonal entity, while accumulating evidence suggest great heterogeneity. Intratumor parathyroid heterogeneity involves tumor cell type, as well as tumor cell function, in terms of PTH synthesis and secretion, and of expression patterns of membrane and nuclear receptors (calcium sensing receptor, vitamin D receptor, α-klotho receptor and others). Intratumor heterogeneity can also interfere with cell molecular biology, in regard to clonality, oncosuppressor gene expression (such as MEN1 and HRPT2/CDC73), transcription factors (GCM2, TBX1) and microRNA expression. Such heterogeneity is likely involved in the phenotypic variability of the parathyroid tumors, and it should be considered in the clinical management, though at present target therapies are not available, with the exception of the calcium sensing receptor agonists.
Collapse
Affiliation(s)
- C Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - G S Tavanti
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - S Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
13
|
In silico analysis of CDC73 gene revealing 11 novel SNPs with possible association to Hyperparathyroidism-Jaw Tumor syndrome. THE EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hyperparathyroidism-Jaw Tumor (HPT-JT) is an autosomal dominant disorder with variable expression, with an estimated prevalence of 6.7 per 1,000 population. Genetic testing for predisposing CDC73 (HRPT2) mutations has been an important clinical advance, aimed at early detection and/or treatment to prevent advanced disease. The aim of this study is to assess the most deleterious SNPs mutations on CDC73 gene and to predict their influence on the functional and structural levels using different bioinformatics tools. Method: Computational analysis using twelve different in-silico tools including SIFT, PROVEAN, PolyPhen-2, SNAP2, PhD-SNP, SNPs&GO, P-Mut, I-Mutant ,Project Hope, Chimera, COSMIC and dbSNP Short Genetic Variations were used to identify the impact of mutations in CDC73 gene that might be causing jaw tumor. Results: From (733) SNPs identified in the CDC73 gene we found that only Eleven SNPs (G49C, L63P, L64P, D90H, R222G, W231R, P360S, R441C, R441H, R504S and R504H) has deleterious effect on the function and structure of protein and expected to cause the syndrome. Conclusion: Eleven substantial genetic/molecular aberrations in CDC73 gene identified that could serve as diagnostic markers for hyperparathyroidism-jaw tumor (HPT-JT).
Collapse
|
14
|
Parafibromin immunostainings of parathyroid tumors in clinical routine: a near-decade experience from a tertiary center. Mod Pathol 2019; 32:1082-1094. [PMID: 30923346 DOI: 10.1038/s41379-019-0252-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 11/08/2022]
Abstract
The cell division cycle 73 gene is mutated in familial and sporadic forms of primary hyperparathyroidism, and the corresponding protein product parafibromin has been proposed as an adjunct immunohistochemical marker for the identification of cell division cycle 73 mutations and parathyroid carcinoma. Here, we present data from our experiences using parafibromin immunohistochemistry in parathyroid tumors since the marker was implemented in clinical routine in 2010. A total of 2019 parathyroid adenomas, atypical adenomas, and carcinomas were diagnosed in our department, and parafibromin staining was ordered for 297 cases with an initial suspicion of malignant potential to avoid excessive numbers of false positives. The most common inclusion criteria for immunohistochemistry were marked tumor weight (146 cases) and/or fibrosis (77 cases) and/or marked pleomorphism (58 cases). In total, 238 cases were informatively stained, and partial or complete loss of nuclear parafibromin immunoreactivity was noted in 40 cases; 10 out of 182 adenomas (5%), 27 out of 46 atypical adenomas (59%), and 7 out of 10 carcinomas (70%), with positive and negative predictive values of 85 and 90%, respectively for the detection of atypical adenomas/carcinomas versus adenomas, and 18 and 98%, respectively for carcinomas versus atypical adenomas/adenomas. Male patients with high-proliferative tumors were overrepresented among cases with aberrant parafibromin immunohistochemistry, and carcinomas more frequently harbored parafibromin aberrancies than atypical adenomas and adenomas (p < 0.001). We conclude that parafibromin immunohistochemistry is a useful marker in the clinical routine when applied on a pre-selected material of cases, with positive immunoreactivity as a confident rule out marker of malignancy.
