1
|
Matsunami T, Zhang Y, Taniguchi Y, Hinomoto SI, Saneyasu T, Kamisoyama H, Honda K. Wet Feeding Promotes Growth without Affecting Hypothalamic Peptide Gene Expression in Growing Broiler Chicks. J Poult Sci 2025; 62:2025008. [PMID: 39925947 PMCID: PMC11795110 DOI: 10.2141/jpsa.2025008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
From the perspective of animal welfare, freedom from hunger and thirst is an undeniable requirement for the poultry industry. Regulatory mechanisms underlying drinking behavior have not yet been identified in chickens; however, the regulation of osmolality and water intake appears to be closely related. This study clarified whether wet feeding affects appetite, osmolality, and stress-related gene expression in the hypothalami of chicks. In Experiment 1, the effects of different wet feed percentages on the growth of broiler chicks were examined. Wet feeds were prepared by mixing either 0.25 g (20% wet feed), 0.667 g (40% wet feed), or 1.5 g (60% wet feed) of distilled water per g of commercial feed. Then, the wet feeds were offered to 4-day-old broiler chicks until 42 d of age. Forty percent wet feed significantly increased body, breast, and leg weights. In Experiment 2, 7-day-old broiler chicks were given either commercial starter feed or 40% wet feed until 21 d of age. Again, weights of the body, breasts, and legs were significantly increased by wet feeding. The total amount of water loss in the individual waterers was significantly decreased by wet feeding. No significant changes were observed in mRNA levels of the genes encoding appetite-regulatory peptides (neuropeptide Y and α melanocyte-stimulating hormone), osmoregulatory peptides (vasotocin and mesotocin), or stress-related peptides (corticotrophin-releasing factor) in the chicken hypothalamus. Overall, 40% wet feed improved growth without inducing thirst or hunger in broiler chicks. These findings suggest that wet feeding contributes to both meat yield and animal welfare during broiler production.
Collapse
Affiliation(s)
- Tomoya Matsunami
- 1 Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuhui Zhang
- 1 Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuji Taniguchi
- 2 Technical Section, Nakajima Seisakusho Co., Ltd., 388-8004, Japan
| | | | - Takaoki Saneyasu
- 1 Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- 1 Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- 1 Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Volyanskaya AR, Akberdin IR, Kulyashov MA, Yevshin IS, Romanov MN, Shagimardanova EI, Gusev OA, Kolpakov FA. A bird's-eye overview of molecular mechanisms regulating feed intake in chickens-with mammalian comparisons. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:61-74. [PMID: 38737579 PMCID: PMC11087724 DOI: 10.1016/j.aninu.2024.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, a lot of research has been conducted to explore poultry feeding behavior. However, up to now, the processes behind poultry feeding behavior remain poorly understood. The review generalizes modern expertise about the hormonal regulation of feeding behavior in chickens, focusing on signaling pathways mediated by insulin, leptin, and ghrelin and regulatory pathways with a cross-reference to mammals. This overview also summarizes state-of-the-art research devoted to hypothalamic neuropeptides that control feed intake and are prime candidates for predictors of feeding efficiency. Comparative analysis of the signaling pathways that mediate the feed intake regulation allowed us to conclude that there are major differences in the processes by which hormones influence specific neuropeptides and their contrasting roles in feed intake control between two vertebrate clades.
Collapse
Affiliation(s)
- Anastasiia R. Volyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Mikhail A. Kulyashov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Ivan S. Yevshin
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury, UK
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Russia
| | - Elena I. Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg A. Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement By Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Fedor A. Kolpakov
- Biosoft.Ru, Ltd., Novosibirsk, Russia
- Sirius University of Science and Technology, Sirius, Russia
| |
Collapse
|
3
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Dixon LM, Dunn IC, Brocklehurst S, Baker L, Boswell T, Caughey SD, Reid A, Sandilands V, Wilson PW, D'Eath RB. The effects of feed restriction, time of day and time since feeding on behavioral and physiological indicators of hunger in broiler breeder hens. Poult Sci 2022; 101:101838. [PMID: 35378348 PMCID: PMC8983422 DOI: 10.1016/j.psj.2022.101838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/05/2022] Open
Abstract
Broiler breeder chickens are commercially feed restricted to slow their growth and improve their health and production, however, there is research demonstrating that this leads to chronic hunger resulting in poor welfare. A challenge in these studies is to account for possible daily rhythms or the effects of time since last meal on measures relating hunger. To address this, we used 3 feed treatments: AL (ad libitum fed), Ram (restricted, fed in the morning), and Rpm (restricted, fed in the afternoon) to control for diurnal effects. We then conducted foraging motivation tests and collected home pen behavior and physiological samples at 4 times relative to feeding throughout a 24-h period. The feed treatment had the largest influence on the data, with AL birds weighing more, having lower concentrations of plasma NEFA, and mRNA expression of AGRP and NPY alongside higher expression of POMC in the basal hypothalamus than Ram or Rpm birds (P < 0.001). R birds were more successful at and had a shorter latency to complete the motivation test, and did more walking and less feeding than AL birds in the home pen (P < 0.01). There was little effect of time since last meal on many measures (P > 0.05) but AGRP expression was highest in the basal hypothalamus shortly after a meal (P < 0.05), blood plasma NEFA was higher in R birds just before feeding (P < 0.001) and glucose was higher in Ram birds just after feeding (P < 0.001), and the latency to complete the motivation test was shortest before the next meal (P < 0.05). Time of day effects were mainly found in the difference in activity levels in the home pen when during lights on and lights off periods. In conclusion, many behavioral and physiological hunger measures were not significantly influenced by time of day or time since the last meal. For the measures that do change, future studies should be designed so that sampling is balanced in such a way as to minimize bias due to these effects.
