1
|
Cheng X, Gu X, Wang F. Mitochondrial Dysfunction During TGF-β1-Induced Epithelial-Mesenchymal Transition in Retinal Pigment Epithelial Cells. Curr Eye Res 2025; 50:527-535. [PMID: 39936897 DOI: 10.1080/02713683.2025.2464783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells contributes to the epiretinal membrane development in proliferative vitreoretinopathy (PVR). This study aimed at investigating changes in mitochondrial function during EMT in PVR. METHODS Transmission electron microscopy (TEM) was utilized to examine the mitochondrial morphology in human PVR epiretinal membranes and retinal pigment epithelium of human donor eyes. Utilizing TGF-β1 induced EMT in ARPE-19 cells as an in vitro model, we assessed mitochondrial morphology using transmission electron microscopy (TEM), evaluated mitochondrial function through various assays including detection and analysis of mitochondrial membrane potential (MMP), mitochondrial deoxyribonucleic acid (mtDNA), reactive oxygen species (ROS), ATP, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR). RNA sequencing was performed to identify differentially expressed genes (DEGs) related to mitochondrial function and PVR pathogenesis. RESULTS Mitochondrial morphological damage was observed in human PVR epiretinal membranes. TGF-β1 treatment led to morphological changes in mitochondria, increased oxidative stress, mitochondrial membrane depolarization, and reduction in mtDNA, mitochondrial respiration, and ATP production, indicating mitochondrial dysfunction in EMT ARPE-19 cells. Furthermore, RNA sequencing data highlighted the dysfunction, showing downregulation of mitochondria-related pathways and mitochondrial transcription factor A (TFAM), crucial for mtDNA maintenance. CONCLUSION Our findings indicated that TGF-β1 treatment induced mitochondrial dysfunction in RPE cells during EMT, providing insights into the molecular mechanisms of PVR development.
Collapse
Affiliation(s)
- Xinyi Cheng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xunyi Gu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Bright Eye Hospital, Shanghai, China
| |
Collapse
|
2
|
Ng C, Kim M, Yanti, Kwak MK. Oxidative stress and NRF2 signaling in kidney injury. Toxicol Res 2025; 41:131-147. [PMID: 40013079 PMCID: PMC11850685 DOI: 10.1007/s43188-024-00272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 02/28/2025] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and the AKI-to-CKD transition. This review examines the intricate relationship between oxidative stress and kidney pathophysiology, emphasizing the potential therapeutic role of nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of cellular redox homeostasis. In diverse AKI and CKD models, diminished NRF2 activity exacerbates oxidative stress, whereas genetic and pharmacological NRF2 activation alleviates kidney damage induced by nephrotoxic agents, ischemia-reperfusion injury, fibrotic stimuli, and diabetic nephropathy. The renoprotective effects of NRF2 extend beyond antioxidant defense, encompassing its anti-inflammatory and anti-fibrotic properties. The significance of NRF2 in renal fibrosis is further underscored by its interaction with the transforming growth factor-β signaling cascade. Clinical trials using bardoxolone methyl, a potent NRF2 activator, have yielded both encouraging and challenging outcomes, illustrating the intricacy of modulating NRF2 in human subjects. In summary, this overview suggests the therapeutic potential of targeting NRF2 in kidney disorders and highlights the necessity for continued research to refine treatment approaches.
Collapse
Affiliation(s)
- Cherry Ng
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Maxine Kim
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Yanti
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930 Indonesia
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-Ro, Bucheon, Gyeonggi-do 14662 Republic of Korea
| |
Collapse
|
3
|
Boima V, Agyekum AB, Ganatra K, Agyekum F, Kwakyi E, Inusah J, Ametefe EN, Adu D. Advances in kidney disease: pathogenesis and therapeutic targets. Front Med (Lausanne) 2025; 12:1526090. [PMID: 40027896 PMCID: PMC11868101 DOI: 10.3389/fmed.2025.1526090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic kidney disease (CKD) is a global public health issue characterized by progressive loss of kidney function, of which end-stage kidney disease (ESKD) is the last stage. The global increase in the prevalence of CKD is linked to the increasing prevalence of traditional risk factors, including obesity, hypertension, and diabetes mellitus, as well as metabolic factors, particularly insulin resistance, dyslipidemia, and hyperuricemia. Mortality and comorbidities, such as cardiovascular complications, rise steadily as kidney function deteriorates. Patients who progress to ESKD require long-term kidney replacement therapy, such as transplantation or hemodialysis/peritoneal dialysis. It is currently understood that a crucial aspect of CKD involves persistent, low-grade inflammation. In addition, increased oxidative and metabolic stress, endothelial dysfunction, vascular calcification from poor calcium and phosphate metabolism, and difficulties with coagulation are some of the complex molecular pathways underlying CKD-related and ESKD-related issues. Novel mechanisms, such as microbiome dysbiosis and apolipoprotein L1 gene mutation, have improved our understanding of kidney disease mechanisms. High kidney disease risk of Africa has been linked to APOL1 high-risk alleles. The 3-fold increased risk of ESKD in African Americans compared to European Americans is currently mainly attributed to variants in the APOL1 gene in the chromosome 22q12 locus. Additionally, the role of new therapies such as SGLT2 inhibitors, mineralocorticoid receptor antagonists, and APOL1 channel function inhibitors offers new therapeutic targets in slowing down the progression of chronic kidney disease. This review describes recent molecular mechanisms underlying CKD and emerging therapeutic targets.
Collapse
Affiliation(s)
- Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Alex Baafi Agyekum
- National Cardio-Thoracic Center, KorleBu Teaching Hospital, Accra, Ghana
| | - Khushali Ganatra
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Francis Agyekum
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Edward Kwakyi
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jalil Inusah
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Elmer Nayra Ametefe
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Science, University of Ghana, Accra, Ghana
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Li X, Chen J, Li J, Zhang Y, Xia J, Du H, Sheng C, Huang M, Shen W, Cai G, Wu L, Bai X, Chen X. ATGL regulates renal fibrosis by reprogramming lipid metabolism during the transition from AKI to CKD. Mol Ther 2025; 33:805-822. [PMID: 39748508 PMCID: PMC11853023 DOI: 10.1016/j.ymthe.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Acute kidney injury (AKI) can progress to chronic kidney disease (CKD) and subsequently to renal fibrosis. Poor repair of renal tubular epithelial cells (TECs) after injury is the main cause of renal fibrosis. Studies have shown that restoring damaged fatty acid β-oxidation (FAO) can reduce renal fibrosis. Adipose triglyceride lipase (ATGL) is a key enzyme that regulates lipid hydrolysis. This study, for the first time, demonstrated that ATGL was downregulated in the renal TEC in the AKI-CKD transition mouse model. Moreover, treatment with the ATGL inhibitor atglistatin exacerbated lipid accumulation and downregulated the FAO level and mitochondrial function, while it increased the level of oxidative stress injury and apoptosis, resulting in aggravated renal fibrosis. In contrast, ATGL overexpression suppressed lipid accumulation, improved the FAO level and mitochondrial function, and attenuated oxidative stress and apoptosis, thereby ameliorating fibrosis in vitro and in vivo. In summary, ATGL regulates renal fibrosis by reprogramming lipid metabolism in renal TECs. This study provided new avenues and targets for treating CKD.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Jianwen Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Jun Li
- School of Basic Medical Sciences, Fudan University, Dong'An Road 130, Shanghai 200032, China
| | - Yixuan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Jikai Xia
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Chunjia Sheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xueyuan Bai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China.
| |
Collapse
|
5
|
Kim SK, Bae GS, Bae T, Ku SK, Choi BH, Kwak MK. Renal microRNA-144-3p is associated with transforming growth factor-β1-induced oxidative stress and fibrosis by suppressing the NRF2 pathway in hypertensive diabetic kidney disease. Free Radic Biol Med 2024; 225:546-559. [PMID: 39423929 DOI: 10.1016/j.freeradbiomed.2024.10.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Chronic kidney disease (CKD) is a global health problem characterized by progressive renal fibrosis and excessive extracellular matrix deposition. Oxidative stress and epigenetic regulation, particularly through microRNAs (miRNAs), play crucial roles in the pathogenesis of CKD. In this study, we investigated the role of urinary miR-144-3p, which is upregulated in rats with CKD induced by diabetes and hypertension, in renal fibrosis progression, particularly its regulation of the nuclear factor erythroid-2-related factor 2 (NRF2) pathway. Our findings revealed elevated miR-144-3p levels and reduced NRF2 and target gene levels in kidney tissues of streptozotocin-treated spontaneously hypertensive rats. In vitro experiments demonstrated that miR-144-3p directly binds to the 3'-untranslated region of nrf2, suppressing the NRF2 pathway in renal tubular epithelial cells. Additionally, the profibrogenic factor transforming growth factor (TGF)-β1 increased miR-144-3p expression. TGF-β1-induced NRF2 suppression and reactive oxygen species elevation were found to be mediated through miR-144-3p upregulation. In vivo, cilostazol, an antiplatelet drug with an NRF2-activating effect, ameliorated renal injury in diabetic hypertensive rats by decreasing TGF-β1 and miR-144-3p levels while increasing NRF2 and its target gene levels in the kidneys. These findings highlight the potential therapeutic value of targeting the miR-144-3p/NRF2 pathway to attenuate CKD progression in hypertensive diabetic conditions.
