1
|
Cao T, Wang XL, Rao JY, Zhu HF, Qi HY, Tian Z. Periplaneta americana L. extract exerts neuroprotective effects by inhibiting endoplasmic reticulum stress via AKT-dependent pathway in experimental models of Parkinson's disease. Chin Med 2024; 19:157. [PMID: 39538357 PMCID: PMC11562093 DOI: 10.1186/s13020-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder that currently has no curable strategies. More and more evidence suggests that endoplasmic reticulum (ER) stress plays an essential role in PD pathogenesis. Periplaneta americana L. (P. americana) is a traditional Chinese medicine with diverse therapeutic properties. This study aims to investigate the neuroprotective effect and underlying mechanism of P. americana in in vitro and in vivo PD models. METHODS The exposure of SH-SY5Y cells to 1-methyl-4-phenyl-pyridinium (MPP+) was used as the in vitro PD model. MTT assay, Hoechst staining, Calcein AM-PI staining and flow cytometry were performed to measure the cell viability and apoptosis. DCFH-DA and JC-1 assay were used to measure the intracellular ROS and mitochondrial membrane potential (Δψm), respectively. Western-blot and immunostaining were conducted to detect the expression of key molecules related with ER stress. For the in vivo PD model induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydro-pyridine (MPTP), the motor function of mice was assessed by behavioral tests, the level of TH was examined by western-blot and immunostaining, the expression of key molecules related with ER stress was measured by western-blot. RESULTS Periplaneta americana ethanol extract (PAE) concentration-dependently inhibited MPP+-induced cell loss and increased cell viability. PAE also remarkably attenuated ROS accumulation, the decline of Δψm as well as the excessive ER stress. The neuroprotective effects of PAE could be blocked by ROS inducer trimethylamine N-Oxide or ER stress activator tunicaymycin, while the antioxidant N-Acetyl-L-cysteine or ER stress inhibitor sodium 4-phenylbutyrate mimicked the effects of PAE. Furthermore, we found that PAE could activate AKT/GSK3β/β-catenin pathway. The effect of PAE on ROS production, Δψm and ER stress was blocked by AKT inhibitor MK-2206. In in vivo model, PAE significantly improved motor function, prevented dopaminergic neuronal loss and attenuated ER stress in substantia nigra and striatum of MPTP-treated mice. Similarly, the effects of PAE on MPTP-treated mice were also abolished by MK-2206. CONCLUSIONS Our results suggest that P. americana exerts neuroprotective effects through inhibiting ER stress via AKT-dependent pathway. Periplaneta americana may represent a promising therapeutic agent for PD treatment and is worthy of further being exploited.
Collapse
Affiliation(s)
- Ting Cao
- College of Pharmaceutical Sciences, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Xue-Lian Wang
- College of Pharmaceutical Sciences, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Jiang-Yan Rao
- College of Pharmaceutical Sciences, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Hui-Feng Zhu
- College of Pharmaceutical Sciences, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
2
|
Ming WH, Wen L, Hu WJ, Qiao RF, Zhou Y, Su BW, Bao YN, Gao P, Luan ZL. The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease. Kidney Res Clin Pract 2024; 43:724-738. [PMID: 39558651 PMCID: PMC11615452 DOI: 10.23876/j.krcp.23.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 11/20/2024] Open
Abstract
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
Collapse
Affiliation(s)
- Wen-Hua Ming
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Lin Wen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Wen-Juan Hu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Rong-Fang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Beijing Institute of Medical Device Testing, Beijing, China
| | - Bo-Wei Su
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ya-Nan Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ping Gao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Fang YX, Lu EQ, Cheng YJ, Xu E, Zhu M, Chen X. Glutamine Promotes Porcine Intestinal Epithelial Cell Proliferation through the Wnt/β-Catenin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7155-7166. [PMID: 38526961 DOI: 10.1021/acs.jafc.3c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Glutamine (Gln) is a critical nutrient required by neonatal mammals for intestinal growth, especially for newborn piglets. However, the mechanisms underlying the role of Gln in porcine intestinal epithelium development are not fully understood. The objective of the current study was to explore the possible signaling pathway involved in the promotion of porcine intestinal epithelial cell (IPEC-J2) proliferation by Gln. The results showed that 1 mM Gln promoted IPEC-J2 cell proliferation, and tandem mass tag proteomics revealed 973 differentially expressed proteins in Gln-treated IPEC-J2 cells, 824 of which were upregulated and 149 of which were downregulated. Moreover, gene set enrichment analysis indicated that the Wnt signaling pathway is activated by Gln treatment. Western blotting analysis further confirmed that Gln activated the Wnt/β-catenin signaling pathway. In addition, Gln increased not only cytosolic β-catenin but also nuclear β-catenin protein expression. LF3 (a β-catenin/TCF4 interaction inhibitor) assay and β-catenin knockdown demonstrated that Gln-mediated promotion of Wnt/β-catenin signaling and cell proliferation were blocked. Furthermore, the inhibition of TCF4 expression suppressed Gln-induced cell proliferation. These findings further confirmed that Wnt/β-catenin signaling is involved in the promotion of IPEC-J2 cell proliferation by Gln. Collectively, these findings demonstrated that Gln positively regulated IPEC-J2 cell proliferation through the Wnt/β-catenin pathway. These data greatly enhance the current understanding of the mechanism by which Gln regulates intestinal development.
Collapse
Affiliation(s)
- Yong-Xia Fang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
4
|
Long H, Zhang H, Ran L, Xiang L, Xie P, Zou L, Yi L, Tang X, Chen L, Li Q, Zhao H. Bioinformatics analysis and experimental validation reveal the anti-ferroptosis effect of FZD7 in acute kidney injury. Biochem Biophys Res Commun 2024; 692:149359. [PMID: 38071893 DOI: 10.1016/j.bbrc.2023.149359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ferroptosis plays an important role in acute kidney injury (AKI), but the specific regulatory mechanism of ferroptosis in AKI remains unclear. This study is expected to analyze ferroptosis-related genes (FRGs) in AKI and explore their underlying mechanisms. RESULTS A total of 479 differentially expressed genes (DEGs), including 196 up-regulated genes and 283 down-regulated genes were identified in the AKI chip GSE30718. 341 FRGs were obtained from the Genecard, OMIM and NCBI database. Totally 11 ferroptosis-related DEGs in AKI were found, in which 7 genes (CD44, TIGAR, RB1, LCN2, JUN, ARNTL, ACSL4) were up-regulated and 4 genes (FZD7, EP300, FOXC1, DLST) were down-regulated. Three core genes (FZD7, JUN, EP300) were obtained by PPI and KEGG analysis, among which the function of FZD7 in AKI is unclear. The WGCNA analysis found that FZD7 belongs to a module that was negatively correlated with AKI. Further basic experiments confirmed that FZD7 is down-regulated in mouse model of ischemia-reperfusion-AKI and cellular model of hypoxia-reoxygenation(H/R). In addition, knockdown of FZD7 could further aggravate the down-regulation of cell viability induced by H/R and Erastin, while overexpression of FZD7 can rescue its down-regulation to some extent. Furthermore, we verified that knockdown of FZD7 decreased the expression of GPX4 and overexpression of FZD7 increased the expression of GPX4, suggesting that FZD7 may inhibit ferroptosis by regulating the expression of GPX4 and plays a vital role in the onset and development of AKI. CONCLUSIONS This article revealed the anti-ferroptosis effect of FZD7 in acute kidney injury through bioinformatics analysis and experimental validation, suggesting that FZD7 is a promising target for AKI and provided more evidence about the vital role of ferroptosis in AKI.