Collapse
|
5
|
Bohler M, Pauliukonis A, Gilbert ER, Cline MA. The anorexigenic effect of neuropeptide AF in Japanese quail, Coturnix japonica, is associated with activation of the melanocortin system. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110982. [PMID: 34023535 DOI: 10.1016/j.cbpa.2021.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Neuropeptide AF (NPAF) decreases food and water intake in birds and food intake in mammals. In this study, the objective was to determine the effects of centrally administered NPAF on food and water intake, hypothalamic c-Fos immunoreactivity and hypothalamic mRNA abundance of appetite-regulating factors in Japanese quail (Coturnix japonica). Seven days post hatch, 6 h fasted quail were intracerebroventricularly (ICV) injected with 0 (vehicle), 4, 8, or 16 nmol of NPAF and food and water intake were measured at 30 min intervals for 180 min. In Experiment 1, chicks which received 4, 8, and 16 nmol ICV NPAF had reduced food intake for 120, 60 and 180 min following injection, respectively, and reduced water intake during the entire 180 min observation. In Experiment 2, there was increased c-Fos immunoreactivity in the paraventricular nucleus, the ventromedial nucleus of the hypothalamus, and the dorsomedial hypothalamic nucleus in NPAF-injected quail. In Experiment 3, ICV NPAF was associated with decreased corticotropin-releasing factor mRNA, and an increase in hypothalamic proopiomelanocortin and melanocortin receptor 4 mRNA. These results demonstrate that central NPAF suppresses food and water intake in quail, effects that are likely mediated via the melanocortin system in the hypothalamus.
Collapse
Affiliation(s)
- Mark Bohler
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States
| | - Alex Pauliukonis
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States.
| |
Collapse
|
6
|
Hanlon C, Ramachandran R, Zuidhof MJ, Bédécarrats GY. Should I Lay or Should I Grow: Photoperiodic Versus Metabolic Cues in Chickens. Front Physiol 2020; 11:707. [PMID: 32670092 PMCID: PMC7332832 DOI: 10.3389/fphys.2020.00707] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
While photoperiod has been generally accepted as the primary if not the exclusive cue to stimulate reproduction in photoperiodic breeders such as the laying hen, current knowledge suggests that metabolism, and/or body composition can also play an influential role to control the hypothalamic-pituitary gonadal (HPG)-axis. This review thus intends to first describe how photoperiodic and metabolic cues can impact the HPG axis, then explore and propose potential common pathways and mechanisms through which both cues could be integrated. Photostimulation refers to a perceived increase in day-length resulting in the stimulation of the HPG. While photoreceptors are present in the retina of the eye and the pineal gland, it is the deep brain photoreceptors (DBPs) located in the hypothalamus that have been identified as the potential mediators of photostimulation, including melanopsin (OPN4), neuropsin (OPN5), and vertebrate-ancient opsin (VA-Opsin). Here, we present the current state of knowledge surrounding these DBPs, along with their individual and relative importance and, their possible downstream mechanisms of action to initiate the activation of the HPG axis. On the metabolic side, specific attention is placed on the hypothalamic integration of appetite control with the stimulatory (Gonadotropin Releasing Hormone; GnRH) and inhibitory (Gonadotropin Inhibitory Hormone; GnIH) neuropeptides involved in the control of the HPG axis. Specifically, the impact of orexigenic peptides agouti-related peptide (AgRP), and neuropeptide Y (NPY), as well as the anorexigenic peptides pro-opiomelanocortin (POMC), and cocaine-and amphetamine regulated transcript (CART) is reviewed. Furthermore, beyond hypothalamic control, several metabolic factors involved in the control of body weight and composition are also presented as possible modulators of reproduction at all three levels of the HPG axis. These include peroxisome proliferator-activated receptor gamma (PPAR-γ) for its impact in liver metabolism during the switch from growth to reproduction, adiponectin as a potential modulator of ovarian development and follicular maturation, as well as growth hormone (GH), and leptin (LEP).