Collapse
|
15
|
Torresan F, Iacobone M. Clinical Features, Treatment, and Surveillance of Hyperparathyroidism-Jaw Tumor Syndrome: An Up-to-Date and Review of the Literature. Int J Endocrinol 2019; 2019:1761030. [PMID: 31929790 PMCID: PMC6935818 DOI: 10.1155/2019/1761030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022] Open
Abstract
Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is an autosomal dominant disorder characterized by parathyroid tumors in association with fibro-osseous jaw tumors and uterine and renal lesions. HPT-JT syndrome is caused by germline mutations of the cell division cycle 73 (CDC73) gene that encodes the parafibromin, a 531-amino acid protein with antiproliferative activity. Primary hyperparathyroidism is the main finding of HPT-JT syndrome, usually caused by a single-gland parathyroid involvement (80% of cases), at variance with other variants of hereditary hyperparathyroidism, in which a multiglandular involvement is more frequent. Moreover, parathyroid carcinoma may occur in approximately 20% of cases. Surgery is the treatment of choice for primary hyperparathyroidism, but the extent of surgery remains controversial, varying between bilateral neck and focused exploration, with subtotal or limited parathyroidectomy. Recently, more limited approaches and parathyroid excisions have been suggested in order to decrease the risk of permanent hypoparathyroidism, the main surgical morbidity following more extensive surgical approaches. Ossifying fibromas of the mandible or maxilla may present only in a minority of cases and, even if benign, they should be surgically treated to avoid tumor growth and subsequent functional limitations. Benign and malignant uterine involvement (including leiomyomas, endometrial hyperplasia, adenomyosis, multiple adenomyomatous polyps, and adenosarcomas) is the second most common clinical feature of the syndrome, affecting more than 50% of CDC73-carrier women. Genetic testing should be performed in all family members of affected individuals, in young patients undergoing surgery for primary hyperparathyroidism, or in presence of other associated tumors, allowing early diagnosis and prompt treatment with more tailored surgery. Moreover, CDC73 mutation carriers should be also periodically screened for primary hyperparathyroidism and the other associated tumors. The present review was aimed to summarize the main clinical features of HPT-JT syndrome, focusing on genetic screening and surgical treatment, and to revise the available literature.
Collapse
Affiliation(s)
- Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
16
|
Abstract
Pathologists are usually readily able to diagnose parathyroid tissues and diseases, particularly when they have knowledge of the clinical information, laboratory findings, and radiographic imaging studies. However, the identification of parathyroid tissue or lesions can be difficult in small biopsies, ectopic locations, supranumerary glands, and in some oxyphil/oncocytic lesions. Widely available immunohistochemical studies such as chromogranin-A, synaptophysin, keratin, parathyroid hormone, thyroglobulin, and thyroid transcription factor-1 can help in difficult cases. One of the most difficult diagnostic aspects faced by the pathologist in evaluating parathyroid is distinguishing between parathyroid adenoma, particularly atypical adenoma, and parathyroid carcinoma. Many markers have and continue to be evaluated for diagnostic utility, and are even beginning to be studied for prognostic utility. Single immunohistochemical markers such as parafibromin and Ki-67 are among the most studied and most utilized, but many additional markers have and continue to be evaluated such as galectin-3, PGP9.5, Rb, bcl2, p27, hTERT, mdm2, and APC. Although not widely available in many laboratories, a panel of immunohistochemical markers may prove most useful as an adjunct in the evaluation of challenging parathyroid tumors.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Ozgur Mete
- Department of Pathology, Laboratory Medicine Program, University Health System, Toronto, Canada
| |
Collapse
|
17
|
Cardoso L, Stevenson M, Thakker RV. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum Mutat 2017; 38:1621-1648. [PMID: 28881068 PMCID: PMC5698716 DOI: 10.1002/humu.23337] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 12/23/2022]
Abstract
Parathyroid carcinoma (PC) may occur as part of a complex hereditary syndrome or an isolated (i.e., non-syndromic) non-hereditary (i.e., sporadic) endocrinopathy. Studies of hereditary and syndromic forms of PC, which include the hyperparathyroidism-jaw tumor syndrome (HPT-JT), multiple endocrine neoplasia types 1 and 2 (MEN1 and MEN2), and familial isolated primary hyperparathyroidism (FIHP), have revealed some genetic mechanisms underlying PC. Thus, cell division cycle 73 (CDC73) germline mutations cause HPT-JT, and CDC73 mutations occur in 70% of sporadic PC, but in only ∼2% of parathyroid adenomas. Moreover, CDC73 germline mutations occur in 20%-40% of patients with sporadic PC and may reveal unrecognized HPT-JT. This indicates that CDC73 mutations are major driver mutations in the etiology of PCs. However, there is no genotype-phenotype correlation and some CDC73 mutations (e.g., c.679_680insAG) have been reported in patients with sporadic PC, HPT-JT, or FIHP. Other genes involved in sporadic PC include germline MEN1 and rearranged during transfection (RET) mutations and somatic alterations of the retinoblastoma 1 (RB1) and tumor protein P53 (TP53) genes, as well as epigenetic modifications including DNA methylation and histone modifications, and microRNA misregulation. This review summarizes the genetics and epigenetics of the familial syndromic and non-syndromic (sporadic) forms of PC.