Collapse
Affiliation(s)
- Huanping Long
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Huhai Zhang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lingyu Ran
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lunli Xiang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Pan Xie
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liying Zou
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Li Yi
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Xiaopeng Tang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liping Chen
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Qixuan Li
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Hongwen Zhao
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
5
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Sun Z, Ning Y, Wu H, Guo S, Jiao X, Ji J, Ding X, Yu X. 14-3-3ζ targets β-catenin nuclear translocation to maintain mitochondrial homeostasis and promote the balance between proliferation and apoptosis in cisplatin-induced acute kidney injury. Cell Signal 2023; 111:110878. [PMID: 37657586 DOI: 10.1016/j.cellsig.2023.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Cisplatin is a chemotherapeutic agent that is used extensively to treat solid tumors; however, its clinical application is limited by side effects, especially nephrotoxicity. Cisplatin-induced acute kidney injury (AKI) is characterized by DNA damage, cell-cycle arrest, and mitochondrial oxidative stress. Recent research demonstrated that 14-3-3ζ plays an important role in cancers, nerve disease, and kidney disease, although the regulatory mechanisms underlying cisplatin-induced AKI have yet to be fully elucidated. In the present study, we found that 14-3-3ζ mRNA was upregulated in human kidney organoids (GSE145085) when treated with cisplatin; subsequently, this was confirmed in experimental mice. The application of a protein interaction inhibitor for 14-3-3 (BV02) resulted in a decline in renal function, along with apoptosis, mitochondrial dysfunction, and oxidative stress in cisplatin-induced AKI. Accordingly, the knockdown of 14-3-3ζ in cisplatin-treated NRK-52E cells led to increased apoptosis, cell-cycle arrest, the production of reactive oxygen species (ROS), and lipid dysbolism. Furthermore, the blockade of 14-3-3ζ, both in vivo and in vitro, suppressed β-catenin and its nuclear translocation, thus downregulating expression of the downstream gene cyclin D1 in cisplatin-induced damage. In contrast, the overexpression of 14-3-3ζ alleviated the injury caused by cisplatin both in vivo and in vitro. Furthermore, a non-specific agonist of β-catenin, BIO, reversed the effects of 14-3-3ζ knockdown in terms of cisplatin-induced damage in NRK-52E cells by activating β-catenin. Next, we verified the direct interaction between 14 - 3-3ζ and β-catenin by CO-IP and immunofluorescence. Collectively, these findings indicate that 14-3-3ζ protects against cisplatin-induced AKI by improving mitochondrial function and the balance between proliferation and apoptosis by facilitating the nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Huan Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Shulan Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Ji Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
7
|
Zaky HS, Abdel-Sattar SA, Allam A, Ahmed HI. Further insights into the impact of rebamipide on gentamicin-induced nephrotoxicity in rats: modulation of SIRT1 and β-catenin/cyclin D1 pathways. Drug Chem Toxicol 2023; 46:851-863. [PMID: 35899710 DOI: 10.1080/01480545.2022.2104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
Abstract
Gentamicin (GM) is an effective antibiotic administered to treat acute Gram-negative infections. Nevertheless, its clinical application is limited due to nephrotoxicity. Therefore, our research aimed to investigate the potential renoprotective impact of rebamipide (RBM), a gastroprotective drug, on GM-induced kidney damage in rats, as well as putative nephroprotective pathways. RBM was orally administered (100 mg/kg/d for 14 d) commencing 7 d before the administration of GM (100 mg/kg/d, intraperitoneally). Nephrotoxicity was elucidated, and the silent information regulator 1 (SIRT1) and β-catenin/cyclin D1 pathways were assessed. GM induced a significant elevation in the serum levels of creatinine, blood urea nitrogen (BUN), and kidney injury molecule-1 (KIM-1), as well as the relative kidney index. In addition, GM increased lipid peroxidation and lowered total antioxidant capacity (TAC) level and superoxide dismutase (SOD) activity. GM administration also demonstrated a significant amplification in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor-κappa B p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), and caspase-3 kidney levels, as well as B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio. Notably, RBM treatment amended all these changes induced by GM. Furthermore, the potential role of SIRT1 and β-catenin-dependent signaling pathways in GM-induced renal injury was assessed. Our findings showed that GM-treated rats demonstrated a substantial decrease in SIRT1, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) along with an increase in β-catenin, forkhead box O-3a (FOXO-3a), and cyclin D1 protein expressions. RMB treatment markedly attenuated the deterioration caused by GM on these pathways. Additionally, RBM alleviated the GM-induced deleterious kidney tissue histopathology. In conclusion, our findings have verified that RBM can halt GM-induced renal injury by partly modulating SIRT1 and β-catenin pathways.
Collapse
Affiliation(s)
- Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Albatoul Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Wang Z, Li XN, Yang SN, Wang Y, Gao KJ, Han B, Ma AJ. Exosomal miR-320e through wnt2targeted inhibition of the Wnt/β-catenin pathway allevisate cerebral small vessel disease and cognitive impairment. World J Psychiatry 2023; 13:630-644. [PMID: 37771642 PMCID: PMC10523201 DOI: 10.5498/wjp.v13.i9.630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Exosomal miRNAs play crucial roles in many central nervous system diseases. Cerebral small vessel disease (CVSD) is a small vessel disease that is affected by various factors. This study aimed to investigate the role of exosomal miR-320e in the Wnt/β-catenin pathway stimulated by oxidative stress and assess its clinical correlation with psychiatric symptoms in patients with CVSD. AIM To explore whether exosomal miR-320e could suppress the Wnt/β-catenin pathway and play a protective role in CVSD progression, as well as examine its potential correlation with cognitive impairment and depression in patients with CVSD. METHODS Differentially expressed exosomal miRNAs were filtered by sequencing plasma exosomes from patients with CVSD and healthy controls. Bioinformatics and dual luciferase analyses were used to confirm the binding of miR-320e to Wnt2, and the mRNA and protein levels of downstream components in the Wnt/β-catenin pathway were evaluated when overexpressed or with knockdown of miR-320e under H2O2-induced oxidative stress. In addition, Wnt2-targeting siRNA was used to confirm the role of miR-320e in the Wnt2-mediated inhibition of the Wnt/β-catenin pathway. A retrospective analysis was conducted among patients with CVSD to confirm the correlation between miR-320e expression and the severity of cognitive impairment and depression, which were quantified using the Montreal Cognitive Assessment (MoCA)/Executive Function Assessment (EFA), and the Hamilton Depression Scale (HAMD)/Beck Depression Inventory (BDI), respectively. RESULTS High-throughput sequencing revealed that exosomal miR-320e was downregulated in patients with CVSD. Bioinformatics analysis and dual-luciferase reporter gene experiments showed that exosomal miR-320e inhibited the Wnt/β-catenin pathway in response to oxidative stress by targeting the 3' noncoding region of Wnt2. Uptake of exosomes carrying miR-320e into endothelial cells could also target Wnt2 and inhibit the Wnt2/β-catenin pathway. Elevated miR-320e expression may protect patients with CVSD from relatively severe cognitive impairment and depression, as it was found to have a positive correlation with the MoCA/EFA and HAMD/BDI scores. CONCLUSION Our results suggest that exosomal miR-320e suppresses the Wnt/β-catenin pathway and may play a protective role in CVSD progression.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Internal Medicine-Neurology, Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Xue-Ning Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Shao-Nan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Yuan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Ke-Jin Gao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Bin Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| | - Ai-Jun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
| |
Collapse
|
9
|
Wang J, Zhou P, Zhu L, Guan H, Gou J, Liu X. Maternal protein deficiency alters primary cilia length in renal tubular and impairs kidney development in fetal rat. Front Nutr 2023; 10:1156029. [PMID: 37485393 PMCID: PMC10358357 DOI: 10.3389/fnut.2023.1156029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Intrauterine malnutrition impairs embryo kidney development and leads to kidney disease and hypertension in adulthood, yet the underlying mechanism remains unclear. Methods With a maternal protein restriction (MPR) rat model, we investigated the critical ciliogenesis factors and β-catenin pathway in FGR fetal kidneys and analyzed the impact of aberrant primary cilia on renal tubular epithelium. Results The data showed decreased nephron number and renal tubular dysgenesis in FGR fetus. FGR fetus showed deregulated expression of ciliogenesis factors including upregulation of IFT88 and downregulation of DYNLT1, accompanied with cilia elongation in renal tubular epithelial cells. Wnt7b, the key ligand for Wnt/β-catenin signaling, was downregulated and nuclear translocation of β-catenin was decreased. The proapoptotic protein was upregulated. In vitro study with HK-2 cells showed that overexpression of IFT88 lengthened the cilia, inhibited β-catenin signaling. Besides, IFT88 overexpression suppressed cell proliferation, activated autophagy, and induced cell apoptosis. Inhibition of autophagy partly restored the cilia length and cell viability. Likewise, knockdown of DYNLT1 led to cilia elongation, suppressed cell proliferation, and promoted apoptosis in HK-2 cell. However, the cilia elongation induced by DYNLT1 knockdown was not autophagy-dependent, but associated with reactive oxygen species (ROS) accumulation. Discussion We elucidated that intrauterine protein malnutrition led to deregulation of ciliogenesis factors and cilia elongation in renal tubular epithelial, inhibited β-catenin signaling, and induced cell apoptosis and ultimately, compromised kidney development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pei Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangliang Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Gou