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Ramesh Ramachandran
- Center for Reproductive Biology and Health, Department of Animal Science, Pennsylvania State University, University Park, PA, United States
| | - Martin J. Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
7
|
Intracerebroventricular Injection of NMDA Receptor Antagonist Affects l-Arginine Induced Food Intake in Neonatal Layer Chicks. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
McConn BR, Siegel PB, Cline MA, Gilbert ER. Anorexigenic effects of mesotocin in chicks are genetic background-dependent and are associated with changes in the paraventricular nucleus and lateral hypothalamus. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:79-90. [DOI: 10.1016/j.cbpa.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/15/2022]
|
9
|
Fasting and refeeding induce differential changes in hypothalamic mRNA abundance of appetite-associated factors in 7 day-old Japanese quail, Coturnix japonica. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:60-67. [DOI: 10.1016/j.cbpa.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
|
10
|
The physiological and neuroendocrine correlates of hunger in the Red Junglefowl (Gallus gallus). Sci Rep 2017; 7:17984. [PMID: 29269733 PMCID: PMC5740172 DOI: 10.1038/s41598-017-17922-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to regulate food intake is critical to survival. The hypothalamus is central to this regulation, integrating peripheral signals of energy availability. Although our understanding of hunger in rodents is advanced, an equivalent understanding in birds is lacking. In particular, the relationship between peripheral energy indices and hypothalamic 'hunger' peptides, agouti-related protein (AgRP), pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) is poorly understood. Here, we compare AgRP, POMC and NPY RNA levels in the hypothalamus of Red Junglefowl chicks raised under ad libitum, chronic restriction and intermittent feeding regimens. Hypothalamic gene expression differed between chronically and intermittently restricted birds, confirming that different restriction regimens elicit different patterns of hunger. By assessing the relationship between hypothalamic gene expression and carcass traits, we show for the first time in birds that AgRP and POMC are responsive to fat-related measures and therefore represent long-term energy status. Chronically restricted birds, having lower indices of fat, show elevated hunger according to AgRP and POMC. NPY was elevated in intermittently fasted birds during fasting, suggesting a role as a short-term index of hunger. The different physiological and neuroendocrine responses to quantitative versus temporal feed restriction provide novel insights into the divergent roles of avian hunger neuropeptides.
Collapse
|
11
|
Zhang J, Li X, Zhou Y, Cui L, Li J, Wu C, Wan Y, Li J, Wang Y. The interaction of MC3R and MC4R with MRAP2, ACTH, α-MSH and AgRP in chickens. J Endocrinol 2017; 234:155-174. [PMID: 28512117 DOI: 10.1530/joe-17-0131] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023]
Abstract
The interaction of melanocortin-4 (MC4R) and melanocortin-3 (MC3R) receptors with proopiomelanocortin (POMC)-derived peptides (e.g. α-MSH), agouti-related protein (AgRP) and melanocortin-2 receptor accessory protein 2 (MRAP2) is suggested to play critical roles in energy balance of vertebrates. However, evidence on their interaction in birds remains scarce. Our study aims to reveal their interaction in chickens and the results showed that (1) chicken (c-)MC3R and cMC4R expressed in Chinese hamster ovary (CHO) cells can be activated by α-MSH and ACTH1-39 equipotently, monitored by a pGL3-CRE-luciferase reporter system; (2) cMC3R and cMC4R, when co-expressed with cMRAP2 (or cMRAP, a cMRAP2 homolog), show increased sensitivity to ACTH treatment and thus likely act as ACTH-preferring receptors, and the interaction between cMC3R/cMC4R and cMRAP2 was demonstrated by co-immunoprecipitation assay; (3) both cMC3R and cMC4R display constitutive activity when expressed in CHO cells, as monitored by dual-luciferase reporter assay, and cMRAP2 (and cMRAP) can modulate their constitutive activity; (4) AgRP inhibits the constitutive activity of cMC3R/cMC4R, and it also antagonizes ACTH/α-MSH action on cMC4R/cMC3R, indicating that AgRP functions as the inverse agonist and antagonist for both receptors. These findings, together with the co-expression of cMC4R, cMC3R, cMRAP2, cAgRP and cPOMC in chicken hypothalamus detected by quantitative real-time PCR, suggest that within the hypothalamus, α-MSH/ACTH, AgRP and MRAP2 may interact at the MC4R(/MC3R) interface to control energy balance. Furthermore, our data provide novel proof for the involvement of MRAP2 (and MRAP) in fine-tuning the constitutive activity and ligand sensitivity and selectivity of both MC3R and MC4R in vertebrates.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/genetics
- Adrenocorticotropic Hormone/metabolism
- Agouti-Related Protein/genetics
- Agouti-Related Protein/metabolism
- Amino Acid Sequence
- Animals
- CHO Cells
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chickens/genetics
- Chickens/metabolism
- Cloning, Molecular
- Cricetinae
- Cricetulus
- DNA, Complementary
- Gene Expression Regulation/physiology
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- alpha-MSH/genetics
- alpha-MSH/metabolism
Collapse
Affiliation(s)
- Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Xin Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yawei Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Lin Cui
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Chenlei Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yiping Wan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
12
|