Collapse
Affiliation(s)
- Luís Cardoso
- Department of EndocrinologyDiabetes and MetabolismCentro Hospitalar e Universitário de CoimbraPraceta Prof Mota PintoCoimbraPortugal
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Mark Stevenson
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Rajesh V. Thakker
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
18
|
Iacobone M, Carnaille B, Palazzo FF, Vriens M. Hereditary hyperparathyroidism--a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg 2015; 400:867-86. [PMID: 26450137 DOI: 10.1007/s00423-015-1342-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hereditary hyperparathyroidism has been reported to occur in 5-10 % of cases of primary hyperparathyroidism in the context of multiple endocrine neoplasia (MEN) types 1, 2A and 4; hyperparathyroidism-jaw tumour (HPT-JT); familial isolated hyperparathyroidism (FIHPT); familial hypocalciuric hypercalcaemia (FHH); neonatal severe hyperparathyroidism (NSHPT) and autosomal dominant moderate hyperparathyroidism (ADMH). This paper aims to review the controversies in the main genetic, clinical and pathological features and surgical management of hereditary hyperparathyroidism. METHODS A peer review literature analysis on hereditary hyperparathyroidism was carried out and analyzed in an evidence-based perspective. Results were discussed at the 2015 Workshop of the European Society of Endocrine Surgeons devoted to hyperparathyroidism due to multiple gland disease. RESULTS Literature reports scarcity of prospective randomized studies; thus, a low level of evidence may be achieved. CONCLUSIONS Hereditary hyperparathyroidism typically presents at an earlier age than the sporadic variants. Gene penetrance and expressivity varies. Parathyroid multiple gland involvement is common, but in some variants, it may occur metachronously often with long disease-free intervals, simulating a single-gland involvement. Bilateral neck exploration with subtotal parathyroidectomy or total parathyroidectomy + autotransplantation should be performed, especially in MEN 1, in order to decrease the persistent and recurrent hyperparathyroidism rates; in some variants (MEN 2A, HPT-JT), limited parathyroidectomy can achieve long-term normocalcemia. In FHH, surgery is contraindicated; in NSHPT, urgent total parathyroidectomy is required. In FIHPT, MEN 4 and ADMH, a tailored case-specific approach is recommended.
Collapse
Affiliation(s)
- Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padova, Italy.
| | - Bruno Carnaille
- Department of Endocrine Surgery, Université de Lille, Lille, France
| | - F Fausto Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital and Imperial College, London, UK
| | - Menno Vriens
- Department of Surgical Oncology and Endocrine Surgery, Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Cytoplasmic parafibromin/hCdc73 targets and destabilizes p53 mRNA to control p53-mediated apoptosis. Nat Commun 2014; 5:5433. [DOI: 10.1038/ncomms6433] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023] Open
|
20
|
Mehta A, Patel D, Rosenberg A, Boufraqech M, Ellis RJ, Nilubol N, Quezado MM, Marx SJ, Simonds WF, Kebebew E. Hyperparathyroidism-jaw tumor syndrome: Results of operative management. Surgery 2014; 156:1315-24; discussion 1324-5. [PMID: 25444225 DOI: 10.1016/j.surg.2014.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Hyperparathyroidism-jaw tumor syndrome (HPT-JT) is a rare, autosomal-dominant disease secondary to germline-inactivating mutations of the tumor suppressor gene HRPT2/CDC73. The aim of the present study was to determine the optimal operative approach to parathyroid disease in patients with HPT-JT. METHODS A retrospective analysis of clinical and genetic features, parathyroid operative outcomes, and disease outcomes in 7 unrelated HPT-JT families. RESULTS Seven families had 5 distinct germline HRPT2/CDC73 mutations. Sixteen affected family members (median age, 30.7 years) were diagnosed with primary hyperparathyroidism (PHPT). Fifteen of the 16 patients underwent preoperative tumor localization studies and uncomplicated bilateral neck exploration at initial operation; all were in biochemical remission at most recent follow-up. Of these patients, 31% had multiglandular involvement; 37.5% of the patients developed parathyroid carcinoma (median overall survival, 8.9 years; median follow-up, 7.4 years). Long-term follow-up showed that 20% of patients had recurrent PHPT. CONCLUSION Given the high risk of malignancy and multiglandular involvement in our cohort, we recommend bilateral neck exploration and en bloc resection of parathyroid tumors suspicious for cancer and life-long postoperative follow-up.