- Department of Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Wang B, Zhou Y, Wang Q, Xu S, Wang F, Yue M, Zeng Z, Li W. Lactiplantibacillus plantarum Lac16 Attenuates Enterohemorrhagic Escherichia coli O157:H7 Infection by Inhibiting Virulence Traits and Improving Intestinal Epithelial Barrier Function. Cells 2023; 12:1438. [PMID: 37408272 DOI: 10.3390/cells12101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Large-scale use of antimicrobials in agriculture and medicine contributes to antibiotic residues in raw foods, the spread of antimicrobial resistance (AMR) and drug pollution, which seriously threatens human health and imposes significant economic burdens on society, suggesting the need for novel therapeutic options that prevent or control zoonoses. In this study, four probiotics were selected to assess their capability to alleviate pathogen-induced damage. Results showed that a simulated gastrointestinal juice and bile tolerated L. plantarum Lac16 with high lactic acid secretion can significantly inhibit the growth of multiple zoonotic pathogens. Lac16 also significantly inhibited the biofilm formation and mRNA expression of virulence traits (genes related to virulence, toxins, flagella biogenesis and motility, antibiotic resistance, biofilm formation and AI-2 quorum sensing) of enterohemorrhagic E. coli O157:H7 (EHEC). Furthermore, Lac16 and Lac26 significantly protected C. elegans against zoonotic pathogen-induced (EHEC, S. typhimurium, C. perfringens) deaths. Moreover, Lac16 significantly promoted epithelial repair and ameliorated lipopolysaccharide (LPS)-induced intestinal epithelial apoptosis and barrier dysfunction by activating the Wnt/β-catenin signaling pathway, and markedly reduced LPS-induced inflammatory responses by inhibiting the TLR4/MyD88 signaling pathway. The present results indicate that Lac16 attenuates enterohemorrhagic E. coli infection-induced damage by inhibiting key virulence traits of E. coli, promoting epithelial repair and improving intestinal epithelial barrier function, which may be mediated by the activated Wnt/β-catenin signaling pathway and the inhibited TLR4/MyD88 signaling pathway of the intestinal epithelium.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310012, China
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| | - Zhonghua Zeng
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| |
Collapse
|
11
|
Palamarchuk AI, Kovalenko EI, Streltsova MA. Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 2023; 11:biomedicines11041091. [PMID: 37189709 DOI: 10.3390/biomedicines11041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
12
|
Sunil VR, Vayas KN, Radbel J, Abramova E, Gow A, Laskin JD, Laskin DL. Impaired energy metabolism and altered functional activity of alveolar type II epithelial cells following exposure of rats to nitrogen mustard. Toxicol Appl Pharmacol 2022; 456:116257. [PMID: 36174670 DOI: 10.1016/j.taap.2022.116257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Alveolar Type II cells are primarily responsible for surfactant production; they also play a key role in lung repair following injury. Herein, we assessed the effects of NM on Type II cell activity. Male Wistar rats were administered NM (0.125 mg/kg) or PBS control intratracheally. Type II cells, lung tissue and BAL were collected 3 d later. NM exposure resulted in double strand DNA breaks in Type II cells, as assessed by expression of γH2AX; this was associated with decreased expression of the DNA repair protein, PARP1. Expression of HO-1 was upregulated and nitrotyrosine residues were noted in Type II cells after NM exposure indicating oxidative stress. NM also caused alterations in Type II cell energy metabolism; thus, both glycolysis and oxidative phosphorylation were reduced; there was also a shift from a reliance on oxidative phosphorylation to glycolysis for ATP production. This was associated with increased expression of pro-apoptotic proteins activated caspase-3 and -9, and decreases in survival proteins, β-catenin, Nur77, HMGB1 and SOCS2. Intracellular signaling molecules important in Type II cell activity including PI3K, Akt2, phospho-p38 MAPK and phospho-ERK were reduced after NM exposure. This was correlated with dysregulation of surfactant protein production and impaired pulmonary functioning. These data demonstrate that Type II cells are targets of NM-induced DNA damage and oxidative stress. Impaired functioning of these cells may contribute to pulmonary toxicity caused by mustards.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jared Radbel
- Division of Pulmonary and Critical Care, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Roy S, Sinha N, Huang B, Cline-Fedewa H, Gleicher N, Wang J, Sen A. Jumonji Domain-containing Protein-3 (JMJD3/Kdm6b) Is Critical for Normal Ovarian Function and Female Fertility. Endocrinology 2022; 163:6565906. [PMID: 35396990 PMCID: PMC9070484 DOI: 10.1210/endocr/bqac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
In females, reproductive success is dependent on the expression of a number of genes regulated at different levels, one of which is through epigenetic modulation. How a specific epigenetic modification regulates gene expression and their downstream effect on ovarian function are important for understanding the female reproductive process. The trimethylation of histone3 at lysine27 (H3K27me3) is associated with gene repression. JMJD3 (or KDM6b), a jumonji domain-containing histone demethylase specifically catalyzes the demethylation of H3K27me3, that positively influences gene expression. This study reports that the expression of JMJD3 specifically in the ovarian granulosa cells (GCs) is critical for maintaining normal female fertility. Conditional deletion of Jmjd3 in the GCs results in a decreased number of total healthy follicles, disrupted estrous cycle, and increased follicular atresia culminating in subfertility and premature ovarian failure. At the molecular level, the depletion of Jmjd3 and RNA-seq analysis reveal that JMJD3 is essential for mitochondrial function. JMJD3-mediated reduction of H3K27me3 induces the expression of Lif (Leukemia inhibitory factor) and Ctnnb1 (β-catenin), that in turn regulate the expression of key mitochondrial genes critical for the electron transport chain. Moreover, mitochondrial DNA content is also significantly decreased in Jmjd3 null GCs. Additionally, we have uncovered that the expression of Jmjd3 in GCs decreases with age, both in mice and in humans. Thus, in summary, our studies highlight the critical role of JMJD3 in nuclear-mitochondrial genome coordination that is essential for maintaining normal ovarian function and female fertility and underscore a potential role of JMJD3 in female reproductive aging.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: Aritro Sen, PhD, Reproductive and Developmental Sciences Program, Department of Animal Sciences, 766 Service Rd, Interdisciplinary Science & Technology Building, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Shawki SM, Saad MA, Rahmo RM, Wadie W, El-Abhar HS. Liraglutide Improves Cognitive and Neuronal Function in 3-NP Rat Model of Huntington's Disease. Front Pharmacol 2022; 12:731483. [PMID: 35002691 PMCID: PMC8727874 DOI: 10.3389/fphar.2021.731483] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by progressive motor, psychiatric, and cognitive abnormalities. The antidiabetic drug liraglutide possesses a neuroprotective potential against several neurodegenerative disorders; however, its role in Huntington’s disease (HD) and the possible mechanisms/trajectories remain elusive, which is the aim of this work. Liraglutide (200 μg/kg, s.c) was administered to rats intoxicated with 3-nitropropionic acid (3-NP) for 4 weeks post HD model induction. Liraglutide abated the 3-NP-induced neurobehavioral deficits (open field and elevated plus maze tests) and histopathological changes. Liraglutide downregulated the striatal mRNA expression of HSP 27, PBR, and GFAP, while it upregulated that of DARPP32. On the molecular level, liraglutide enhanced striatal miR-130a gene expression and TrKB protein expression and its ligand BDNF, while it reduced the striatal protein content and mRNA expression of the death receptors sortilin and p75NTR, respectively. It enhanced the neuroprotective molecules cAMP, p-PI3K, p-Akt, and p-CREB, besides modulating the p-GSK-3β/p-β-catenin axis. Liraglutide enhanced the antioxidant transcription factor Nrf2, abrogated TBARS, upregulated both Bcl2 and Bcl-XL, and downregulated Bax along with decreasing caspase-3 activity. Therefore, liraglutide exerts a neurotherapeutic effect on 3-NP-treated rats that is, besides the upturn of behavioral and structural findings, it at least partially, increased miR-130a and modulated PI3K/Akt/CREB/BDNF/TrKB, sortilin, and p75NTR, and Akt/GSK-3β/p-β-catenin trajectories besides its capacity to decrease apoptosis and oxidative stress, as well as its neurotrophic activity.