Collapse
Affiliation(s)
- Seung Ki Kim
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Gwang Sun Bae
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Taegeun Bae
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeonsangbuk-do, 712-715, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, 42472, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea; Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea; College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
6
|
Saleem M, Aden LA, Mutchler AL, Basu C, Ertuglu LA, Sheng Q, Penner N, Hemnes AR, Park JH, Ishimwe JA, Laffer CL, Elijovich F, Wanjalla CN, de la Visitacion N, Kastner PD, Albritton CF, Ahmad T, Haynes AP, Yu J, Graber MK, Yasmin S, Wagner KU, Sayeski PP, Hatzopoulos AK, Gamazon ER, Bick AG, Kleyman TR, Kirabo A. Myeloid-Specific JAK2 Contributes to Inflammation and Salt Sensitivity of Blood Pressure. Circ Res 2024; 135:890-909. [PMID: 39263750 PMCID: PMC11466692 DOI: 10.1161/circresaha.124.323595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHODS We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Luul A Aden
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Ashley L Mutchler
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Chitra Basu
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Lale A Ertuglu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Quanhu Sheng
- Department of Biostatistics (Q.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Niki Penner
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Jennifer H Park
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Cheryl L Laffer
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | | | - Celestine N Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Nestor de la Visitacion
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Paul D Kastner
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Claude F Albritton
- School of Graduate Studies, Meharry Medical College, Nashville, TN (C.F.A.)
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Punjab, Pakistan (T.A.)
| | - Alexandria P Haynes
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Justin Yu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Meghan K Graber
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Sharia Yasmin
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Kay-Uwe Wagner
- Wayne State University, Department of Oncology and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI (K.-U.W.)
| | - Peter P Sayeski
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville (P.P.S.)
| | - Antonis K Hatzopoulos
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G Bick
- Division of Genetic Medicine (A.G.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, PA (T.R.K.)
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN (A.K.)
| |
Collapse
|
7
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
8
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
9
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
10
|
Li X, Ma TK, Wang P, Shi H, Hai S, Qin Y, Zou Y, Zhu WT, Li HM, Li YN, Yin L, Xu YY, Yang Q, Zhang S, Ding H. HOXD10 attenuates renal fibrosis by inhibiting NOX4-induced ferroptosis. Cell Death Dis 2024; 15:398. [PMID: 38844470 PMCID: PMC11156659 DOI: 10.1038/s41419-024-06780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
In chronic kidney disease (CKD), renal fibrosis is an unavoidable result of various manifestations. However, its pathogenesis is not yet fully understood. Here, we revealed the novel role of Homeobox D10 (HOXD10) in CKD-related fibrosis. HOXD10 expression was downregulated in CKD-related in vitro and in vivo fibrosis models. UUO model mice were administered adeno-associated virus (AAV) containing HOXD10, and HOXD10 overexpression plasmids were introduced into human proximal tubular epithelial cells induced by TGF-β1. The levels of iron, reactive oxygen species (ROS), lipid ROS, the oxidized glutathione/total glutathione (GSSG/GSH) ratio, malonaldehyde (MDA), and superoxide dismutase (SOD) were determined using respective assay kits. Treatment with AAV-HOXD10 significantly attenuated fibrosis and renal dysfunction in UUO model mice by inhibiting NOX4 transcription, ferroptosis pathway activation, and oxidative stress. High levels of NOX4 transcription, ferroptosis pathway activation and profibrotic gene expression induced by TGF-β1/erastin (a ferroptosis agonist) were abrogated by HOXD10 overexpression in HK-2 cells. Moreover, bisulfite sequencing PCR result determined that HOXD10 showed a hypermethylated level in TGF-β1-treated HK-2 cells. The binding of HOXD10 to the NOX4 promoter was confirmed by chromatin immunoprecipitation (ChIP) analysis and dual-luciferase reporter assays. Targeting HOXD10 may represent an innovative therapeutic strategy for fibrosis treatment in CKD.
Collapse
Affiliation(s)
- Xin Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Tian-Kui Ma
- Biological Therapy Department, First Hospital of China Medical University, Shenyang, China
| | - Pu Wang
- General Practice Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hang Shi
- Intensive Care Unit Department, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Sang Hai
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yu Qin
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yun Zou
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Wan-Ting Zhu
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hui-Min Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Nong Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Li Yin
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Yan Xu
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Qi Yang
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Damerau A, Rosenow E, Alkhoury D, Buttgereit F, Gaber T. Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front Immunol 2024; 15:1385006. [PMID: 38895122 PMCID: PMC11183113 DOI: 10.3389/fimmu.2024.1385006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, characterized by osteophyte formation, cartilage degradation, and structural and cellular alterations of the synovial membrane. Activated fibroblast-like synoviocytes (FLS) of the synovial membrane have been identified as key drivers, secreting humoral mediators that maintain inflammatory processes, proteases that cause cartilage and bone destruction, and factors that drive fibrotic processes. In normal tissue repair, fibrotic processes are terminated after the damage has been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated and prolonged. Various stressors, including aging, joint instability, and inflammation, lead to structural damage of the joint and micro lesions within the synovial tissue. One result is the reduced production of synovial fluid (lubricants), which reduces the lubricity of the cartilage areas, leading to cartilage damage. In the synovial tissue, a wound-healing cascade is initiated by activating macrophages, Th2 cells, and FLS. The latter can be divided into two major populations. The destructive thymocyte differentiation antigen (THY)1─ phenotype is restricted to the synovial lining layer. In contrast, the THY1+ phenotype of the sublining layer is classified as an invasive one with immune effector function driving synovitis. The exact mechanisms involved in the transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis remain unclear. The review provides an overview of the phenotypes and spatial distribution of FLS in the synovial membrane of OA, describes the mechanisms of fibroblast into myofibroblast activation, and the metabolic alterations of myofibroblast-like cells.
Collapse
Affiliation(s)
- Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Emely Rosenow
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| |
Collapse
|
12
|
Xu X, Chen Y, Kong L, Li X, Chen D, Yang Z, Wang J. Potential biomarkers for immune monitoring after renal transplantation. Transpl Immunol 2024; 84:102046. [PMID: 38679337 DOI: 10.1016/j.trim.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Renal transplantation represents the foremost efficacious approach for ameliorating end-stage renal disease. Despite the current state of advanced renal transplantation techniques and the established postoperative immunosuppression strategy, a subset of patients continues to experience immune rejection during both the early and late postoperative phases, ultimately leading to graft loss. Consequently, the identification of immunobiomarkers capable of predicting the onset of immune rejection becomes imperative in order to facilitate early intervention strategies and enhance long-term prognoses. Upon reviewing the pertinent literature, we identified several indicators that could potentially serve as immune biomarkers to varying extents. These include the T1/T2 ratio, Treg/Th17 ratio, IL-10/TNF-α ratio, IL-33, IL-34, IL-6, IL-4, other cytokines, and NOX2/4.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yi Chen
- Shandong Medical College, Jinan, China
| | | | - Xianduo Li
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dongdong Chen
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Jianning Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
13
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Makhammajanov Z, Gaipov A, Myngbay A, Bukasov R, Aljofan M, Kanbay M. Tubular toxicity of proteinuria and the progression of chronic kidney disease. Nephrol Dial Transplant 2024; 39:589-599. [PMID: 37791392 DOI: 10.1093/ndt/gfad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 10/05/2023] Open
Abstract
Proteinuria is a well-established biomarker of chronic kidney disease (CKD) and a risk predictor of associated disease outcomes. Proteinuria is also a driver of CKD progression toward end-stage kidney disease. Toxic effects of filtered proteins on proximal tubular epithelial cells enhance tubular atrophy and interstitial fibrosis. The extent of protein toxicity and the underlying molecular mechanisms responsible for tubular injury during proteinuria remain unclear. Nevertheless, albumin elicits its toxic effects when degraded and reabsorbed by proximal tubular epithelial cells. Overall, healthy kidneys excrete over 1000 individual proteins, which may be potentially harmful to proximal tubular epithelial cells when filtered and/or reabsorbed in excess. Proteinuria can cause kidney damage, inflammation and fibrosis by increasing reactive oxygen species, autophagy dysfunction, lysosomal membrane permeabilization, endoplasmic reticulum stress and complement activation. Here we summarize toxic proteins reported in proteinuria and the current understanding of molecular mechanisms of toxicity of proteins on proximal tubular epithelial cells leading to CKD progression.