McConn BR, Cline MA, Gilbert ER. Dietary macronutrient composition and central neuropeptide Y injection affect dietary preference and hypothalamic gene expression in chicks. Nutr Neurosci 2017; 21:403-413. [PMID: 28279130 DOI: 10.1080/1028415x.2017.1296606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine the influence of dietary macronutrient composition on central NPY's orexigenic effect in chicks. METHODS Day-of-hatch chicks were fed one of three diets (3000 kcal ME/kg) ad libitum from hatch: high carbohydrate (HC), high fat (HF; 30% ME derived from soybean oil), and high protein (HP; 25 vs. 22% CP). In Experiment 1, chicks received intracerebroventricular injections of 0 (vehicle), 0.2, or 2.0 nmol NPY on day 4 and food intake was recorded for 6 hours. In Experiment 2, chicks were given all three diets before and after injection. In Experiment 3, hypothalamus was collected at 1-hour post-injection for gene expression analysis. RESULTS The HC diet-fed chicks responded with a greater increase, while the chicks fed the HF diet had a lower threshold response in food intake to NPY. Neuropeptide Y dose-dependently increased food intake in chicks fed the HC and HP diets. Chicks administered 0.2 nmol NPY preferred the HC and HP diets over the HF diet. Relative quantities of hypothalamic NPYR1 and MC4R mRNA were reduced by NPY in chicks that consumed the HP and HC diets, respectively. DISCUSSION Consumption of the HC diet was associated with the most robust NPY-induced increase in food intake. Injection of NPY accentuated differences among dietary groups in hypothalamic gene expression of several appetite-associated factors, results suggesting that the NPY/agouti-related peptide and melanocortin pathways are associated with some of the diet- and NPY-induced differences observed in this study.
Collapse
Affiliation(s)
- Betty R McConn
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Mark A Cline
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| | - Elizabeth R Gilbert
- a Department of Animal and Poultry Sciences , Virginia Polytechnic Institute and State University , Blacksburg , VA , USA
| |
Collapse
|
13
|
Boswell T, Dunn IC. Regulation of Agouti-Related Protein and Pro-Opiomelanocortin Gene Expression in the Avian Arcuate Nucleus. Front Endocrinol (Lausanne) 2017; 8:75. [PMID: 28450851 PMCID: PMC5389969 DOI: 10.3389/fendo.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
The arcuate nucleus is generally conserved across vertebrate taxa in its neuroanatomy and neuropeptide expression. Gene expression of agouti-related protein (AGRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) has been established in the arcuate nucleus of several bird species and co-localization demonstrated for AGRP and NPY. The proteins encoded by these genes exert comparable effects on food intake in birds after central administration to those seen in other vertebrates, with AGRP and NPY being orexigenic and CART and α-melanocyte-stimulating hormone anorexigenic. We have focused on the measurement of arcuate nucleus AGRP and POMC expression in several avian models in relation to the regulation of energy balance, incubation, stress, and growth. AGRP mRNA and POMC mRNA are, respectively, up- and downregulated after energy deprivation and restriction. This suggests that coordinated changes in the activity of AGRP and POMC neurons help to drive the homeostatic response to replace depleted energy stores in birds as in other vertebrates. While AGRP and POMC expression are generally positively and negatively correlated with food intake, respectively, we review here situations in some avian models in which AGRP gene expression is dissociated from the level of food intake and may have an influence on growth independent of changes in appetite. This suggests the possibility that the central melanocortin system exerts more pleiotropic functions in birds. While the neuroanatomical arrangement of AGRP and POMC neurons and the sensitivity of their activity to nutritional state appear generally conserved with other vertebrates, detailed knowledge is lacking of the key nutritional feedback signals acting on the avian arcuate nucleus and there appear to be significant differences between birds and mammals. In particular, recently identified avian leptin genes show differences between bird species in their tissue expression patterns and appear less closely linked in their expression to nutritional state. It is presently uncertain how the regulation of the central melanocortin system in birds is brought about in the situation of the apparently reduced importance of leptin and ghrelin compared to mammals.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
- *Correspondence: Timothy Boswell,
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| |
Collapse
|
14
|
Wang Y, Buyse J, Song Z, Decuypere E, Everaert N. AMPK is involved in the differential neonatal performance of chicks hatching at different time. Gen Comp Endocrinol 2016; 228:53-59. [PMID: 26873631 DOI: 10.1016/j.ygcen.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/30/2016] [Accepted: 02/08/2016] [Indexed: 01/21/2023]
Abstract
We have recently reported that the hatching time may be in relation to the distinct neonatal performance of female chicks. The present study was aimed to investigate the potential involvement of AMPK, an energy sensor which plays a pivotal role in energy homeostasis, in the distinct performance of the spread of hatching time model. As a result, hypothalamic AMPKα1 isoform gene expression was significantly higher in the late hatcher as compared to that of their early counterparts, whereas the total and phosphorylated levels of AMPKα subunit did not differ between the three hatchers. The hypothalamic orexigenic NPY and AgRP mRNA levels were higher in the late hatchers as compared to the early, and that of the middle hatchers was at an intermediate level. However, the anorexigenic POMC and CRH was also higher expressed in the late hatchers as compared to the early hatchers. In the liver, AMPKα2 mRNA level and the phosphorylation ratio of AMPKα was significantly lower in the late hatchers, as compared to their early counterparts. The hepatic phosphorylated GS levels of the late and middle hatchers were lower than that of their early counterparts. The expression of hepatic FTO gene of the late hatchers was significantly higher than that of their early and middle counterparts. Taken together, AMPK may play a significant role in the different neonatal performance of the spread of hatching time model. The central and peripheral AMPK in late hatchers exhibited a pattern of higher energy intake and lower energy expenditure, which resulted in a faster post-hatch growth.