Collapse
Affiliation(s)
- Samar M Shawki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mohammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
15
|
Geraniol protects against cyclosporine A-induced renal injury in rats: Role of Wnt/β-catenin and PPARγ signaling pathways. Life Sci 2021; 291:120259. [PMID: 34968469 DOI: 10.1016/j.lfs.2021.120259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
AIMS The nephrotoxicity of cyclosporine A (CsA) limits its use as an immunosuppressant. Wnt/β-catenin signaling is involved in the pathogenesis of both acute and chronic kidney disease, and it is inhibited by peroxisome proliferator-activated receptor gamma (PPARγ). We aimed to evaluate if geraniol, which can modulate both PPARγ and Wnt signaling, could protect against CsA-induced nephrotoxicity. MATERIALS AND METHODS Rats (6 groups) received the vehicle or a combination of CsA (30 mg/kg) with the vehicle, geraniol (50, 100, or 200 mg/kg), or the PPARγ agonist pioglitazone for 4 weeks. Blood pressure (BP), markers of renal injury (serum urea, serum creatinine, blood urea nitrogen, and urinary NAG), oxidative stress (glutathione peroxidase), inflammation (ICAM-1, IL-18, and NF-κB), apoptosis (caspase-3), extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], and fibrosis (TGF-β1, Smad3, and Smad7) were assessed. Renal histological analysis, Wnt signaling components (Wnt-4/β-catenin and E-cadherin), and PPARγ expression were evaluated. KEY FINDINGS CsA group had renal injury, as well as increased BP, renal oxidative stress, inflammation, and fibrosis. The latter changes were associated with altered renal architecture, active Wnt signaling (higher Wnt-4 and β-catenin expression and E-cadherin down-regulation), and lower PPARγ levels. Geraniol protected against kidney damage and the associated biochemical and histomorphological changes in a dose-dependent manner. The latter effects were comparable or superior to those of pioglitazone. SIGNIFICANCE The down-regulation of Wnt/β-catenin and the increase in PPARγ by geraniol suggest that both pathways are involved in its renoprotective potential. The study highlights geraniol as a valuable protective asset against chemically induced nephrotoxicity.
Collapse
|
16
|
Hong X, Zhou Y, Wang D, Lyu F, Guan T, Liu Y, Xiao L. Exogenous Wnt1 Prevents Acute Kidney Injury and Its Subsequent Progression to Chronic Kidney Disease. Front Physiol 2021; 12:745816. [PMID: 34819873 PMCID: PMC8606814 DOI: 10.3389/fphys.2021.745816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Studies suggest that Wnt/β-catenin agonists are beneficial in the treatment of acute kidney injury (AKI); however, it remains elusive about its role in the prevention of AKI and its progression to chronic kidney disease (CKD). In this study, renal Wnt/β-catenin signaling was either activated by overexpression of exogenous Wnt1 or inhibited by administration with ICG-001, a small molecule inhibitor of β-catenin signaling, before mice were subjected to ischemia/reperfusion injury (IRI) to induce AKI and subsequent CKD. Our results showed that in vivo expression of exogenous Wnt1 before IR protected mice against AKI, and impeded the progression of AKI to CKD in mice, as evidenced by both blood biochemical and kidney histological analyses. In contrast, pre-treatment of ICG-001 before IR had no effect on renal Wnt/β-catenin signaling or the progression of AKI to CKD. Mechanistically, in vivo expression of exogenous Wnt1 before IR suppressed the expression of proapoptotic proteins in AKI mice, and reduced inflammatory responses in both AKI and CKD mice. Additionally, exogenous Wnt1 inhibited apoptosis of tubular cells induced by hypoxia-reoxygenation (H/R) treatment in vitro. To conclude, the present study provides evidences to support the preventive effect of Wnt/β-catenin activation on IR-related AKI and its subsequent progression to CKD.
Collapse
Affiliation(s)
- Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanni Zhou
- Department of Nephrology, Xiamen Hospital Affiliated to Beijing University of Chinese Medicine, Xiamen, China
| | - Dedong Wang
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Fuping Lyu
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Liangxiang Xiao
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Yüksel O, Pehlivan M, Çöven HİK, Çerçi B, Soyöz M, Tatar E, Ayna TK, Pirim İ. The changes in the expression levels of β-catenin gene in pre- and post- Kidney Transplants. Transpl Immunol 2021; 69:101471. [PMID: 34537346 DOI: 10.1016/j.trim.2021.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Wnt signaling is an important pathway in kidney development and disease. We aimed to establish the levels of β-catenin expression in CD4+ T cells before and after renal transplantation and to associate it with the form of transplant type, rejection, and graft dysfunction. METHODS CD4+ T cells were isolated from patients before and after kidney transplantation and their purity was confirmed by flow cytometer. RNA isolation and cDNA synthesis were carried out from these cells. The expression changes of the β-catenin were investigated by real-time polymerase chain reaction (RT-PCR). Changes in the β-catenin protein levels were determined by the western blot analysis. RESULTS The increasing expression levels of β-catenin were detected in 60.8% of the patients 6 months after transplantation when compared to patients before transplantation result. 12 of these 14 patients had no graft rejection. It was observed that 11 of 14 patients with increased β-catenin expression had not graft dysfunction after the transplantation. CONCLUSION According to our results, the increased levels of β-catenin expression after transplantation may have a protective function for kidney survival. To understand this protective mechanism, further analysis of this signaling pathway is necessary.