Collapse
Affiliation(s)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Clinical Academic Department of Internal Medicine, CF "University Medical Center", Astana, Kazakhstan
| | - Askhat Myngbay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
15
|
Jandeleit-Dahm KAM, Kankanamalage HR, Dai A, Meister J, Lopez-Trevino S, Cooper ME, Touyz RM, Kennedy CRJ, Jha JC. Endothelial NOX5 Obliterates the Reno-Protective Effect of Nox4 Deletion by Promoting Renal Fibrosis via Activation of EMT and ROS-Sensitive Pathways in Diabetes. Antioxidants (Basel) 2024; 13:396. [PMID: 38671844 PMCID: PMC11047703 DOI: 10.3390/antiox13040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hyperglycemia induces intrarenal oxidative stress due to the excessive production of reactive oxygen species (ROS), leading to a cascade of events that contribute to the development and progression of diabetic kidney disease (DKD). NOX5, a pro-oxidant NADPH oxidase isoform, has been identified as a significant contributor to renal ROS in humans. Elevated levels of renal ROS contribute to endothelial cell dysfunction and associated inflammation, causing increased endothelial permeability, which can disrupt the renal ecosystem, leading to progressive albuminuria and renal fibrosis in DKD. This study specifically examines the contribution of endothelial cell-specific human NOX5 expression in renal pathology in a transgenic mouse model of DKD. This study additionally compares NOX5 with the previously characterized NADPH oxidase, NOX4, in terms of their relative roles in DKD. Regardless of NOX4 pathway, this study found that endothelial cell-specific expression of NOX5 exacerbates renal injury, albuminuria and fibrosis. This is attributed to the activation of the endothelial mesenchymal transition (EMT) pathway via enhanced ROS formation and the modulation of redox-sensitive factors. These findings underscore the potential therapeutic significance of NOX5 inhibition in human DKD. The study proposes that inhibiting NOX5 could be a promising approach for mitigating the progression of DKD and strengthens the case for the development of NOX5-specific inhibitors as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Karin A. M. Jandeleit-Dahm
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Aozhi Dai
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Jaroslawna Meister
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3H 2R9, Canada;
| | - Christopher R. J. Kennedy
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada;
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| |
Collapse
|
16
|
Xia Z, Wei Z, Li X, Liu Y, Gu X, Huang S, Zhang X, Wang W. C/EBPα aggravates renal fibrosis in CKD through the NOX4-ROS-apoptosis pathway in tubular epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167039. [PMID: 38281712 DOI: 10.1016/j.bbadis.2024.167039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a prevalent renal disorder with various risk factors. Emerging evidence indicates that the transcriptional factor CCAAT/enhancer binding protein alpha (C/EBPα) may be associated with renal fibrosis. However, the precise role of C/EBPα in CKD progression remains unexplored. METHODS We investigated the involvement of C/EBPα in CKD using two distinct mouse models induced by folic acid (FA) and unilateral ureteral obstruction (UUO). Additionally, we used RNA sequencing and KEGG analysis to identify potential downstream pathways governed by C/EBPα. FINDINGS Cebpa knockout significantly shielded mice from renal fibrosis and reduced reactive oxygen species (ROS) levels in both the FA and UUO models. Primary tubular epithelial cells (PTECs) lacking Cebpa exhibited reduced apoptosis and ROS accumulation following treatment with TGF-β. RNA sequencing analysis suggested that apoptosis is among the primary pathways regulated by C/EBPα, and identified NADPH oxidoreductase 4 (NOX4) as a key protein upregulated upon C/EBPα induction (ICCB280). Treatment with l-Theanine, a potential NOX4 inhibitor, mitigated renal fibrosis and inflammation in both the FA and UUO mouse models. INTERPRETATION Our study unveils a role for C/EBPα in suppressing renal fibrosis, mitigating ROS accumulation, and reducing cell apoptosis. Furthermore, we investigate whether these protective effects are mediated by C/EBPα's regulation of NOX4 expression. These findings present a promising therapeutic target for modulating ROS and apoptosis in renal tubular cells, potentially offering an approach to treating CKD and other fibrotic diseases.
Collapse
Affiliation(s)
- Ziru Xia
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhaonan Wei
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xin Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yunzi Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiangchen Gu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, People's Republic of China
| | - Siyi Huang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyue Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Jiang M, Yang Z, Lyu L, Shi M. Dapagliflozin attenuates renal fibrosis by suppressing angiotensin II/TGFβ signaling in diabetic mice. J Diabetes Complications 2024; 38:108687. [PMID: 38266571 DOI: 10.1016/j.jdiacomp.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
AIMS Diabetic nephropathy (DN) complicates diabetes Mellitus and intimately relates to intrarenal renin-angiotensin system (RAS) activity. Dapagliflozin, a selective inhibitor of sodium-glucose cotransporter 2 (SGLT2), has been validated to improve renal outcomes in diabetic patients from clinical research by elusive mechanisms. This study explored the presumption that the eagerness activity of intrarenal RAS in DN generated oxidative stress to promote renal fibrosis, and the process can be interrupted by dapagliflozin. METHODS A streptozotocin-induced DN model was established in male C57BL/6J mice. Mice were treated with dapagliflozin or losartan for 14 weeks. Biochemical data, renal fibrosis, oxidative stress, and RAS were measured. RESULTS DN mice were characterized by overtly low body weight, high levels of blood glucose, and renal injury. Interrupting SGLT2 and RAS significantly improved renal dysfunction and pathological lesions in DN mice. Consistent with these favorable effects, dapagliflozin revoked the local RAS/oxidative stress and the succeeding transforming growth factor beta (TGFβ) signaling. CONCLUSIONS This research clarifies that intrarenal RAS activity triggers renal injury in DN, and dapagliflozin attenuates renal fibrosis by suppressing Angiotensin II/TGFβ signaling. It unravels a novel insight into the role of prevention and treatment of SGLT2 inhibitors to DN.
Collapse
Affiliation(s)
- Mingwang Jiang
- Department of Nephrology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Zhichen Yang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Lu Lyu
- Department of Nephrology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| | - Meng Shi
- Department of Nephrology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| |
Collapse
|
18
|
Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 2024; 25:83-106. [PMID: 37917219 PMCID: PMC10794430 DOI: 10.1007/s10522-023-10072-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Disruption of the extracellular matrix (ECM) and an accumulation of fibrotic lesions within tissues are two of the distinctive hallmarks of the aging process. Tissue fibroblasts are mesenchymal cells which display an impressive plasticity in the regulation of ECM integrity and thus on tissue homeostasis. Single-cell transcriptome studies have revealed that tissue fibroblasts exhibit a remarkable heterogeneity with aging and in age-related diseases. Excessive stress and inflammatory insults induce the differentiation of fibroblasts into myofibroblasts which are fusiform contractile cells and abundantly secrete the components of the ECM and proteolytic enzymes as well as many inflammatory mediators. Detrimental stresses can also induce the transdifferentiation of certain mesenchymal and myeloid cells into myofibroblasts. Interestingly, many age-related stresses, such as oxidative and endoplasmic reticulum stresses, ECM stiffness, inflammatory mediators, telomere shortening, and several alarmins from damaged cells are potent inducers of myofibroblast differentiation. Intriguingly, there is convincing evidence that the signaling pathways stimulated by the AMP-activated protein kinase (AMPK) are potent inhibitors of myofibroblast differentiation and accordingly AMPK signaling reduces fibrotic lesions within tissues, e.g., in age-related cardiac and pulmonary fibrosis. AMPK signaling is not only an important regulator of energy metabolism but it is also able to control cell fate determination and many functions of the immune system. It is known that AMPK signaling can delay the aging process via an integrated signaling network. AMPK signaling inhibits myofibroblast differentiation, e.g., by suppressing signaling through the TGF-β, NF-κB, STAT3, and YAP/TAZ pathways. It seems that AMPK signaling can alleviate age-related tissue fibrosis and degeneration by inhibiting the differentiation of myofibroblasts.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
19
|
Jian J, Liu Y, Zheng Q, Wang J, Jiang Z, Liu X, Chen Z, Wan S, Liu H, Wang L. The E3 ubiquitin ligase TRIM39 modulates renal fibrosis induced by unilateral ureteral obstruction through regulating proteasomal degradation of PRDX3. Cell Death Discov 2024; 10:17. [PMID: 38195664 PMCID: PMC10776755 DOI: 10.1038/s41420-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Renal fibrosis is considered to be the ultimate pathway for various chronic kidney disease, with a complex etiology and great therapeutic challenges. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM39 plays a role in renal fibrosis remain unexplored. In this study, we investigated the role of TRIM39 in renal fibrosis and its molecular mechanism. TRIM39 expression was analyzed in patients' specimens, HK-2 cells and unilateral ureteral obstruction (UUO) mice were used for functional and mechanistic studies. We found an upregulated expression of TRIM39 in renal fibrosis human specimens and models. In addition, TRIM39 knockdown was found efficient for alleviating renal fibrosis in both UUO mice and HK-2 cells. Mechanistically, we demonstrated that TRIM39 interacted with PRDX3 directly and induced ubiquitination degradation of PRDX3 at K73 and K149 through the K48 chain, which resulted in ROS accumulation and increased inflammatory cytokine generation, and further aggravated renal fibrosis. It provided an emerging potential target for the therapies of renal fibrosis.