Collapse
Affiliation(s)
- Yufeng Wang
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven. Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven. Kasteelpark Arenberg 30, 3001 Leuven, Belgium.
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Eddy Decuypere
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven. Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Nadia Everaert
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven. Kasteelpark Arenberg 30, 3001 Leuven, Belgium; Animal Science Unit, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
15
|
Boswell T, Dunn IC. Regulation of the avian central melanocortin system and the role of leptin. Gen Comp Endocrinol 2015; 221:278-83. [PMID: 25583584 DOI: 10.1016/j.ygcen.2014.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023]
Abstract
The avian central melanocortin system is well conserved between birds and mammals in terms of the component genes, the localisation of their expression in the hypothalamic arcuate nucleus, the effects on feeding behaviour of their encoded peptides and the sensitivity of agouti-related protein (AGRP) and pro-opiomelanocortin (POMC) gene expression to changes in energy status. Our recent research has demonstrated that AGRP gene expression precisely differentiates between broiler breeder hens with different histories of chronic food restriction and refeeding. We have also shown that the sensitivity of AGRP gene expression to loss of energy stores is maintained even when food intake has been voluntarily reduced in chickens during incubation and in response to a stressor. However, the similarity between birds and mammals does not appear to extend to the way AGRP and POMC gene expression are regulated. In particular, the preliminary evidence from the discovery of the first avian leptin (LEP) genes suggests that LEP is more pleiotropic in birds and may not even be involved in regulating energy balance. Similarly, ghrelin exerts inhibitory, rather than stimulatory, effects on food intake. The fact that the importance of these prominent long-term regulators of AGRP and POMC expression in mammals appears diminished in birds suggests that the balance of regulatory inputs in birds may have shifted to more short-term influences such as the tone of cholecystokinin (CCK) signalling. This is likely to be related to the different metabolic fuelling required to support flight.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Institute of Neuroscience, Centre for Behaviour and Evolution, Newcastle University, England, United Kingdom.
| | - Ian C Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| |
Collapse
|
16
|
Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles. Behav Brain Res 2015; 286:58-63. [DOI: 10.1016/j.bbr.2015.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/31/2023]
|
17
|
Glucagon-like Peptide-2 Functions as an Anorexigenic Peptide not only in the Central Nervous System but also in the Peripheral Circulation in Broiler Chicks. J Poult Sci 2015. [DOI: 10.2141/jpsa.0150011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Wang Y, Song Z, Everaert N, De Ketelaere B, Willemsen H, Decuypere E, Buyse J. The anorectic effects of alpha-lipoicacid are mediated by central AMPK and are not due to taste aversion in chicken (Gallus gallus). Physiol Behav 2014; 132:66-72. [DOI: 10.1016/j.physbeh.2014.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
|
19
|
Dunn IC, Wilson PW, Smulders TV, Sandilands V, D'Eath RB, Boswell T. Hypothalamic agouti-related protein expression is affected by both acute and chronic experience of food restriction and re-feeding in chickens. J Neuroendocrinol 2013; 25:920-8. [PMID: 23957836 DOI: 10.1111/jne.12088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/04/2013] [Accepted: 08/10/2013] [Indexed: 02/03/2023]
Abstract
The central melanocortin system is conserved across vertebrates. However, in birds, little is known about how energy balance influences orexigenic agouti-related protein (AGRP) and anorexigenic pro-opiomelanocortin (POMC) expression, despite the fact that commercial food restriction is critical to the efficient production of poultry meat. To enable contrasts to be made, in broiler-breeder chickens, between levels of food restriction, between birds with the same body weight but different feeding experience, and between birds moved from restricted feeding to ad lib. feeding for different periods, five groups of hens were established between 6 and 12 weeks of age with different combinations of food restriction and release from restriction. AGRP and neuropeptide Y expression in the basal hypothalamus was significantly increased by chronic restriction but only AGRP mRNA levels reflected recent feeding experience: hens at the same body weight that had recently been on ad lib. feeding showed lower expression than restricted birds. AGRP expression also distinguished between hens released from restriction to ad lib. feeding for different periods. By contrast, POMC and cocaine- and amphetamine-regulated transcript mRNA levels were not different. These results showed that AGRP mRNA not only reflected differences between a bird's weight and its potential weight or set point, but also discriminated between differing feeding histories of birds at the same body weight. Therefore, AGRP expression potentially provides an integrated measure of food intake experience and an objective tool to assess a bird's perception of satiety in feeding regimes for improved poultry welfare.