Collapse
Affiliation(s)
- Onur Yüksel
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Melek Pehlivan
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Izmir Katip, Celebi University, Izmir, Turkey.
| | | | - Burcu Çerçi
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey; Tissue Typing Laboratory, Tepecik Training and Research Hospital, University of Health Science, Izmir, Turkey
| | - Mustafa Soyöz
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey; Tissue Typing Laboratory, Tepecik Training and Research Hospital, University of Health Science, Izmir, Turkey
| | - Erhan Tatar
- Department of Nephrology, Bozyaka Training and Research Hospital, University of Health Science, Izmir, Turkey
| | - Tülay Kılıçaslan Ayna
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey; Tissue Typing Laboratory, Tepecik Training and Research Hospital, University of Health Science, Izmir, Turkey
| | - İbrahim Pirim
- Department of Medical Biology and Genetics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey; Tissue Typing Laboratory, Tepecik Training and Research Hospital, University of Health Science, Izmir, Turkey
| |
Collapse
|
18
|
Kuang Q, Wu S, Xue N, Wang X, Ding X, Fang Y. Selective Wnt/β-Catenin Pathway Activation Concomitant With Sustained Overexpression of miR-21 is Responsible for Aristolochic Acid-Induced AKI-to-CKD Transition. Front Pharmacol 2021; 12:667282. [PMID: 34122087 PMCID: PMC8193720 DOI: 10.3389/fphar.2021.667282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is increasingly recognized as a cumulative risk factor for chronic kidney disease (CKD) progression. However, the underlying mechanisms remain unclear. Using an aristolochic acid (AA)-induced mouse model of AKI-to-CKD transition, we found that the development of tubulointerstitial fibrosis following AKI was accompanied with a strong activation of miR-21 and canonical Wnt signaling, whereas inhibition of miR-21 or selective silencing of Wnt ligands partially attenuated AKI-to-CKD transition. To explore the interaction between miR-21 and Wnt/β-catenin signaling, we examined the effects of genetic absence or pharmacologic inhibition of miR-21 on Wnt/β-catenin pathway expression. In miR-21-/- mice and in wild-type mice treated with anti-miR21 oligos, Wnt1 and Wnt4 canonical signaling in the renal tissue was significantly reduced, with partial reversal of renal interstitial fibrosis. Although the renal abundance of miR-21 remained unchanged after inhibition or activation of Wnt/β-catenin signaling, early intervention with ICG-001, a β-catenin inhibitor, significantly attenuated renal interstitial fibrosis. Moreover, early (within 24 h), but not late β-catenin inhibition after AA administration attenuated AA-induced apoptosis and inflammation. In conclusion, inhibition of miR-21 or β-catenin signaling may be an effective approach to prevent AKI-to-CKD progression.
Collapse
Affiliation(s)
- Qing Kuang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Suzhou Dushuhu Public Hospital, Suzhou, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqianq Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
19
|
Huffstater T, Merryman WD, Gewin LS. Wnt/β-Catenin in Acute Kidney Injury and Progression to Chronic Kidney Disease. Semin Nephrol 2021; 40:126-137. [PMID: 32303276 DOI: 10.1016/j.semnephrol.2020.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) portends a poor clinical prognosis and increases the risk for the development of chronic kidney disease (CKD). Currently, there are no therapies to treat AKI or prevent its progression to CKD. Wnt/β-catenin is a critical regulator of kidney development that is up-regulated after injury. Most of the literature support a beneficial role for Wnt/β-catenin in AKI, but suggest that this pathway promotes the progression of tubulointerstitial fibrosis, the hallmark of CKD progression. We review the role of Wnt/β-catenin in renal injury with a focus on its potential as a therapeutic target in AKI and in AKI to CKD transition.
Collapse
Affiliation(s)
- Tessa Huffstater
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Leslie S Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.
| |
Collapse
|
20
|
Fan HC, Hsieh YC, Li LH, Chang CC, Janoušková K, Ramani MV, Subbaraju GV, Cheng KT, Chang CC. Dehydroxyhispolon Methyl Ether, A Hispolon Derivative, Inhibits WNT/β-Catenin Signaling to Elicit Human Colorectal Carcinoma Cell Apoptosis. Int J Mol Sci 2020; 21:ijms21228839. [PMID: 33266494 PMCID: PMC7700694 DOI: 10.3390/ijms21228839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer mortality worldwide. Aberrant activation of WNT/β-catenin signaling present in the vast majority of CRC cases is indispensable for CRC initiation and progression, and thus is a promising target for CRC therapeutics. Hispolon is a fungal-derived polyphenol with a pronounced anticancer effect. Several hispolon derivatives, including dehydroxyhispolon methyl ether (DHME), have been chemically synthesized for developing lead molecules with stronger anticancer activity. Herein, a DHME-elicited anti-CRC effect with the underlying mechanism is reported for the first time. Specifically, DHME was found to be more cytotoxic than hispolon against a panel of human CRC cell lines, while exerting limited toxicity to normal human colon cell line CCD 841 CoN. Additionally, the cytotoxic effect of DHME appeared to rely on inducing apoptosis. This notion was evidenced by DHME-elicited upregulation of poly (ADP-ribose) polymerase (PARP) cleavage and a cell population positively stained by annexin V, alongside the downregulation of antiapoptotic B-cell lymphoma 2 (BCL-2), whereas the blockade of apoptosis by the pan-caspase inhibitor z-VAD-fmk attenuated DHME-induced cytotoxicity. Further mechanistic inquiry revealed the inhibitory action of DHME on β-catenin-mediated, T-cell factor (TCF)-dependent transcription activity, suggesting that DHME thwarted the aberrantly active WNT/β-catenin signaling in CRC cells. Notably, ectopic expression of a dominant–active β-catenin mutant (∆N90-β-catenin) abolished DHME-induced apoptosis while also restoring BCL-2 expression. Collectively, we identified DHME as a selective proapoptotic agent against CRC cells, exerting more potent cytotoxicity than hispolon, and provoking CRC cell apoptosis via suppression of the WNT/β-catenin signaling axis.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 43503, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Chu Hsieh
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.H.); (L.-H.L.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
| | - Li-Hsuan Li
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.H.); (L.-H.L.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
| | - Ching-Chin Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
| | - Karolína Janoušková
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
- University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Modukuri V. Ramani
- Department of Organic Chemistry, Andhra University, Visakhapatnam 530 003, India; (M.V.R.); (G.V.S.)
| | - Gottumukkala V. Subbaraju
- Department of Organic Chemistry, Andhra University, Visakhapatnam 530 003, India; (M.V.R.); (G.V.S.)
| | - Kur-Ta Cheng
- Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: or (C.-C.C.); (K.-T.C.)
| | - Chia-Che Chang
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.H.); (L.-H.L.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
- Department of Life Sciences, The iEGG and Animal Biotechnology Research Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Correspondence: or (C.-C.C.); (K.-T.C.)
| |
Collapse
|
21
|
Sun Z, Xu S, Cai Q, Zhou W, Jiao X, Bao M, Yu X. Wnt/β-catenin agonist BIO alleviates cisplatin-induced nephrotoxicity without compromising its efficacy of anti-proliferation in ovarian cancer. Life Sci 2020; 263:118672. [PMID: 33121990 DOI: 10.1016/j.lfs.2020.118672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
AIMS Cisplatin is an anticancer agent marred by nephrotoxicity. Limiting this adverse effect may allow the use of higher doses to improve its efficacy. The Wnt/β-catenin signaling pathway plays a critical role in nephrogenesis and repair of renal diseases. BIO, a small molecule agonist of this pathway, exerted a protective effect in adriamycin nephropathy and promoted nephrogenesis. The aim of this study, therefore, was to investigate whether Wnt/β-catenin agonist BIO could protect against cisplatin-induced nephrotoxicity in vivo and in vitro, as well as its possible mechanism. MAIN METHODS Male mice and human renal proximal tubular cells (HK-2) were subjected to cisplatin to study reno-protective effect of BIO. Renal function, cell viability, tubular apoptosis, production of reactive oxygen species (ROS) and proliferative level were analyzed respectively. Additionally, xenograft model was induced to investigate if BIO would impair the antitumor effect of cisplatin. KEY FINDINGS Cisplatin increased serum creatinine levels and promoted histological renal injury as well as oxidative stress levels. Besides, renal apoptotic level and the expression of pro-apoptotic proteins, Bax/bcl-2 and cleaved-caspase3 included, in the kidney were increased. All these features were decreased by BIO, which also activated Wnt/β-catenin pathway in cisplatin-induced nephrotoxicity. Similarly, accompanied by the motivation of Wnt/β-catenin pathway, BIO exerted a positively protective effect on HK-2 challenged cisplatin. Last, the chemotherapeutic effects of cisplatin in xenograft mice of ovary tumor models and in lung cancer cells weren't compromised by BIO. SIGNIFICANCE Wnt/β-catenin agonist BIO has the potential to prevent cisplatin nephrotoxicity without compromising its anti-proliferation efficacy.