Collapse
Affiliation(s)
- Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhengyu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Department of Urology, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450052, Henan, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
20
|
Wang L, Zhong NN, Wang X, Peng B, Chen Z, Wei L, Li B, Li Y, Cheng Y. Metformin Attenuates TGF-β1-Induced Fibrosis in Salivary Gland: A Preliminary Study. Int J Mol Sci 2023; 24:16260. [PMID: 38003450 PMCID: PMC10671059 DOI: 10.3390/ijms242216260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Fibrosis commonly arises from salivary gland injuries induced by factors such as inflammation, ductal obstruction, radiation, aging, and autoimmunity, leading to glandular atrophy and functional impairment. However, effective treatments for these injuries remain elusive. Transforming growth factor-beta 1 (TGF-β1) is fundamental in fibrosis, advancing fibroblast differentiation into myofibroblasts and enhancing the extracellular matrix in the salivary gland. The involvement of the SMAD pathway and reactive oxygen species (ROS) in this context has been postulated. Metformin, a type 2 diabetes mellitus (T2DM) medication, has been noted for its potent anti-fibrotic effects. Through human samples, primary salivary gland fibroblasts, and a rat model, this study explored metformin's anti-fibrotic properties. Elevated levels of TGF-β1 (p < 0.01) and alpha-smooth muscle actin (α-SMA) (p < 0.01) were observed in human sialadenitis samples. The analysis showed that metformin attenuates TGF-β1-induced fibrosis by inhibiting SMAD phosphorylation (p < 0.01) through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-independent pathways and activating the AMPK pathway, consequently suppressing NADPH oxidase 4 (NOX4) (p < 0.01), a main ROS producer. Moreover, in rats, metformin not only reduced glandular fibrosis post-ductal ligation but also protected acinar cells from ligation-induced injuries, thereby normalizing the levels of aquaporin 5 (AQP5) (p < 0.05). Overall, this study underscores the potential of metformin as a promising therapeutic option for salivary gland fibrosis.
Collapse
Affiliation(s)
- Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiaofeng Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhuo Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lili Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bo Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuhong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
21
|
Haynes AP, Desta S, Ahmad T, Neikirk K, Hinton A, Bloodworth N, Kirabo A. The Antioxidative Effects of Flavones in Hypertensive Disease. Biomedicines 2023; 11:2877. [PMID: 38001878 PMCID: PMC10669108 DOI: 10.3390/biomedicines11112877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is the leading remediable risk factor for cardiovascular morbidity and mortality in the United States. Excess dietary salt consumption, which is a catalyst of hypertension, initiates an inflammatory cascade via activation of antigen-presenting cells (APCs). This pro-inflammatory response is driven primarily by sodium ions (Na+) transporting into APCs by the epithelial sodium channel (ENaC) and subsequent NADPH oxidase activation, leading to high levels of oxidative stress. Oxidative stress, a well-known catalyst for hypertension-related illness development, disturbs redox homeostasis, which ultimately promotes lipid peroxidation, isolevuglandin production and an inflammatory response. Natural medicinal compounds derived from organic materials that are characterized by their anti-inflammatory, anti-oxidative, and anti-mutagenic properties have recently gained traction amongst the pharmacology community due to their therapeutic effects. Flavonoids, a natural phenolic compound, have these therapeutic benefits and can potentially serve as anti-hypertensives. Flavones are a type of flavonoid that have increased anti-inflammatory effects that may allow them to act as therapeutic agents for hypertension, including diosmetin, which is able to induce significant arterial vasodilation in several different animal models. This review will focus on the activity of flavones to illuminate potential preventative and potential therapeutic mechanisms against hypertension.
Collapse
Affiliation(s)
- Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Selam Desta
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059, USA
| | - Taseer Ahmad
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Nathaniel Bloodworth
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| |
Collapse
|
22
|
Siani A, Infante-Teixeira L, d'Arcy R, Roberts IV, El Mohtadi F, Donno R, Tirelli N. Polysulfide nanoparticles inhibit fibroblast-to-myofibroblast transition via extracellular ROS scavenging and have potential anti-fibrotic properties. BIOMATERIALS ADVANCES 2023; 153:213537. [PMID: 37406516 DOI: 10.1016/j.bioadv.2023.213537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
This paper is about the effects of reactive oxygen species (ROS) - and of their nanoparticle-mediated extracellular removal - in the TGF-β1-induced differentiation of fibroblasts (human dermal fibroblasts - HDFa) to more contractile myofibroblasts, and in the maintenance of this phenotype. Here, poly(propylene sulfide) (PPS) nanoparticles have been employed on 2D and 3D in vitro models, showing extremely low toxicity and undergoing negligible internalization, thereby ensuring an extracellular-only action. Firstly, PPS nanoparticles abrogated ROS-mediated downstream molecular events such as glutathione oxidation, NF-κB activation, and heme oxidase-1 (HMOX) overexpression. Secondly, PPS nanoparticles were also capable to inhibit, prevent and reverse the TGF-β1-induced upregulation of key biomechanical elements, such as ED-a fibronectin (EF-A FN) and alpha-smooth muscle actin (α-SMA), respectively markers of protomyofibroblastic and of myofibroblastic differentiation. We also confirmed that ROS alone are ineffective promoters of the myofibroblastic transition, although their presence contributes to its stabilization. Finally, the particles also countered TGF-β1-induced matrix- and tissue-level phenomena, e.g., the upregulation of collagen type 1, the development of aberrant collagen type 1/3 ratios and the contracture of HDFa 3D-seeded fibrin constructs. In short, experimental data at molecular, cellular and tissue levels show a significant potential in the use of PPS nanoparticles as anti-fibrotic agents.
Collapse
Affiliation(s)
- Alessandro Siani
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK
| | - Lorena Infante-Teixeira
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Richard d'Arcy
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK; Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Iwan V Roberts
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK
| | - Farah El Mohtadi
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK; Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
23
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
24
|
Jian J, Wang D, Xiong Y, Wang J, Zheng Q, Jiang Z, Zhong J, Yang S, Wang L. Puerarin alleviated oxidative stress and ferroptosis during renal fibrosis induced by ischemia/reperfusion injury via TLR4/Nox4 pathway in rats. Acta Cir Bras 2023; 38:e382523. [PMID: 37556718 PMCID: PMC10403246 DOI: 10.1590/acb382523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/18/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE To investigate the role of puerarin on renal fibrosis and the underlying mechanism in renal ischemia and reperfusion (I/R) model. METHODS Rats were intraperitoneally injected with puerarin (50 or 100 mg/kg) per day for one week before renal I/R. The level of renal collagen deposition and interstitial fibrosis were observed by hematoxylin and eosin and Sirius Red staining, and the expression of α-smooth muscle actin (α-SMA) was examined by immunohistochemical staining. The ferroptosis related factors and TLR4/Nox4-pathway-associated proteins were detected by Western blotting. RESULTS Puerarin was observed to alleviate renal collagen deposition, interstitial fibrosis and the α-SMA expression induced by I/R. Superoxide dismutase (SOD) activities and glutathione (GSH) level were decreased in I/R and hypoxia/reoxygenation (H/R), whereas malondialdehyde (MDA) and Fe2+ level increased. However, puerarin reversed SOD, MDA, GSH and Fe2+ level changes induced by I/R and H/R. Besides, Western blot indicated that puerarin inhibited the expression of ferroptosis related factors in a dose-dependent manner, which further demonstrated that puerarin had the effect to attenuate ferroptosis. Moreover, the increased expression of TLR/Nox4-pathway-associated proteins were observed in I/R and H/R group, but puerarin alleviated the elevated TLR/Nox4 expression. CONCLUSIONS Our results suggested that puerarin inhibited oxidative stress and ferroptosis induced by I/R and, thus, delayed the progression of renal fibrosis, providing a new target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Jun Jian
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Dan Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Yufeng Xiong
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Jingsong Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Qingyuan Zheng
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Zhengyu Jiang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Jiacheng Zhong
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Song Yang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Lei Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| |
Collapse
|
25
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
26
|
Zhu J, Min N, Gong W, Chen Y, Li X. Identification of Hub Genes and Biological Mechanisms Associated with Non-Alcoholic Fatty Liver Disease and Triple-Negative Breast Cancer. Life (Basel) 2023; 13:life13040998. [PMID: 37109526 PMCID: PMC10146727 DOI: 10.3390/life13040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between non-alcoholic fatty liver disease (NAFLD) and triple-negative breast cancer (TNBC) has been widely recognized, but the underlying mechanisms are still unknown. The objective of this study was to identify the hub genes associated with NAFLD and TNBC, and to explore the potential co-pathogenesis and prognostic linkage of these two diseases. We used GEO, TCGA, STRING, ssGSEA, and Rstudio to investigate the common differentially expressed genes (DEGs), conduct functional and signaling pathway enrichment analyses, and determine prognostic value between TNBC and NAFLD. GO and KEGG enrichment analyses of the common DEGs showed that they were enriched in leukocyte aggregation, migration and adhesion, apoptosis regulation, and the PPAR signaling pathway. Fourteen candidate hub genes most likely to mediate NAFLD and TNBC occurrence were identified and validation results in a new cohort showed that ITGB2, RAC2, ITGAM, and CYBA were upregulated in both diseases. A univariate Cox analysis suggested that high expression levels of ITGB2, RAC2, ITGAM, and CXCL10 were associated with a good prognosis in TNBC. Immune infiltration analysis of TNBC samples showed that NCF2, ICAM1, and CXCL10 were significantly associated with activated CD8 T cells and activated CD4 T cells. NCF2, CXCL10, and CYBB were correlated with regulatory T cells and myeloid-derived suppressor cells. This study demonstrated that the redox reactions regulated by the NADPH oxidase (NOX) subunit genes and the transport and activation of immune cells regulated by integrins may play a central role in the co-occurrence trend of NAFLD and TNBC. Additionally, ITGB2, RAC2, and ITGAM were upregulated in both diseases and were prognostic protective factors of TNBC; they may be potential therapeutic targets for treatment of TNBC patients with NAFLD, but further experimental studies are still needed.