Collapse
Affiliation(s)
- Amit Mehta
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Dhaval Patel
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Avi Rosenberg
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ryan J Ellis
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stephen J Marx
- Metabolic Diseases Branch, National Institute of Digestive and Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Digestive and Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
21
|
Parfitt J, Harris M, Wright JM, Kalamchi S. Tumor suppressor gene mutation in a patient with a history of hyperparathyroidism-jaw tumor syndrome and healed generalized osteitis fibrosa cystica: a case report and genetic pathophysiology review. J Oral Maxillofac Surg 2014; 73:194.e1-9. [PMID: 25511968 DOI: 10.1016/j.joms.2014.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Hyperparathyroidism-jaw tumor (HPT-JT) was first observed by Jackson in 1958 in a family who exhibited hyperparathyroidism and recurrent pancreatitis. The author noticed the presence of jaw tumors in the affected family and reported them as fibrous dysplasia. However, it was not until 1990 that a familial variety of hyperparathyroidism with fibro-osseous jaw tumors was recognized as HPT-JT syndrome and reported as a clinically and genetically distinct syndrome. Hyperparathyroidism generally arises from glandular hyperplasia or parathyroid adenomas, with only about 1% of cases resulting from parathyroid carcinoma. However, parathyroid carcinoma develops in about 15% of HPT-JT patients. The true incidence of HPT-JT is unknown, although the prevalence of about 100 published cases suggests its rarity. Twenty percent of HPT-JT cases have renal hamartomas or tumors, and female patients with HPT-JT have been reported to have carcinoma of the uterus. This syndrome appears to arise from a variety of mutations that deactivate the tumor suppressor gene CDC73 (also known as HRPT2) and its production of the tumor suppressor protein parafibromin. Functional parafibromin has 531 amino acids, and mutations result in a short nonfunctional protein. CDC73 disorders exhibit dominant germline gene behavior, with varying degrees of penetration. In most cases an affected person has 1 parent with the condition, which raises the need for family investigation and genetic counseling. We report a case of HPT-JT syndrome in a male patient who presented to the local community hospital 6 years previously with a history of back pain. Investigations showed elevated serum parathyroid hormone and calcium levels, and a technetium 99m sestamibi parathyroid scan showed increased activity at the site of the lower left gland that proved to be a substernal parathyroid carcinoma. The patient's parathyroid hormone level dropped from 126 to 97 pg/mL at 5 minutes and was 65 pg/mL at 10 minutes after excision of the gland, and the calcium chemistry findings returned to normal. Parathyroid histologic analysis showed substantial cytologic atypia with nuclear pleomorphism and prominent nucleoli, but infrequent mitoses. Although the capsule was described as showing foci of vascular invasion by the carcinoma, there has been no evidence of recurrence. Six years later, the patient presented with bilateral mandibular cemento-ossifying fibromas, but no evidence of hyperparathyroidism. The larger left tumor was excised and immediately reconstructed with an autogenous iliac crest bone graft, and the right lesion was enucleated. There has been no recurrence in 12 months. This case illustrates that the hyperparathyroidism and the fibro-osseous tumors are independent features of the persistent germline tumor suppressor gene (CDC73) mutation. The syndromic fibro-osseous tumors are odontogenic cemento-ossifying fibromas, which only occur in the jaws.