Collapse
Affiliation(s)
- Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Qiaoting Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Weiran Zhou
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Manchen Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
22
|
WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol 2020; 17:172-184. [PMID: 32989282 DOI: 10.1038/s41581-020-00343-w] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The WNT-β-catenin system is an evolutionary conserved signalling pathway that is of particular importance for morphogenesis and cell organization during embryogenesis. The system is usually suppressed in adulthood; however, it can be re-activated in organ injury and regeneration. WNT-deficient mice display severe kidney defects at birth. Transient WNT-β-catenin activation stimulates tissue regeneration after acute kidney injury, whereas sustained (uncontrolled) WNT-β-catenin signalling promotes kidney fibrosis in chronic kidney disease (CKD), podocyte injury and proteinuria, persistent tissue damage during acute kidney injury and cystic kidney diseases. Additionally, WNT-β-catenin signalling is involved in CKD-associated vascular calcification and mineral bone disease. The WNT-β-catenin pathway is tightly regulated, for example, by proteins of the Dickkopf (DKK) family. In particular, DKK3 is released by 'stressed' tubular epithelial cells; DKK3 drives kidney fibrosis and is associated with short-term risk of CKD progression and acute kidney injury. Thus, targeting the WNT-β-catenin pathway might represent a promising therapeutic strategy in kidney injury and associated complications.
Collapse
|
23
|
Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/βcatenin signaling after ischemia/reperfusion injury. Aging (Albany NY) 2020; 11:4382-4406. [PMID: 31284268 PMCID: PMC6660044 DOI: 10.18632/aging.102059] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms, such as DNA methylation, affect tubular maladaptive response after Acute Kidney Injury (AKI) and accelerate renal aging. Upon ischemia/reperfusion (I/R) injury, Complement activation leads to C5a release that mediates damage; however, little is known about the effect of C5a-C5a Receptor (C5aR) interaction in Renal Tubular Epithelial Cells (RTEC). Through a whole-genome DNA methylation analysis in cultured RTEC, we found that C5a induced aberrant methylation, particularly in regions involved in cell cycle control, DNA damage and Wnt signaling. The most represented genes were BCL9, CYP1B1 and CDK6. C5a stimulation of RTEC led to up-regulation of SA-β Gal and cell cycle arrest markers such as p53 and p21. C5a increased also IL-6, MCP-1 and CTGF gene expression, consistent with SASP development. In accordance, in a swine model of renal I/R injury, we found the increased expression of Wnt4 and βcatenin correlating with SA-β Gal, p21, p16 and IL-6 positivity. Administration of Complement Inhibitor (C1-Inh), antagonized SASP by reducing SA-β Gal, p21, p16, IL-6 and abrogating Wnt4/βcatenin activation. Thus, C5a affects the DNA methylation of genes involved in tubular senescence. Targeting epigenetic programs and Complement may offer novels strategies to protect tubular cells from accelerated aging and to counteract progression to Chronic Kidney Disease
Collapse
|
24
|
Nlandu-Khodo S, Osaki Y, Scarfe L, Yang H, Phillips-Mignemi M, Tonello J, Saito-Diaz K, Neelisetty S, Ivanova A, Huffstater T, McMahon R, Taketo MM, deCaestecker M, Kasinath B, Harris RC, Lee E, Gewin LS. Tubular β-catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight 2020; 5:135454. [PMID: 32369448 DOI: 10.1172/jci.insight.135454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays an important role in renal development and is reexpressed in the injured kidney and other organs. β-Catenin signaling is protective in acute kidney injury (AKI) through actions on the proximal tubule, but the current dogma is that Wnt/β-catenin signaling promotes fibrosis and development of chronic kidney disease (CKD). As the role of proximal tubular β-catenin signaling in CKD remains unclear, we genetically stabilized (i.e., activated) β-catenin specifically in murine proximal tubules. Mice with increased tubular β-catenin signaling were protected in 2 murine models of AKI to CKD progression. Oxidative stress, a common feature of CKD, reduced the conventional T cell factor/lymphoid enhancer factor-dependent β-catenin signaling and augmented FoxO3-dependent activity in proximal tubule cells in vitro and in vivo. The protective effect of proximal tubular β-catenin in renal injury required the presence of FoxO3 in vivo. Furthermore, we identified cystathionine γ-lyase as a potentially novel transcriptional target of β-catenin/FoxO3 interactions in the proximal tubule. Thus, our studies overturned the conventional dogma about β-catenin signaling and CKD by showing a protective effect of proximal tubule β-catenin in CKD and identified a potentially new transcriptional target of β-catenin/FoxO3 signaling that has therapeutic potential for CKD.
Collapse
Affiliation(s)
- Stellor Nlandu-Khodo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Yosuke Osaki
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Lauren Scarfe
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, Tennessee, USA
| | - Melanie Phillips-Mignemi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Jane Tonello
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - Surekha Neelisetty
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Alla Ivanova
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Tessa Huffstater
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert McMahon
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mark deCaestecker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | - Balakuntalam Kasinath
- Department of Medicine, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology and
| | - Leslie S Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA.,Department of Cell and Developmental Biology and.,Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Endonuclease VIII-like 1 deficiency impairs survival of newly generated hippocampal neurons and memory performance in young-adult male mice. Life Sci 2020; 254:117755. [PMID: 32437792 DOI: 10.1016/j.lfs.2020.117755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
AIMS Efficient memory formation in rodents depends on adult neurogenesis in the subgranular zone of the hippocampus, and mounting evidence suggests that deficiencies in initiating repair of oxidatively induced DNA damage may impair neurogenesis. Hence, we aimed to determine whether loss of the DNA glycosylase, endonuclease VIII-like 1 (Neil1), affects hippocampal neurogenesis and memory performance in young-adult mice. MAIN METHODS Eight-week-old male wild-type and Neil1-deficient (Neil1-/-) mice were treated with bromodeoxyuridine to track neuronal proliferation and differentiation. A neurosphere formation assay was further used to measure neuroprogenitor proliferative capacity. Hippocampus-related memory functions were assessed with Y-maze spontaneous alternation and novel object recognition tests. KEY FINDINGS Young-adult male Neil1-/- mice exhibited diminished adult hippocampal neurogenesis in the dentate gyrus, probably as a result of poor survival of newly proliferated neurons. Furthermore, the Y-maze spontaneous alternation and novel object recognition tests respectively revealed that Neil1 deficiency impairs spatial and non-spatial hippocampus-related memory functions. We also found that expression of p53, a central regulator of apoptosis, was upregulated in the dentate gyrus of Neil1-/- mice, while the level of β-catenin, a key cell survival molecule, was downregulated. SIGNIFICANCE The DNA glycosylase, Neil1, promotes successful hippocampal neurogenesis and learning and memory in young-adult mice.