Collapse
Affiliation(s)
- Jingjin Zhu
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ningning Min
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wenye Gong
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Yizhu Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xiru Li
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
27
|
Mutsaers HAM, Jensen MS, Kresse JC, Tingskov SJ, Madsen MG, Nørregaard R. An animal-free preclinical drug screening platform based on human precision-cut kidney slices. BMC Res Notes 2023; 16:39. [PMID: 36941637 PMCID: PMC10029185 DOI: 10.1186/s13104-023-06303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Renal fibrosis is one of the main pathophysiological processes underlying the progression of chronic kidney disease and kidney allograft failure. In the past decades, overwhelming efforts have been undertaken to find druggable targets for the treatment of renal fibrosis, mainly using cell- and animal models. However, the latter often do not adequately reflect human pathogenesis, obtained results differ per strain within a given species, and the models are associated with considerable discomfort for the animals. Therefore, the objective of this study is to implement the 3Rs in renal fibrosis research by establishing an animal-free drug screening platform for renal fibrosis based on human precision-cut kidney slices (PCKS) and by limiting the use of reagents that are associated with significant animal welfare concerns. RESULTS Using Western blotting and gene expression arrays, we show that transforming growth factor-β (TGF-β) induced fibrosis in human PCKS. In addition, our results demonstrated that butaprost, SC-19220 and tamoxifen - all putative anti-fibrotic compounds - altered TGF-β-induced pro-fibrotic gene expression in human PCKS. Moreover, we observed that all compounds modulated fairly distinct sets of genes, however they all impacted TGF-β/SMAD signaling. In conclusion, this study revealed that it is feasible to use an animal-free approach to test drug efficacy and elucidate mechanisms of action.
Collapse
Affiliation(s)
- Henricus A M Mutsaers
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Michael Schou Jensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Jean-Claude Kresse
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Stine Julie Tingskov
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Mia Gebauer Madsen
- Department of Urology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
28
|
Ma S, Yan F, Hou Y. Intermedin 1-53 Ameliorates Atrial Fibrosis and Reduces Inducibility of Atrial Fibrillation via TGF-β1/pSmad3 and Nox4 Pathway in a Rat Model of Heart Failure. J Clin Med 2023; 12:jcm12041537. [PMID: 36836072 PMCID: PMC9959393 DOI: 10.3390/jcm12041537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE New drugs to block the occurrence of atrial fibrillation (AF) based on atrial structural remodeling (ASR) are urgently needed. The purpose of this study was to study the role of intermedin 1-53 (IMD1-53) in ASR and AF formation in rats after myocardial infarction (MI). MATERIAL AND METHODS Heart failure was induced by MI in rats. Fourteen days after MI surgery, rats with heart failure were randomized into control (untreated MI group, n = 10) and IMD-treated (n = 10) groups. The MI group and sham group received saline injections. The rats in the IMD group received IMD1-53, 10 nmol/kg/day intraperitoneally for 4 weeks. The AF inducibility and atrial effective refractory period (AERP) were assessed with an electrophysiology test. Additionally, the left-atrial diameter was determined, and heart function and hemodynamic tests were performed. We detected the area changes of myocardial fibrosis in the left atrium using Masson staining. To detect the protein expression and mRNA expression of transforming growth factor-β1 (TGF-β1), α-SMA, collagen Ⅰ, collagen III, and NADPH oxidase (Nox4) in the myocardial fibroblasts and left atrium, we used the Western blot method and real-time quantitative polymerase chain reaction (PCR) assays. RESULTS Compared with the MI group, IMD1-53 treatment decreased the left-atrial diameter and improved cardiac function, while it also improved the left-ventricle end-diastolic pressure (LVEDP). IMD1-53 treatment attenuated AERP prolongation and reduced atrial fibrillation inducibility in the IMD group. In vivo, IMD1-53 reduced the left-atrial fibrosis content in the heart after MI surgery and inhibited the mRNA and protein expression of collagen type Ⅰ and III. IMD1-53 also inhibited the expression of TGF-β1, α-SMA, and Nox4 both in mRNA and protein. In vivo, we found that IMD1-53 inhibited the phosphorylation of Smad3. In vitro, we found that the downregulated expression of Nox4 was partly dependent on the TGF-β1/ALK5 pathway. CONCLUSIONS IMD1-53 decreased the duration and inducibility of AF and atrial fibrosis in the rats after MI operation. The possible mechanisms are related to the inhibition of TGF-β1/Smad3-related fibrosis and TGF-β1/Nox4 activity. Therefore, IMD1-53 may be a promising upstream treatment drug to prevent AF.
Collapse
Affiliation(s)
- Shenzhou Ma
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Cardiology Departments, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Yinglong Hou
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Cardiology Departments, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Correspondence:
| |
Collapse
|
29
|
Wu S, Xiao Z, Wei J, Zhang L, Cao Y, Chen Z, Li Q, Hu G. Imidazo[1,2-a]pyridine Derivatives as AMPK Activators: Synthesis, Structure-Activity Relationships, and Regulation of Reactive Oxygen Species in Renal Fibroblasts. ChemMedChem 2023; 18:e202200696. [PMID: 36750404 DOI: 10.1002/cmdc.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Adenosine 5'-monophosphate activated protein kinase (AMPK) has emerged as a promising target for the discovery of drugs to treat diabetic nephropathy (DN). Herein, a series of imidazo[1,2-a]pyridines were designed and synthesized. Among them, the active compound (EC50 =11.0 nM) showed good enzyme activation and molecular docking results showed hydrogen bonding interactions with the key amino acids Asn111 and Lys29 in the active site. Meanwhile, further cellular level experiments revealed that it could reduce reactive oxygen species (ROS) levels in NRK-49F cells induced by high glucose, and Western Blot experiments also demonstrate that it can increase the levels of p-AMPK and p-ACC and decrease the levels of TGF-β1. The results of this study extend the structural types of AMPK activators and provide novel lead compounds for the subsequent development.
Collapse
Affiliation(s)
- Siming Wu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, P.R. China
| | - Zhihong Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013 Hunan, P.R. China
| | - Junling Wei
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013 Hunan, P.R. China
| | - Lei Zhang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, P.R. China
| | - Yuanyuan Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013 Hunan, P.R. China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, P.R. China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, P.R. China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013 Hunan, P.R. China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, P.R. China
| |
Collapse
|
30
|
Irisin ameliorates D-galactose-induced skeletal muscle fibrosis via the PI3K/Akt pathway. Eur J Pharmacol 2023; 939:175476. [PMID: 36539073 DOI: 10.1016/j.ejphar.2022.175476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Primary sarcopenia is a multicausal skeletal muscle disease associated with muscle strength and mass loss. Skeletal muscle fibrosis is one of the significant pathological manifestations associated with the development of age-related sarcopenia. Irisin, which is cleaved by the extracellular domain of fibronectin type Ⅲ domain-containing protein 5 (FNDC5), has previously been reported to exert antifibrotic effects on the heart, liver, and pancreas, but whether it can rescue skeletal muscle fibrosis remains unknown. In this study, we examined the effects of irisin on D-galactose (D-gal)-induced skeletal muscle fibroblasts. We found that D-gal-induced senescence, fibrosis, and redox imbalance were inhibited by irisin treatment. Mechanistically, irisin or FNDC5 overexpression attenuated D-gal-induced senescence, redox imbalance, and fibrosis by regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Overall, irisin might be a promising therapeutic candidate for age-related skeletal muscle fibrosis.