Collapse
Affiliation(s)
- I C Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| | | | | | | | | | | |
Collapse
|
20
|
Song Z, Everaert N, Wang Y, Decuypere E, Buyse J. The endocrine control of energy homeostasis in chickens. Gen Comp Endocrinol 2013; 190:112-7. [PMID: 23707377 DOI: 10.1016/j.ygcen.2013.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
Abstract
Energy homeostasis (balance) depends on the relationship between the amount of consumed feed energy and energy expenditure. Coordination of energy expenditure and feed intake (appetite) is necessary for the regulation of body composition. The hypothalamus integrates peripheral and central signals to generate satiety or hunger. Birds and mammals utilize common signaling molecules but some molecules possess different/opposite functions. If relevant, particular differences with the mammalian regulatory system are highlighted in this review. For example, obestatin had no significant effect on feed intake of chicks, but it was claimed to decrease food intake in mammalian species. Ghrelin displayed appetite-stimulating effects in mammals but appetite-decreasing effects in birds. Recently, the function of the hypothalamic AMPK signaling pathway on feed intake regulation has received considerable attention in poultry. Alpha-lipoic acid might exert its appetite-decreasing effect by the AMPK signaling pathway. This review discusses the central regulation of energy homeostasis, role of (an)orexigenic peptides, effect of feed deprivation on hypothalamic neuropeptide gene expression and provides a model for involvement of AMPK in the regulation of avian energy balance.
Collapse
Affiliation(s)
- Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | | | |
Collapse
|
21
|
Age-Dependent Changes in the mRNA Levels of Neuropeptide Y, Proopiomelanocortin, and Corticotropin-Releasing Factor in the Hypothalamus in Growing Broiler Chicks. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Tao YX, Yuan ZH, Xie J. G Protein-Coupled Receptors as Regulators of Energy Homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:1-43. [DOI: 10.1016/b978-0-12-386933-3.00001-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wang Y, Rao K, Yuan L, Everaert N, Buyse J, Grossmann R, Zhao R. Chicken FTO gene: Tissue-specific expression, brain distribution, breed difference and effect of fasting. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:246-52. [DOI: 10.1016/j.cbpa.2012.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 01/01/2023]
|
24
|
Song Z, Liu L, Yue Y, Jiao H, Lin H, Sheikhahmadi A, Everaert N, Decuypere E, Buyse J. Fasting alters protein expression of AMP-activated protein kinase in the hypothalamus of broiler chicks (Gallus gallus domesticus). Gen Comp Endocrinol 2012; 178:546-55. [PMID: 22771832 DOI: 10.1016/j.ygcen.2012.06.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/21/2012] [Accepted: 06/24/2012] [Indexed: 12/12/2022]
Abstract
An experiment was conducted to investigate the effects of fasting and re-feeding on hypothalamic 5'-AMP-activated protein kinase (AMPK) levels and (an)orexigenic neuropeptides. Male Arbor Acres chicks (7-day-old, n=160) were allocated to four equal treatment groups: control chicks (fed ad libitum for 48 h, C48), chicks that were fasted for 48 h (F48), chicks that were first fasted for 48 h and then re-fed for 24h (F48C24), and chicks that were fed ad libitum for 72h (C72). Fasting for 48 h significantly (P<0.05) increased the ratio of phosphorylated AMPKα to total AMPKα and phosphorylated LKB1 to total LKB1, whereas re-feeding for 24h reduced these ratios to that of the ad libitum fed C72 chicks. The gene expressions of agouti-related peptide (AgRP), neuropeptide Y (NPY), melanocortin receptor 4, melanin-concentrating hormone, prepro-orexins and carnitine palmitoyltransferase-1 were significantly (P<0.05) increased in the fasted chicks relative to the ad libitum fed C48 group. The gene expression of pro-opiomelanocortin (POMC), as well as cocaine- and amphetamine-regulated transcript (CART) was not affected by the nutritional status. Fasting significantly (P<0.05) decreased the mRNA levels of fatty acid synthase (FAS) and sterol regulatory element binding protein-1 (SREBP-1). The results suggest that the LKB1/AMPK signal pathway is involved in the energy homeostasis of fasted chicks, and its possible role in feed intake regulation might be mediated by the AgRP/NPY rather than the POMC/CART pathway.