Collapse
|
26
|
Zhou J, Huang D, Zhu M, Gao C, Yan H, Li X, Wang X. Wnt/β‐catenin‐mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. J Cell Physiol 2020; 235:5613-5627. [DOI: 10.1002/jcp.29492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jia‐yi Zhou
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Deng‐gui Huang
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Min Zhu
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Chun‐qi Gao
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Hui‐chao Yan
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| | - Xiang‐guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical SciencesGuangdong University of Technology Guangzhou China
| | - Xiu‐qi Wang
- Department of Animal Nutrition, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal ScienceSouth China Agricultural University Guangzhou China
| |
Collapse
|
27
|
Wang Z, Salih E, Igwebuike C, Mulhern R, Bonegio RG, Havasi A, Borkan SC. Nucleophosmin Phosphorylation as a Diagnostic and Therapeutic Target for Ischemic AKI. J Am Soc Nephrol 2019; 30:50-62. [PMID: 30573638 DOI: 10.1681/asn.2018040401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Ischemic AKI lacks a urinary marker for early diagnosis and an effective therapy. Differential nucleophosmin (NPM) phosphorylation is a potential early marker of ischemic renal cell injury and a therapeutic target.Methods Differential NPM phosphorylation was assessed by mass spectrometry in NPM harvested from murine and human primary renal epithelial cells, fresh kidney tissue, and urine before and after ischemic injury. The biologic behavior and toxicity of NPM was assessed using phospho-NPM mutant proteins that either mimic stress-induced or normal NPM phosphorylation. Peptides designed to interfere with NPM function were used to explore NPM as a therapeutic target.Results Within hours of stress, virtually identical phosphorylation changes were detected at distinct serine/threonine sites in NPM harvested from primary renal cells, tissue, and urine. A phosphomimic NPM protein that replicated phosphorylation under stress localized to the cytosol, formed monomers that interacted with Bax, a cell death protein, coaccumulated with Bax in isolated mitochondria, and significantly increased cell death after stress; wild-type NPM or a phosphomimic NPM with a normal phosphorylation configuration did not. Three renal targeted peptides designed to interfere with NPM at distinct functional sites significantly protected against cell death, and a single dose of one peptide administered several hours after ischemia that would be lethal in untreated mice significantly reduced AKI severity and improved survival.Conclusions These findings establish phosphorylated NPM as a potential early marker of ischemic AKI that links early diagnosis with effective therapeutic interventions.
Collapse
Affiliation(s)
- Zhiyong Wang
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Erdjan Salih
- Department of Periodontology, Goldman School of Dentistry, Boston University, Boston, Massachusetts
| | | | - Ryan Mulhern
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Ramon G Bonegio
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Andrea Havasi
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| | - Steven C Borkan
- Renal Section, Boston University Medical Center, Boston, Massachusetts; and
| |
Collapse
|
28
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019; 317:F1255-F1264. [DOI: 10.1152/ajprenal.00346.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
29
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019. [DOI: 10.1152/ajprenal.00346.2019 pmid: 31532243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
30
|
Shi W, Dong J, Liang Y, Liu K, Peng Y. NR4A1 silencing protects against renal ischemia-reperfusion injury through activation of the β-catenin signaling pathway in old mice. Exp Mol Pathol 2019; 111:104303. [PMID: 31465766 DOI: 10.1016/j.yexmp.2019.104303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Renal ischemia-reperfusion injury (IRI), a major cause of acute kidney injury as well as a contributor to a rapid kidney dysfunction and high mortality rates, is a complex yet not fully understood process. Investigation on the underlying molecular mechanism including the inflammation initiation and progression can help to have a better understanding of the disease, and thereby lead to a potential therapeutic approach. We established renal IRI mouse model groups differing in their ages. These renal IRI mice were treated either only with si-nuclear receptor subfamily 4, group A, member 1 (NR4A1) or together with si-β-catenin by tail vein injection to analyze the role of NR4A1 and β-catenin in the development of renal IRI. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were examined for renal function analysis. Levels of the apoptosis markers B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), and cleaved caspase-3 were determined. NR4A1 gene was up-regulated in the renal tissues of all mice with IRI, which showed a much higher level in the old mice with IRI. si-NR4A1 treatment resulted in reduced SCr and BUN levels and a decrease of cell apoptosis, indicated by lower expression of Bax and cleaved Caspase-3, while in contrast increased levels of Bcl-2 were detected. Interestingly, also the β-catenin level was increased by knockdown of NR4A1. Furthermore, si-β-catenin reversed the effect of knockdown of NR4A1, leading to aggravated renal function damage, severe pathological injury and increased apoptosis. Thus, silencing NR4A1 ameliorates renal IRI via β-catenin signaling pathway activation. Down-regulated NR4A1 confirms renoprotective properties against renal IRI via the activation of β-catenin signaling pathway in old mice.
Collapse
Affiliation(s)
- Wenjian Shi
- Department of Nephrology, The Second Xiangya Hospital, Renal Research Institute of Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha 410011, PR China
| | - Jing Dong
- Intensive Care Unit, Hunan Cancer Hospital, Changsha 410006, PR China
| | - Yumei Liang
- Department of Nephrology, The Hunan Provincial People's Hospital, Changsha 410002, PR China
| | - Kanghan Liu
- Department of Nephrology, The Hunan Provincial People's Hospital, Changsha 410002, PR China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Renal Research Institute of Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha 410011, PR China.
| |
Collapse
|
31
|
Abstract
Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.
Collapse
|
32
|
Xu B, Wang T, Xiao J, Dong W, Wen HZ, Wang X, Qin Y, Cai N, Zhou Z, Xu J, Wang H. FCPR03, a novel phosphodiesterase 4 inhibitor, alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β/ β-catenin signaling pathway. Biochem Pharmacol 2019; 163:234-249. [DOI: 10.1016/j.bcp.2019.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
33
|
Ohshima J, Wang Q, Fitzsimonds ZR, Miller DP, Sztukowska MN, Jung YJ, Hayashi M, Whiteley M, Lamont RJ. Streptococcus gordonii programs epithelial cells to resist ZEB2 induction by Porphyromonas gingivalis. Proc Natl Acad Sci U S A 2019; 116:8544-8553. [PMID: 30971493 PMCID: PMC6486779 DOI: 10.1073/pnas.1900101116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The polymicrobial microbiome of the oral cavity is a direct precursor of periodontal diseases, and changes in microhabitat or shifts in microbial composition may also be linked to oral squamous cell carcinoma. Dysbiotic oral epithelial responses provoked by individual organisms, and which underlie these diseases, are widely studied. However, organisms may influence community partner species through manipulation of epithelial cell responses, an aspect of the host microbiome interaction that is poorly understood. We report here that Porphyromonas gingivalis, a keystone periodontal pathogen, can up-regulate expression of ZEB2, a transcription factor which controls epithelial-mesenchymal transition and inflammatory responses. ZEB2 regulation by P. gingivalis was mediated through pathways involving β-catenin and FOXO1. Among the community partners of P. gingivalis, Streptococcus gordonii was capable of antagonizing ZEB2 expression. Mechanistically, S. gordonii suppressed FOXO1 by activating the TAK1-NLK negative regulatory pathway, even in the presence of P. gingivalis Collectively, these results establish S. gordonii as homeostatic commensal, capable of mitigating the activity of a more pathogenic organism through modulation of host signaling.
Collapse
Affiliation(s)
- Jun Ohshima
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Maryta N Sztukowska
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
- University of Information Technology and Management, 35-225 Rzeszow, Poland
| | - Young-Jung Jung
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 565-0871 Osaka, Japan
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30322
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202;
| |
Collapse
|
34
|
Qiu CW, Liu ZY, Zhang FL, Zhang L, Li F, Liu SY, He JY, Xiao ZC. Post-stroke gastrodin treatment ameliorates ischemic injury and increases neurogenesis and restores the Wnt/β-Catenin signaling in focal cerebral ischemia in mice. Brain Res 2019; 1712:7-15. [PMID: 30716287 DOI: 10.1016/j.brainres.2019.01.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
Cerebral ischemic stroke is one of the leading causes of death and disability worldwide, and the only available drug treatment is limited to a short window following the ischemic event. Gastrodin is the major bioactive constituent extracted from thetuberGastrodia elata, and is currently used to treat dizziness in the clinic. "Early" application of gastrodin (before modeling or immediately after ischemic injury) has shown antioxidative and neuroprotective effects in a transient focal brain ischemia model in rodents; however, it is not known whether the delayed administration of gastrodin after permanent focal cerebral ischemia ameliorates neural injury and increases neurogenesis. In this study, we performed a permanent middle cerebral artery occlusion (MCAO) model for the study of cerebral ischemic stroke in adult male mice to examine the effects of gastrodin. Gastrodin treatment that was started "late" (one day after the ischemic injury) significantly improved neural function, reduced infarct volume and apoptosis, and increased the number of DCX/BrdU double-positive cells in permanent MCAO mice. Moreover, gastrodin treatment markedly preserved the Wnt/β-Catenin signaling pathway, which could promote neurogenesis and provide neuroprotection brain injury. Our findings suggest that gastrodin treatment following ischemic injury can induce neuroprotection, promote neurogenesis and restored the Wnt /β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Cai-Wei Qiu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming City 650500, Yunnan, China.