Collapse
|
31
|
Siedlar AM, Seredenina T, Faivre A, Cambet Y, Stasia MJ, André-Lévigne D, Bochaton-Piallat ML, Pittet-Cuénod B, de Seigneux S, Krause KH, Modarressi A, Jaquet V. NADPH oxidase 4 is dispensable for skin myofibroblast differentiation and wound healing. Redox Biol 2023; 60:102609. [PMID: 36708644 PMCID: PMC9950659 DOI: 10.1016/j.redox.2023.102609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Differentiation of fibroblasts to myofibroblasts is governed by the transforming growth factor beta (TGF-β) through a mechanism involving redox signaling and generation of reactive oxygen species (ROS). Myofibroblasts synthesize proteins of the extracellular matrix (ECM) and display a contractile phenotype. Myofibroblasts are predominant contributors of wound healing and several pathological states, including fibrotic diseases and cancer. Inhibition of the ROS-generating enzyme NADPH oxidase 4 (NOX4) has been proposed to mitigate fibroblast to myofibroblast differentiation and to offer a therapeutic option for the treatment of fibrotic diseases. In this study, we addressed the role of NOX4 in physiological wound healing and in TGF-β-induced myofibroblast differentiation. We explored the phenotypic changes induced by TGF-β in primary skin fibroblasts isolated from Nox4-deficient mice by immunofluorescence, Western blotting and RNA sequencing. Mice deficient for Cyba, the gene coding for p22phox, a key subunit of NOX4 were used for confirmatory experiments as well as human primary skin fibroblasts. In vivo, the wound healing was similar in wild-type and Nox4-deficient mice. In vitro, despite a strong upregulation following TGF-β treatment, Nox4 did not influence skin myofibroblast differentiation although a putative NOX4 inhibitor GKT137831 and a flavoprotein inhibitor diphenylene iodonium mitigated this mechanism. Transcriptomic analysis revealed upregulation of the mitochondrial protein Ucp2 and the stress-response protein Hddc3 in Nox4-deficient fibroblasts, which had however no impact on fibroblast bioenergetics. Altogether, we provide extensive evidence that NOX4 is dispensable for wound healing and skin fibroblast to myofibroblast differentiation, and suggest that another H2O2-generating flavoprotein drives this mechanism.
Collapse
Affiliation(s)
- Aleksandra Malgorzata Siedlar
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, University of Geneva Faculty of Medicine, Geneva, Switzerland,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tamara Seredenina
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Faivre
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Yves Cambet
- READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-José Stasia
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38044, Grenoble, France
| | - Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | | | - Brigitte Pittet-Cuénod
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Sophie de Seigneux
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland,Service and Laboratory of Nephrology, Department of Internal Medicine Specialties and of Physiology and Metabolism, University and University Hospital of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ali Modarressi
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
32
|
Pérez-Figueroa DC, Reyes-Jiménez E, Velázquez-Enríquez JM, Reyes-Avendaño I, González-García K, Villa-Treviño S, Torres-Aguilar H, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Evaluation of renal damage in a bleomycin-induced murine model of systemic sclerosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:760-767. [PMID: 37396951 PMCID: PMC10311981 DOI: 10.22038/ijbms.2023.67117.14720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/06/2023] [Indexed: 07/04/2023]
Abstract
Objectives Systemic sclerosis (SSc) is an autoimmune disease of unknown etiology with a high mortality rate. Renal crisis has been reported as one of the predictors of early mortality in these patients. The present study was performed to evaluate bleomycin-induced SSc using an osmotic minipump as a possible model for the analysis of renal damage in SSc. Materials and Methods Male CD1 mice were implanted with osmotic minipumps loaded with saline or bleomycin and sacrificed at 6 and 14 days. Histopathological analysis was performed through hematoxylin and eosin (H&E) and Masson's trichrome staining. The expression of endothelin 1 (ET-1), inducible nitric oxide synthase (iNOS), transforming growth factor β (TGF-β), and 8-hydroxy-2-deoxyguanosine (8-OHdG) was also evaluated by immunohistochemistry. Results The administration of bleomycin induced a decrease in the length of Bowman's space (3.6 μm, P<0.001); an increase in collagen deposition (14.6%, P<0.0001); and an increase in the expression of ET-1 (7.5%, P<0.0001), iNOS (10.8%, P<0.0001), 8-OHdG (161 nuclei, P<0.0001), and TGF-β (2.4% µm, P<0.0001) on Day 6. On Day 14, a decrease in the length of Bowman's space (2.6 μm, P<0.0001); increased collagen deposition (13.4%, P<0.0001); and increased expression of ET-1 (2.7%, P<0.001), iNOS (10.1%, P<0.0001), 8-OHdG (133 nuclei, P<0.001), and TGF-β (0.6%, P<0.0001) were also observed. Conclusion Systemic administration of bleomycin via an osmotic minipump produces histopathological changes in the kidneys, similar to kidney damage in SSc. Therefore, this model would allow the study of molecular alterations associated with SSc-related renal damage.
Collapse
Affiliation(s)
- Dulce Carolina Pérez-Figueroa
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
- CONACYT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
- CONACYT, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| |
Collapse
|
33
|
Kubo E, Shibata S, Shibata T, Sasaki H, Singh DP. Role of Decorin in the Lens and Ocular Diseases. Cells 2022; 12:cells12010074. [PMID: 36611867 PMCID: PMC9818407 DOI: 10.3390/cells12010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Decorin is an archetypal member of the small leucine-rich proteoglycan gene family and is involved in various biological functions and many signaling networks, interacting with extra-cellular matrix (ECM) components, growth factors, and receptor tyrosine kinases. Decorin also modulates the growth factors, cell proliferation, migration, and angiogenesis. It has been reported to be involved in many ischemic and fibrotic eye diseases, such as congenital stromal dystrophy of the cornea, anterior subcapsular fibrosis of the lens, proliferative vitreoretinopathy, et al. Furthermore, recent evidence supports its role in secondary posterior capsule opacification (PCO) after cataract surgery. The expression of decorin mRNA in lens epithelial cells in vitro was found to decrease upon transforming growth factor (TGF)-β-2 addition and increase upon fibroblast growth factor (FGF)-2 addition. Wound healing of the injured lens in mice transgenic for lens-specific human decorin was promoted by inhibiting myofibroblastic changes. Decorin may be associated with epithelial-mesenchymal transition and PCO development in the lens. Gene therapy and decorin administration have the potential to serve as excellent therapeutic approaches for modifying impaired wound healing, PCO, and other eye diseases related to fibrosis and angiogenesis. In this review, we present findings regarding the roles of decorin in the lens and ocular diseases.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
- Correspondence: ; Tel.: +81-76-286-2211 (ext. 3412); Fax: +81-76-286-1010
| | - Shinsuke Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 920-0293, Ishikawa, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Wang X, Wu DH, Senyo SE. mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Front Bioeng Biotechnol 2022; 10:1037051. [PMID: 36507276 PMCID: PMC9732118 DOI: 10.3389/fbioe.2022.1037051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death in the world. This is partly due to the low regenerative capacity of adult hearts. mRNA therapy is a promising approach under development for cardiac diseases. In mRNA therapy, expression of the target protein is modulated by delivering synthetic mRNA. mRNA therapy benefits cardiac regeneration by increasing cardiomyocyte proliferation, reducing fibrosis, and promoting angiogenesis. Because mRNA is translated in the cytoplasm, the delivery efficiency of mRNA into the cytoplasm and nucleus significantly affects its therapeutic efficacy. To improve delivery efficiency, non-viral vehicles such as lipid nanoparticles have been developed. Non-viral vehicles can protect mRNA from enzymatic degradation and facilitate the cellular internalization of mRNA. In addition to non-viral vehicles, viral vectors have been designed to deliver mRNA templates into cardiac cells. This article reviews lipid nanoparticles, polymer nanoparticles, and viral vectors that have been utilized to deliver mRNA into the heart. Because of the growing interest in lipid nanoparticles, recent advances in lipid nanoparticles designed for cardiac mRNA delivery are discussed. Besides, potential targets of mRNA therapy for myocardial infarction are discussed. Gene therapies that have been investigated in patients with cardiac diseases are analyzed. Reviewing mRNA therapy from a clinically relevant perspective can reveal needs for future investigations.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas H. Wu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
35
|
Frąk W, Kućmierz J, Szlagor M, Młynarska E, Rysz J, Franczyk B. New Insights into Molecular Mechanisms of Chronic Kidney Disease. Biomedicines 2022; 10:2846. [PMID: 36359366 PMCID: PMC9687691 DOI: 10.3390/biomedicines10112846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem with a developing incidence and prevalence. As a consequence of the growing number of patients diagnosed with renal dysfunction leading to the development of CKD, it is particularly important to explain the mechanisms of its underlying causes. In our paper, we discuss the molecular mechanisms of the development and progression of CKD, focusing on oxidative stress, the role of the immune system, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinases. Moreover, growing evidence shows the importance of the role of the gut-kidney axis in the maintenance of normal homeostasis and of the dysregulation of this axis in CKD. Further, we discuss the therapeutic potential and highlight the future research directions for the therapeutic targeting of CKD. However, additional investigation is crucial to improve our knowledge of CKD progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Szlagor
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
36
|
NOX as a Therapeutic Target in Liver Disease. Antioxidants (Basel) 2022; 11:antiox11102038. [PMID: 36290761 PMCID: PMC9598239 DOI: 10.3390/antiox11102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate hydrogen oxidase (NADPH oxidase or NOX) plays a critical role in the inflammatory response and fibrosis in several organs such as the lungs, pancreas, kidney, liver, and heart. In the liver, NOXs contribute, through the generation of reactive oxygen species (ROS), to hepatic fibrosis by acting through multiple pathways, including hepatic stellate cell activation, proliferation, survival, and migration of hepatic stellate cells; hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both Kupffer cells and hepatic stellate cells. ROS are overwhelmingly produced during malignant transformation and hepatic carcinogenesis (HCC), creating an oxidative microenvironment that can cause different and various types of cellular stress, including DNA damage, ER stress, cell death of damaged hepatocytes, and oxidative stress. NOX1, NOX2, and NOX4, members of the NADPH oxidase family, have been linked to the production of ROS in the liver. This review will analyze some diseases related to an increase in oxidative stress and its relationship with the NOX family, as well as discuss some therapies proposed to slow down or control the disease's progression.