Collapse
Affiliation(s)
- Joshua Parfitt
- OMFS Prospective Dental Student, Arizona School of Dentistry and Oral Health, A.T. Still University, Mesa, AZ
| | - Malcolm Harris
- Professor, School of Medicine and Dentistry, University of Central Lancashire, UK
| | - John M Wright
- Professor, Texas A&M University of Baylor College of Dentistry, Dallas, TX
| | - Sabah Kalamchi
- Professor and Director, Oral and Maxillofacial Surgery Department, Arizona School of Dentistry and Oral Health, A.T. Still University, Mesa, AZ.
| |
Collapse
|
22
|
Characterization of a new CDC73 missense mutation that impairs Parafibromin expression and nucleolar localization. PLoS One 2014; 9:e97994. [PMID: 24842573 PMCID: PMC4026411 DOI: 10.1371/journal.pone.0097994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/28/2014] [Indexed: 01/31/2023] Open
Abstract
Mutations of the Cell Division Cycle 73 (CDC73) tumor suppressor gene (previously known as HRPT2), encoding for parafibromin, are associated with the Hyperparathyroidism-Jaw Tumor (HPT-JT) syndrome, an autosomal dominant disease whose clinical manifestations are mainly parathyroid tumors and, less frequently, ossifying fibromas of the jaws, uterine and renal tumors. Most mutations of CDC73 are nonsense or frameshift, while missense mutations are rare and generally affect the N-terminal domain of parafibromin, a region that is still poorly characterized. The aim of this study was to characterize a novel somatic CDC73 missense mutation (Ile60Asn) identified in the mandibular tumor of a HPT-JT patient carrying a germline CDC73 inactivating mutation. Immunostaining of the tumor showed reduced nuclear parafibromin immunoreactivity. Western blotting and confocal microscopy of transfected cells demonstrated that the Ile60Asn mutant parafibromin was less expressed than the wild-type protein and exhibited impaired nucleolar localization. Treatment of transfected cells with translation and proteasome inhibitors demonstrated a decreased stability of the Ile60An mutant, partially due to an increase in proteasomal degradation. Overexpression of the Ile60Asn mutant led to increased cell proliferation and to accumulation in the G2/M phase of cell cycle. Moreover, mutant parafibromin lost the ability to down-regulate c-myc expression. In conclusion, our study shows that a missense mutation in the N-terminus of parafibromin, identified in an ossifying fibroma from a HPT-JT patient, stimulated cell proliferation and impaired parafibromin expression and nucleolar localization, suggesting a relevant role of the N-terminal domain for parafibromin function.
Collapse
|
23
|
Pazienza V, la Torre A, Baorda F, Alfarano M, Chetta M, Muscarella LA, Battista C, Copetti M, Kotzot D, Kapelari K, Al-Abdulrazzaq D, Perlman K, Sochett E, Cole DEC, Pellegrini F, Canaff L, Hendy GN, D’Agruma L, Zelante L, Carella M, Scillitani A, Guarnieri V. Identification and functional characterization of three NoLS (nucleolar localisation signals) mutations of the CDC73 gene. PLoS One 2013; 8:e82292. [PMID: 24340015 PMCID: PMC3855386 DOI: 10.1371/journal.pone.0082292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022] Open
Abstract
Hyperparathyroidism Jaw-Tumour Syndrome (HPT-JT) is characterized by primary hyperparathyroidism (PHPT), maxillary/mandible ossifying fibromas and by parathyroid carcinoma in 15% of cases. Inactivating mutations of the tumour suppressor CDC73/HRPT2 gene have been found in HPT-JT patients and also as genetic determinants of sporadic parathyroid carcinoma/atypical adenomas and, rarely, typical adenomas, in familial PHPT. Here we report the genetic and molecular analysis of the CDC73/HRPT2 gene in three patients affected by PHPT due to atypical and typical parathyroid adenomas, in one case belonging to familial PHPT. Flag-tagged WT and mutant CDC73/HRPT2 proteins were transiently transfected in HEK293 cells and functional assays were performed in order to investigate the effect of the variants on the whole protein expression, nuclear localization and cell overgrowth induction. We identified four CDC73/HRPT2 gene mutations, three germline (c.679_680delAG, p.Val85_Val86del and p.Glu81_Pro84del), one somatic (p.Arg77Pro). In three cases the mutation was located within the Nucleolar Localisation Signals (NoLS). The three NoLS variants led to instability either of the corresponding mutated protein or mRNA or both. When transfected in HEK293 cells, NoLS mutated proteins mislocalized with a predeliction for cytoplasmic or nucleo-cytoplasmic localization and, finally, they resulted in overgrowth, consistent with a dominant negative interfering effect in the presence of the endogenous protein.