Collapse
Affiliation(s)
- Zhigang Song
- Division Livestock-Nutrition-Quality, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Honda K, Saneyasu T, Hasegawa S, Kamisoyama H. A comparative study of the central effects of melanocortin peptides on food intake in broiler and layer chicks. Peptides 2012; 37:13-7. [PMID: 22760063 DOI: 10.1016/j.peptides.2012.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Broiler chicks eat more food than layer chicks. However, the causes of the difference in food intake in the neonatal period between these strains are not clear. In this study, we examined the involvement of proopiomelanocortin (POMC)-derived melanocortin peptides α-, β- and γ-melanocyte-stimulating hormones (MSHs) in the difference in food intake between broiler and layer chicks. First, we compared the hypothalamic mRNA levels of POMC between these strains and found that there was no significant difference in these levels between broiler and layer chicks. Next, we examined the effects of central administration of MSHs on food intake in these strains. Central administration of α-MSH significantly suppressed food intake in both strains. Central administration of β-MSH significantly suppressed food intake in layer chicks, but not in broiler chicks, while central administration of γ-MSH did not influence food intake in either strain. It is therefore likely that the absence of the anorexigenic effect of β-MSH might be related to the increased food intake in broiler chicks.
Collapse
Affiliation(s)
- Kazuhisa Honda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | | | | | | |
Collapse
|
26
|
Hen G, Yosefi S, Shinder D, Or A, Mygdal S, Condiotti R, Galun E, Bor A, Sela-Donenfeld D, Friedman-Einat M. Gene transfer to chicks using lentiviral vectors administered via the embryonic chorioallantoic membrane. PLoS One 2012; 7:e36531. [PMID: 22606269 PMCID: PMC3350527 DOI: 10.1371/journal.pone.0036531] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 04/03/2012] [Indexed: 12/22/2022] Open
Abstract
The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.
Collapse
Affiliation(s)
- Gideon Hen
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sara Yosefi
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Dmitry Shinder
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Adi Or
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Sivan Mygdal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reba Condiotti
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Bor
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail: (DSD); (MFE)
| | | |
Collapse
|
27
|
Saneyasu T, Honda K, Kamisoyama H, Nakayama Y, Ikegami K, Hasegawa S. Alpha-melanocyte stimulating hormone plays an important role in the regulation of food intake by the central melanocortin system in chicks. Peptides 2011; 32:996-1000. [PMID: 21402117 DOI: 10.1016/j.peptides.2011.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 11/29/2022]
Abstract
Proopiomelanocortin (POMC, a precursor of melanocortin peptides) neurons in the hypothalamus play an important role in the central regulation of food intake in mammals. There is evidence that human melanocortin peptides alpha-, beta- and gamma2-melanocyte-stimulating hormone (α-, β- and γ2-MSH) significantly decreased food intake in chickens. However, the amino acid sequences of β- and γ2-MSH of chickens are different from those of humans whereas the amino acid sequence of α-MSH is conserved between these species. In the present study, we examined the effects of the central administration of α-, chicken β-, and chicken γ2-MSH on food intake in chicks. Central administration of α-MSH significantly suppressed food intake in chicks. In contrast, β- and γ2-MSH did not influence food intake in chicks. Central administration of HS014, a melanocortin 4 receptor antagonist, significantly reversed the anorexigenic action of α-MSH, suggesting that this action is mediated by the melanocortin 4 receptor in chicks as well as in mammals. These results suggest that α-MSH may play an important role in the regulation of food intake by the central melanocortin system in chicks.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Higgins SE, Ellestad LE, Trakooljul N, McCarthy F, Saliba J, Cogburn LA, Porter TE. Transcriptional and pathway analysis in the hypothalamus of newly hatched chicks during fasting and delayed feeding. BMC Genomics 2010; 11:162. [PMID: 20214824 PMCID: PMC2848243 DOI: 10.1186/1471-2164-11-162] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/09/2010] [Indexed: 11/29/2022] Open
Abstract
Background The hypothalamus plays a central role in regulating appetite and metabolism. However, the gene networks within the hypothalamus that regulate feed intake and metabolism, and the effects of fasting on those pathways are not completely understood in any species. The present experiment evaluated global hypothalamic gene expression in newly hatched chicks using microarray analysis to elucidate genes and pathways regulated by feeding, fasting, and delayed feeding. Ten groups of chicks were sampled over four days post-hatch, including fed, fasted, and 48 h fasted followed by access to feed for 4 h, 24 h, and 48 h. Hypothalamic samples were collected for microarray analysis (n = 4). Expression patterns of selected genes were confirmed by quantitative real-time PCR. Pathway analysis of the microarray results predicted a network of genes involved in neuropeptide or neurotransmitter signaling. To confirm the functionality of this predicted gene network, hypothalamic neurons from fed and fasted chicks were isolated and cultured in the presence of neuropeptide Y, somatostatin, α-melanocyte stimulating hormone, norepinephrine, and L-phospho-serine. Results confirmed functional relationships among members of the predicted gene network. Moreover, the effects observed were dependant upon the nutritional state of the animals (fed vs. fasted). Results Differences in gene expression (≥ 1.6 fold) were detected in 1,272 genes between treatments, and of those, 119 genes were significantly (P < 0.05) different. Pathway Miner analysis revealed that six genes (SSTR5, NPY5R, POMC, ADRB2, GRM8, and RLN3) were associated within a gene network. In vitro experiments with primary hypothalamic neurons confirmed that receptor agonists involved in this network regulated expression of other genes in the predicted network, and this regulation within the network was influenced by the nutritional status and age of the chick. Conclusions Microarray analysis of the hypothalamus during different nutritional states revealed that many genes are differentially regulated. We found that functional interactions exist among six differentially regulated genes associated within a putative gene network from this experiment. Considering that POMC, an important gene in controlling metabolism, was central to this network, this gene network may play an important role in regulation of feeding and metabolism in birds.