Collapse
|
37
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. J Biol Chem 2022; 298:102246. [PMID: 35835217 PMCID: PMC9399488 DOI: 10.1016/j.jbc.2022.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Proximal tubular epithelial cells respond to transforming growth factor β (TGFβ) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFβ-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCβII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFβ-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCβII and siRNAs against PKCβII significantly inhibited TGFβ-induced collagen I (α2) expression. In fact, constitutively active PKCβII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCβII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCβII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFβ was associated with enhanced expression of DJ-1 and activation of mTOR and PKCβII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFβ-induced expression of collagen I (α2) via an mTOR-, PKCβII-, and Hif1α-dependent mechanism to regulate renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, Texas
| | | | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas.
| |
Collapse
|
38
|
D’Elia JA, Bayliss GP, Weinrauch LA. The Diabetic Cardiorenal Nexus. Int J Mol Sci 2022; 23:ijms23137351. [PMID: 35806355 PMCID: PMC9266839 DOI: 10.3390/ijms23137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The end-stage of the clinical combination of heart failure and kidney disease has become known as cardiorenal syndrome. Adverse consequences related to diabetes, hyperlipidemia, obesity, hypertension and renal impairment on cardiovascular function, morbidity and mortality are well known. Guidelines for the treatment of these risk factors have led to the improved prognosis of patients with coronary artery disease and reduced ejection fraction. Heart failure hospital admissions and readmission often occur, however, in the presence of metabolic, renal dysfunction and relatively preserved systolic function. In this domain, few advances have been described. Diabetes, kidney and cardiac dysfunction act synergistically to magnify healthcare costs. Current therapy relies on improving hemodynamic factors destructive to both the heart and kidney. We consider that additional hemodynamic solutions may be limited without the use of animal models focusing on the cardiomyocyte, nephron and extracellular matrices. We review herein potential common pathophysiologic targets for treatment to prevent and ameliorate this syndrome.
Collapse
Affiliation(s)
- John A. D’Elia
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
| | - George P. Bayliss
- Division of Organ Transplantation, Rhode Island Hospital, Providence, RI 02903, USA;
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
- Correspondence: ; Tel.: +617-923-0800; Fax: +617-926-5665
| |
Collapse
|
39
|
Fan K, Zan X, Zhi Y, Yang Y, Hu K, Zhang X, Zhang X, Zhao S, Chen K, Gong X, Tian R, Zhang L. Immune response gene 1 deficiency impairs Nrf2 activation and aggravates liver fibrosis in mice. Biochem Biophys Res Commun 2022; 607:103-109. [PMID: 35367821 DOI: 10.1016/j.bbrc.2022.03.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
A growing body of evidence suggests that metabolic events play essential roles in the development of liver fibrosis. Immune response gene 1 (IRG1) catalyzes the generation of itaconate, which function as a metabolic checkpoint under several pathological circumstances. In the present study, the hepatic level of IRG1 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. And then the pathological significance of IRG1 and the pharmacological potential of 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, in liver fibrosis were investigated in mice. The results indicated that the hepatic level of IRG1 was upregulated in mice with liver fibrosis. CCl4-induced formation of fibrotic septa and deposition of collagen was aggravated in IRG1 KO mice. IRG1 deletion also resulted in increased expression of transforming growth factor beta 1 (TGF-β1), enhanced phosphorylation of Smad3, elevated level of alpha smooth muscle actin (α-SMA) and hydroxyproline, which were associated with compromised activation of nuclear erythroid 2-related factor 2 (Nrf2)-mediated antioxidant system and exacerbated oxidative stress. Interestingly, supplementation with 4-OI activated Nrf2 pathway, suppressed TGF-β1 signaling and attenuated fibrogenesis. Our data indicated that upregulation of IRG1 might function as a protective response during the development of liver fibrosis, and 4-OI might have potential value for the pharmacological intervention of liver fibrosis.
Collapse
Affiliation(s)
- Kerui Fan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xinyan Zan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Ying Zhi
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xinyue Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xue Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kun Chen
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Rui Tian
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
40
|
Yin X, Bu W, Fang F, Ren K, Zhou B. Keloid Biomarkers and Their Correlation With Immune Infiltration. Front Genet 2022; 13:784073. [PMID: 35719372 PMCID: PMC9201286 DOI: 10.3389/fgene.2022.784073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/18/2022] [Indexed: 12/05/2022] Open
Abstract
Objective: This work aimed to verify the candidate biomarkers for keloid disorder (KD), and analyze the role of immune cell infiltration (ICI) in the pathology of keloid disorder. Methods: The keloid-related datasets (GSE44270 and GSE145725) were retrieved from the Gene Expression Omnibus (GEO). Then, differential expressed genes (DEGs) were identified by using the “limma” R package. Support vector machine-recursive feature elimination (SVM-RFE) and LASSO logistic regression were utilized for screening candidate biomarkers of KD. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic power of candidate biomarkers. The candidate biomarkers were further verified through qRT-PCR of keloid lesions and the matched healthy skin tissue collected from eight cases. In addition, ICI in keloid lesions was estimated through single-sample gene-set enrichment analysis (ssGSEA). Finally, the potential drugs to the treatment of KD were predicted in the Connectivity Map Database (CMAP). Results: A total of 406 DEGs were identified between keloid lesion and healthy skin samples. Among them, STC2 (AUC = 0.919), SDC4 (AUC = 0.970), DAAM1 (AUC = 0.966), and NOX4 (AUC = 0.949) were identified as potential biomarkers through the SVM-RFE, LASSO analysis and ROC analysis. The differential expressions of SDC4, DAAM1, and NOX4 were further verified in collected eight samples by qRT-PCR experiment. ICI analysis result showed a positive correlation of DAAM1 expression with monocytes and mast cells, SDC4 with effector memory CD4+ T cells, STC2 with T follicular helper cells, and NOX4 with central memory CD8+ T cells. Finally, a total of 13 candidate small molecule drugs were predicted for keloids treatment in CMAP drug database. Conclusion: We identified four genes that may serve as potential biomarkers for KD development and revealed that ICI might play a critical role in the pathogenesis of KD.
Collapse
Affiliation(s)
- Xufeng Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbo Bu
- Department of Dermatologic Surgery, Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing, China
| | - Fang Fang
- Department of Dermatologic Surgery, Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing, China
| | - Kehui Ren
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Bingrong Zhou,
| |
Collapse
|
41
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
42
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
43
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
44
|
Coelho de Faria C, Hecht Castro Medeiros F, Cazarin Menezes J, Ortenzi de Andrade Silva VH, Freitas Ferreira AC, Pires de Carvalho D, Soares Fortunato R. TGF-β1 Disrupts redox balance in PCCL3 thyroid cell and is sexually dimorphic expressed in rat thyroid gland. Mol Cell Endocrinol 2022; 546:111593. [PMID: 35139422 DOI: 10.1016/j.mce.2022.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
Thyroid diseases are more prevalent in women, and this difference seems to be associated with the oxidative stress found in the thyroid of females. Thyroid NADPH Oxidase 4 (NOX4) was shown to respond to estrogen, which can also modulate TGF-β1, a potent stimulator of NOX4. This study aimed to investigate the effects of TGF-β1 on redox homeostasis parameters in the rat thyroid cell PCCL3 and the interrelationship between estrogen and TGF-β1. TGF-β1 treatment increased both intra- and extracellular ROS generation along with NOX4 expression and reduced GPX and catalase activities, extracellular H2O2 scavenging capacity, and reduced thiol content. TGF-β1 mRNA and protein expression are higher in female thyroid glands of rats in comparison to males. Moreover, 17β-estradiol treatment enhanced TGF-β1 mRNA in PCCL3 cells, decreased extracellular bioavailability but did not activate Smad pathway. Our data suggest that higher levels of TGF-β1 in females are potentially related to higher ROS availability which may be associated with the sex disparity in thyroid disorders.