Collapse
Affiliation(s)
- Valerio Pazienza
- Gastroenterology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Annamaria la Torre
- Laboratory of Oncology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Filomena Baorda
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Michela Alfarano
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Massimiliano Chetta
- Department of Molecular Biology, Molecular Stamping (Fondazione Bruno Kessler), Povo (TN), Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Claudia Battista
- Endocrinology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Dieter Kotzot
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Kapelari
- Clinical Department of Pediatrics, Innsbruck Medical University, Innsbruck, Austria
| | - Dalia Al-Abdulrazzaq
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kusiel Perlman
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Etienne Sochett
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David E. C. Cole
- Departments of Laboratory Medicine and Pathobiology, Medicine and Genetics, University of Toronto, Ontario, Canada
| | - Fabio Pellegrini
- Laboratory of Clinical Epidemiology of Diabetes and Chronic Diseases, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Lucie Canaff
- Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Geoffrey N. Hendy
- Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Leonardo D’Agruma
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Leopoldo Zelante
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Alfredo Scillitani
- Endocrinology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Vito Guarnieri
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
- * E-mail:
| |
Collapse
|
24
|
Wolff EF, Hill MJ, Simonds WF, Segars JH. Aromatase inhibitor treatment of menorrhagia and subsequent pregnancy in a patient with familial hyperparathyroidism-jaw tumor syndrome. Fertil Steril 2012; 98:1616-9. [PMID: 22963808 PMCID: PMC3513668 DOI: 10.1016/j.fertnstert.2012.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe the clinical management of menorrhagia in a woman with hyperparathyroidism-jaw tumor syndrome (HPT-JT). DESIGN Case report. SETTING Large translation research hospital. PATIENT(S) A 26-year-old nulligravid woman with familial HPT-JT presented with life-long menorrhagia resistant to progesterone intrauterine device (IUD) therapy and a desire for fertility. INTERVENTION(S) Aromatase inhibitor therapy. MAIN OUTCOME MEASURE(S) Clinical response to therapy and pregnancy. RESULT(S) Imaging demonstrated an enlarged endometrial lining and thickening of the junctional zone. At operative hysteroscopy, multiple atypical endometrial polyp-like lesions filled the entire uterine cavity and were removed. Histologic evaluation demonstrated the lesions to be adenomyomas with an abundance of aromatase expression. Postoperative treatment included an aromatase inhibitor. The patient's menorrhagia, which had previously been resistant to progesterone IUD therapy, resolved with the aromatase inhibitor. After 10 months of this treatment, the aromatase inhibitor was discontinued and a repeated hysteroscopy revealed a markedly improved uterine cavity. The patient subsequently became pregnant on her first natural cycle and delivered a healthy term infant. CONCLUSION(S) Aromatase inhibitors may represent a novel treatment for benign uterine pathology in HPT-JT.
Collapse
Affiliation(s)
- Erin F Wolff
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
25
|
Ouna BA, Nyambega B, Manful T, Helbig C, Males M, Fadda A, Clayton C. Depletion of trypanosome CTR9 leads to gene expression defects. PLoS One 2012; 7:e34256. [PMID: 22532828 PMCID: PMC3332058 DOI: 10.1371/journal.pone.0034256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/24/2012] [Indexed: 01/14/2023] Open
Abstract
The Paf complex of Opisthokonts and plants contains at least five subunits: Paf1, Cdc73, Rtf1, Ctr9, and Leo1. Mutations in, or loss of Paf complex subunits have been shown to cause defects in histone modification, mRNA polyadenylation, and transcription by RNA polymerase I and RNA polymerase II. We here investigated trypanosome CTR9, which is essential for trypanosome survival. The results of tandem affinity purification suggested that trypanosome CTR9 associates with homologues of Leo1 and Cdc73; genes encoding homologues of Rtf1 and Paf1 were not found. RNAi targeting CTR9 resulted in at least ten-fold decreases in 131 essential mRNAs: they included several that are required for gene expression and its control, such as those encoding subunits of RNA polymerases, exoribonucleases that target mRNA, RNA helicases and RNA-binding proteins. Simultaneously, some genes from regions subject to chromatin silencing were derepressed, possibly as a secondary effect of the loss of two proteins that are required for silencing, ISWI and NLP1.