Collapse
Affiliation(s)
- Stacy E Higgins
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Layer and broiler chicks exhibit similar hypothalamic expression of orexigenic neuropeptides but distinct expression of genes related to energy homeostasis and obesity. Brain Res 2009; 1273:18-28. [DOI: 10.1016/j.brainres.2009.03.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/12/2009] [Accepted: 03/22/2009] [Indexed: 11/22/2022]
|
30
|
Kamisoyama H, Honda K, Saneyasu T, Sugahara K, Hasegawa S. Corticotropin-releasing factor is a downstream mediator of the beta-melanocyte-stimulating hormone-induced anorexigenic pathway in chicks. Neurosci Lett 2009; 458:102-5. [PMID: 19393716 DOI: 10.1016/j.neulet.2009.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/12/2009] [Accepted: 04/19/2009] [Indexed: 01/19/2023]
Abstract
Proopiomelanocortin (POMC, a precursor of anorexigenic neuropeptides) neurons in hypothalamus suppresses food intake in both mammals and chickens. In mammals, several lines of evidence suggest that POMC-derived anorexigenic peptides upregulate mRNA levels of anorexigenic peptides such as corticotropin-releasing factor (CRF) and thyrotropin-releasing factor and downregulate mRNA levels of orexigenic peptides such as orexin and melanin-concentrating hormone. However, the POMC-induced anorexigenic pathway in chickens has not been well characterized. In the present study, we investigated how POMC neurons regulate mechanisms of food intake using an anorexigenic peptide, beta-melanocyte-stimulating hormone (beta-MSH), derived from the post-transcriptional cleavage of POMC. Central administration of beta-MSH in chicks significantly suppressed food intake, and importantly, this suppression was accompanied by a significant upregulation of CRF mRNA levels. Furthermore, the CRF type 2 receptor antagonist alpha-helical CRF significantly reversed the anorexigenic action of beta-MSH. These findings indicate that CRF and its receptor, CRF type 2 receptor, act as the major mediators in beta-MSH-induced anorexigenic action in chicks. beta-MSH significantly increased orexin mRNA levels and did not alter mRNA levels of thyrotropin-releasing factor and melanin-concentrating hormone in chicks, suggesting that the beta-MSH-induced anorexigenic pathway in chicks is different from that in mammals. Increases in orexin mRNA levels were accompanied by significant decreases in plasma glucose concentration, suggesting that orexin mRNA might be stimulated by beta-MSH-induced hypoglycemia. Thus, this study demonstrates the direct evidence that CRF is a critical downstream target in the beta-MSH-induced anorexigenic pathway in chicks.
Collapse
Affiliation(s)
- Hiroshi Kamisoyama
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Shiraishi JI, Yanagita K, Fujita M, Bungo T. Central insulin suppresses feeding behavior via melanocortins in chicks. Domest Anim Endocrinol 2008; 34:223-8. [PMID: 17629654 DOI: 10.1016/j.domaniend.2007.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 05/26/2007] [Indexed: 10/23/2022]
Abstract
Growing evidence suggests that insulin interacts with both orexigenic and anorexigenic peptides in the brain for the control of feeding behavior in mammals. However, the action of central insulin in chicks has not yet been identified. In the present study, we investigated the effects of central injection of insulin on feeding behavior in chicks. Intracerebroventricular (ICV) administration of insulin, at doses that do not influence peripheral glucose levels, significantly inhibited food intake in chicks. Central injection of insulin in chicks significantly increased expression of pro-opiomelanocortin (POMC) mRNA, and decreased that of neuropeptide Y (NPY) mRNA. Finally, co-injection of the melanocortin antagonist (SHU9119 or HS014) prevented the reduction in food intake caused by ICV administration of insulin. These data suggest that insulin functions in chicks as an appetite-suppressive peptide in the central nervous system, and that the central melanocortin system mediates this anorexic effect of insulin, as in mammals.
Collapse
Affiliation(s)
- Jun-Ichi Shiraishi
- Laboratory of Animal Behavior and Physiology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | |
Collapse
|