Collapse
Affiliation(s)
- Caroline Coelho de Faria
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G2-042, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Fabio Hecht Castro Medeiros
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Juliana Cazarin Menezes
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Victor Hugo Ortenzi de Andrade Silva
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G2-042, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil; NUMPEX, Pólo de Xerém, Universidade Federal do Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G1-060, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, sala G2-042, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Zha Y, Li Y, Ge Z, Wang J, Jiao Y, Zhang J, Zhang S. ADAMTS8 Promotes Cardiac Fibrosis Partly Through Activating EGFR Dependent Pathway. Front Cardiovasc Med 2022; 9:797137. [PMID: 35224040 PMCID: PMC8866452 DOI: 10.3389/fcvm.2022.797137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction or pressure overload leads to cardiac fibrosis, the leading cause of heart failure. ADAMTS8 (A disintegrin and metalloproteinase with thrombospondin motifs 8) has been reported to be involved in many fibrosis-related diseases. However, the specific role of ADAMTS8 in cardiac fibrosis caused by myocardial infarction or pressure overload is yet unclear. The present study aimed to explore the function of ADAMTS8 in cardiac fibrosis and its underlying mechanism. ADAMTS8 expression was significantly increased in patients with dilated cardiomyopathy; its expression myocardial infarction and TAC rat models was also increased, accompanied by increased expression of α-SMA and Collagen1. Adenovirus-mediated overexpression of ADAMTS8 through cardiac in situ injection aggravated cardiac fibrosis and impaired cardiac function in the myocardial infarction rat model. Furthermore, in vitro studies revealed that ADAMTS8 promoted the activation of cardiac fibroblasts; ADAMTS8 acted as a paracrine mediator allowing for cardiomyocytes and fibroblasts to communicate indirectly. Our findings showed that ADAMTS8 could damage the mitochondrial function of cardiac fibroblasts and then activate the PI3K-Akt pathway and MAPK pathways, promoting up-regulation of YAP expression, with EGFR upstream of this pathway. This study systematically revealed the pro-fibrosis effect of ADAMTS8 in cardiac fibrosis and explored its potential role as a therapeutic target for the treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yafang Zha
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuheng Jiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayan Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Song Zhang
| |
Collapse
|
46
|
Jiang T, Bao Y, Su H, Zheng R, Cao L. Mechanisms of Chinese Herbal Medicines for Diabetic Nephropathy Fibrosis Treatment. INTEGRATIVE MEDICINE IN NEPHROLOGY AND ANDROLOGY 2022; 9. [PMCID: PMC9549772 DOI: 10.4103/2773-0387.353727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus that is one of the main causes of end-stage renal disease, causing considerable health problems as well as significant financial burden worldwide. The pathological features of DN include loss of normal nephrons, massive fibroblast and myofibroblast hyperplasia, accumulation of extracellular matrix proteins, thickening of the basement membrane, and tubulointerstitial fibrosis. Renal fibrosis is a final and critical pathological change in DN. Although progress has been made in understanding the pathogenesis of DN fibrosis, current conventional treatment strategies may not be completely effective in preventing the disease’s progression. Traditionally, Chinese herbal medicines (CHMs) composed of natural ingredients have been used for symptomatic relief of DN. Increasing numbers of studies have confirmed that CHMs can exert a renoprotective effect in DN, and antifibrosis has been identified as a key mechanism. In this review, we summarize the antifibrotic efficacy of CHM preparations, single herbal medicines, and their bioactive compounds based on their effects on diminishing the inflammatory response and oxidative stress, regulating transforming growth factor, preventing epithelial-mesenchymal transition, and modulating microRNAs. We intend to provide patients of DN with therapeutic interventions that are complementary to existing options.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Yuhang Bao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Hong Su
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Rendong Zheng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| | - Lin Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| |
Collapse
|
47
|
Chen CM, Lin CY, Chung YP, Liu CH, Huang KT, Guan SS, Wu CT, Liu SH. Protective Effects of Nootkatone on Renal Inflammation, Apoptosis, and Fibrosis in a Unilateral Ureteral Obstructive Mouse Model. Nutrients 2021; 13:nu13113921. [PMID: 34836176 PMCID: PMC8621682 DOI: 10.3390/nu13113921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Nootkatone is one of the major active ingredients of Alpiniae oxyphyllae, which has been used as both food and medicinal plants for the treatment of diarrhea, ulceration, and enuresis. In this study, we aimed to investigate whether nootkatone treatment ameliorated the progression of chronic kidney diseases (CKD) and clarified its underlying mechanisms in an obstructive nephropathy (unilateral ureteral obstructive; UUO) mouse model. Our results revealed that nootkatone treatment preventively decreased the pathological changes and significantly mitigated the collagen deposition as well as the protein expression of fibrotic markers. Nootkatone could also alleviate oxidative stress-induced injury, inflammatory cell infiltration, and renal cell apoptotic death in the kidneys of UUO mice. These results demonstrated for the first time that nootkatone protected against the progression of CKD in a UUO mouse model. It may serve as a potential therapeutic candidate for CKD intervention.
Collapse
Affiliation(s)
- Chang-Mu Chen
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan;
| | - Chen-Yu Lin
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (C.-Y.L.); (Y.-P.C.)
| | - Yao-Pang Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (C.-Y.L.); (Y.-P.C.)
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11041, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11041, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kuo-Tong Huang
- Department of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan;
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
- Master Program of Food and Drug Safety, China Medical University, Taichung 406040, Taiwan
- Correspondence: (C.-T.W.); (S.-H.L.); Tel.: +886-4-22053366 (ext. 7525) (C.-T.W.); +886-2-23123456 (ext. 88605) (S.-H.L.)
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (C.-Y.L.); (Y.-P.C.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Paediatrics, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence: (C.-T.W.); (S.-H.L.); Tel.: +886-4-22053366 (ext. 7525) (C.-T.W.); +886-2-23123456 (ext. 88605) (S.-H.L.)
| |
Collapse
|
48
|
Nuwormegbe S, Park NY, Kim SW. Lobeglitazone attenuates fibrosis in corneal fibroblasts by interrupting TGF-beta-mediated Smad signaling. Graefes Arch Clin Exp Ophthalmol 2021; 260:149-162. [PMID: 34468828 DOI: 10.1007/s00417-021-05370-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Transforming growth factor beta 1 (TGF-β1) is an important cytokine released after ocular surface injury to promote wound healing. However, its persistence at the injury site triggers a fibrotic response that leads to corneal scarring and opacity. Thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands used to regulate glucose and lipid metabolism in the management of type 2 diabetes. Studies have also showed TZDs have antifibrotic effect. In this study, we investigated the antifibrotic effect of the TZD lobeglitazone on TGF-β1-induced fibrosis in corneal fibroblasts. METHODS Human primary corneal fibroblasts were cultivated and treated with TGF-β1 (5 ng/mL) to induce fibrosis, with or without pre-treatments with different concentrations of lobeglitazone. Myofibroblast differentiation and extracellular matrix (ECM) protein expression was evaluated by western blotting, immunofluorescence, real-time PCR, and collagen gel contraction assay. The effect of lobeglitazone on TGF-β1-induced reactive oxygen species (ROS) generation was evaluated by DCFDA-cellular ROS detection assay kit. Signaling proteins were evaluated by western blotting to determine the mechanism underlying the antifibrotic effect. RESULTS Our results showed lobeglitazone attenuated TGF-β1-induced ECM synthesis and myofibroblast differentiation of corneal fibroblasts. This antifibrotic effect appeared to be independent of PPAR signaling and rather due to the inhibition of the TGF-β1-induced Smad signaling. Lobeglitazone also blocked TGF-β1-induced ROS generation and nicotinamide adenine dinucleotide phosphate oxidase (Nox) 4 transcription. CONCLUSION These findings indicate that lobeglitazone may be a promising therapeutic agent for corneal scarring. KEY MESSAGES.
Collapse
Affiliation(s)
- Selikem Nuwormegbe
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Na-Young Park
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Sun Woong Kim
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
49
|
Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021; 87:110123. [PMID: 34438016 DOI: 10.1016/j.cellsig.2021.110123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
The fibrotic process could be easily defined as a pathological excess of extracellular matrix deposition, leading to disruption of tissue architecture and eventually loss of function; however, this process involves a complex network of several signal transduction pathways. Virtually almost all organs could be affected by fibrosis, the most affected are the liver, lung, skin, kidney, heart, and eyes; in all of them, the transforming growth factor-beta (TGF-β) has a central role. The canonical and non-canonical signal pathways of TGF-β impact the fibrotic process at the cellular and molecular levels, inducing the epithelial-mesenchymal transition (EMT) and the induction of profibrotic gene expression with the consequent increase in proteins such as alpha-smooth actin (α-SMA), fibronectin, collagen, and other extracellular matrix proteins. Recently, it has been reported that some molecules that have not been typically associated with the fibrotic process, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), mammalian target of rapamycin (mTOR), histone deacetylases (HDAC), and sphingosine-1 phosphate (S1P); are critical in its development. In this review, we describe and discuss the role of these new players of fibrosis and the convergence with TGF-β signaling pathways, unveiling new insights into the panorama of fibrosis that could be useful for future therapeutic targets.
Collapse
Affiliation(s)
| | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269 Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
50
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|