Collapse
Affiliation(s)
- Benard A. Ouna
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Benson Nyambega
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Theresa Manful
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Claudia Helbig
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Matilda Males
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ/ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
26
|
Hahn MA, Dickson KA, Jackson S, Clarkson A, Gill AJ, Marsh DJ. The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum Mol Genet 2011; 21:559-68. [PMID: 22021426 DOI: 10.1093/hmg/ddr490] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monoubiquitination of histone H2B is a dynamic post-translational histone modification associated with transcriptional elongation and the DNA damage response. To date, dysregulation of histone monoubiquitination has not been linked to pathogenic mutations in genes encoding proteins, or co-factors, catalyzing this modification. The tumor suppressor cell division cycle 73 (CDC73) is mutated and/or down-regulated in parathyroid carcinoma, renal, breast, gastric and colorectal tumors, as well as in the germline of patients with the familial disorder-hyperparathyroidism jaw tumor syndrome. Using CDC73 as bait in a yeast two-hybrid assay, we identified the ring finger proteins RNF20 and RNF40 as binding partners of this tumor suppressor. These polypeptides constitute a heterodimeric complex that functions as the E3 ubiquitin ligase for monoubiquitination of histone H2B at lysine 120 (H2B-K120). We show that RNF20 and RNF40 bind to discrete, but closely located, residues on CDC73. Monoubiquitinated H2B-K120 was significantly reduced after loss of nuclear CDC73, both in vitro upon down-regulation of CDC73, and in CDC73 mutant parathyroid tumors. A second histone modification, trimethylation of histone 3 at lysine 4 (H3-K4me3), remained unchanged in the presence of mutant or down-regulated CDC73, suggesting that H3-K4me3 is not always tightly linked to H2B-K120 monoubiquitination for transcription as previously described. This is the first report of pathogenic mutations affecting histone monoubiquitination. We conclude that CDC73 is required for the maintenance of H2B-K120 monoubiquitination and propose that reduction in levels of monoubiquitinated H2B-K120 is a major mechanism whereby mutations in CDC73 exert their tumorigenic effect.
Collapse
Affiliation(s)
- Michael A Hahn
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Juhlin CC, Haglund F, Obara T, Arnold A, Larsson C, Höög A. Absence of nucleolar parafibromin immunoreactivity in subsets of parathyroid malignant tumours. Virchows Arch 2011; 459:47-53. [PMID: 21221636 DOI: 10.1007/s00428-010-1032-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/31/2022]
Abstract
Hyperparathyroidism 2 (HRPT2) gene mutations underlie hereditary and sporadic forms of primary hyperparathyroidism (PHPT), and the encoded product parafibromin has been established as a marker for facilitating parathyroid tumour classification. HRPT2 mutations and reduced nuclear expression of parafibromin are readily observed in parathyroid carcinomas but rarely in benign tumours, thereby aiding the identification of malignant PHPT. Recently, parafibromin has been shown to localize to the nucleolar compartment, and nucleolar parafibromin exhibits tumour-suppressive properties in vitro. In this study, nucleolar parafibromin immunoreactivity was assessed by high-power magnification microscopy in 82 parathyroid tumours previously analysed for nuclear parafibromin, including 23 carcinomas, 16 atypical adenomas, and 43 adenomas. Absent nucleolar expression was evident in three carcinomas and in one atypical adenoma, which also showed expression of nuclear parafibromin in all or subsets of the tumour cells. All three carcinomas carried HRPT2-inactivating mutations predicted to abolish the three nucleolar localization signals of parafibromin. The demonstrated absence of nucleolar parafibromin in three carcinomas with HRPT2 mutations suggests that parafibromin exhibits nucleolar tumour suppressor properties also in vivo, and disruption of nucleolar localization might propel parathyroid tumorigenesis independent of nuclear parafibromin expression. The loss of nucleolar staining in the presence of nuclear parafibromin suggests that parafibromin immunoreactivity should also be assessed in the nucleoli, as the sensitivity for the detection of malignant and atypical PHPT is increased compared to scoring of nuclear parafibromin alone.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Molecular Medicine and Surgery, Karolinska University Hospital Solna, SE-171 76, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|