| | - Zong-Yao Liu
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Feng-Lan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Ling Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Fan Li
- Experiment Enter for Medical Science Research, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Shu-Yi Liu
- City Administration of Dongying, Shangdong Agricultural High-tech Industrial Demonstration Zone, Dongying City 257000, Shangdong, China
| | - Jian-Ying He
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Zhi-Cheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia.
| |
Collapse
|
35
|
Gewin LS. Renal fibrosis: Primacy of the proximal tubule. Matrix Biol 2018; 68-69:248-262. [PMID: 29425694 PMCID: PMC6015527 DOI: 10.1016/j.matbio.2018.02.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is the hallmark of chronic kidney disease and best predictor of renal survival. Many different cell types contribute to TIF progression including tubular epithelial cells, myofibroblasts, endothelia, and inflammatory cells. Previously, most of the attention has centered on myofibroblasts given their central importance in extracellular matrix production. However, emerging data focuses on how the response of the proximal tubule, a specialized epithelial segment vulnerable to injury, plays a central role in TIF progression. Several proximal tubular responses such as de-differentiation, cell cycle changes, autophagy, and metabolic changes may be adaptive initially, but can lead to maladaptive responses that promote TIF both through autocrine and paracrine effects. This review discusses the current paradigm of TIF progression and the increasingly important role of the proximal tubule in promoting TIF both in tubulointerstitial and glomerular injuries. A better understanding and appreciation of the role of the proximal tubule in TIF has important implications for therapeutic strategies to halt chronic kidney disease progression.
Collapse
Affiliation(s)
- Leslie S Gewin
- The Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
36
|
Boivin FJ, Bridgewater D. β-Catenin in stromal progenitors controls medullary stromal development. Am J Physiol Renal Physiol 2018; 314:F1177-F1187. [DOI: 10.1152/ajprenal.00282.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The renal stroma is a population of matrix-producing fibroblast cells that serves as a structural framework for the kidney parenchyma. The stroma also regulates branching morphogenesis and nephrogenesis. In the mature kidney, the stroma forms at least three distinct cell populations: the capsular, cortical, and medullary stroma. These distinct stromal populations have important functions in kidney development, maintenance of kidney function, and disease progression. However, the development, differentiation, and maintenance of the distinct stroma populations are not well defined. Using a mouse model with β-catenin deficiency in the stroma cell population, we demonstrate that β-catenin is not involved in the formation of the stromal progenitors nor in the formation of the cortical stroma population. In contrast, β-catenin does control the differentiation of stromal progenitors to form the medullary stroma. In the absence of stromal β-catenin, there is a marked reduction of medullary stromal markers. As kidney development continues, the maldifferentiated stromal cells locate deeper within the kidney tissue and are eliminated by the activation of an intrinsic apoptotic program. This leads to significant reductions in the medullary stroma population and the lack of medulla formation. Taken together, our results indicate that stromal β-catenin is essential for kidney development by regulating medulla formation through the differentiation of medullary stromal cells.
Collapse
Affiliation(s)
- Felix J. Boivin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
37
|
Terada N, Karim MR, Izawa T, Kuwamura M, Yamate J. Expression of β-catenin in regenerating renal tubules of cisplatin-induced kidney failure in rats. Clin Exp Nephrol 2018; 22:1240-1250. [DOI: 10.1007/s10157-018-1583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/21/2018] [Indexed: 01/03/2023]
|
38
|
Li H, Ma Y, Chen B, Shi J. miR-182 enhances acute kidney injury by promoting apoptosis involving the targeting and regulation of TCF7L2/Wnt/β-catenins pathway. Eur J Pharmacol 2018; 831:20-27. [PMID: 29733821 DOI: 10.1016/j.ejphar.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/09/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a sudden decay in renal function leading to increasing morbidity and mortality. miR-182 has been reported to be actively involved in kidney diseases. However, the function and molecular mechanism of miR-182 in AKI still need to be elucidated. The levels of serum creatinine (SCr), blood urea nitrogen (BUN), and urine Kim-1 in I/R-induced rat AKI model were detected by a Beckman Autoanalyzer. miR-182 and transcription factor 7-like-2 (TCF7L2) mRNA expression were measured by qRT-PCR. Flow cytometry and caspase-3 colorimetry analysis were performed to determine NRK-52E cell apoptosis. Bioinformatics and dual-luciferase reporter were used to identify the interaction between miR-182 and TCF7L2. miR-182 expression was increased in both I/R-induced rat models and hypoxia-treated NRK-52E cells, and miR-182 overexpression stimulated the apoptosis of hypoxia-induced NRK-52E cells. Dual-luciferase analysis disclosed that TCF7L2 was a target of miR-182. TCF7L2 suppressed hypoxia-induced apoptosis in NRK-52E cells, and the inhibitory effect of TCF7L2 on cell apoptosis could be reversed with miR-182 restoration. Moreover, the activity of Wnt/β-catenin signaling pathway was promoted following overexpression of TCF7L2 in NRK-52E cells with hypoxia treatment, and this effect was greatly attenuated by the increased miR-182 expression. Finally, in vivo experiment also validated the alleviation of miR-182 inhibitor on I/R-induced kidney injury and apoptosis via regulating TCF7L2/ Wnt/β-catenin pathway. miR-182 exacerbated AKI involving the targeting and regulation of TCF7L2/Wnt/β-catenin signaling, unveiling a novel regulatory pathway in ischemia-reperfusion injury and elucidating a potential biomarker for AKI treatment.
Collapse
Affiliation(s)
- Huicong Li
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Baoping Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
39
|
Renal Tubule Repair: Is Wnt/β-Catenin a Friend or Foe? Genes (Basel) 2018; 9:genes9020058. [PMID: 29364168 PMCID: PMC5852554 DOI: 10.3390/genes9020058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Wnt/β-catenin signaling is extremely important for proper kidney development. This pathway is also upregulated in injured renal tubular epithelia, both in acute kidney injury and chronic kidney disease. The renal tubular epithelium is an important target of kidney injury, and its response (repair versus persistent injury) is critical for determining whether tubulointerstitial fibrosis, the hallmark of chronic kidney disease, develops. This review discusses how Wnt/β-catenin signaling in the injured tubular epithelia promotes either repair or fibrosis after kidney injury. There is data suggesting that epithelial Wnt/β-catenin signaling is beneficial in acute kidney injury and important in tubular progenitors responsible for epithelial repair. The role of Wnt/β-catenin signaling in chronically injured epithelia is less clear. There is convincing data that Wnt/β-catenin signaling in interstitial fibroblasts and pericytes contributes to the extracellular matrix accumulation that defines fibrosis. However, some recent studies question whether Wnt/β-catenin signaling in chronically injured epithelia actually promotes fibrosis or repair.
Collapse
|
40
|
Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:181-207. [PMID: 29389516 PMCID: PMC6008255 DOI: 10.1016/bs.pmbts.2017.11.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients.
Collapse
Affiliation(s)
- Yongping Wang
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chengji J Zhou
- University of California Davis, Sacramento, CA, United States
| | - Youhua Liu
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
41
|
Sun Q, Dong M, Wang Z, Wang C, Sheng D, Li Z, Huang D, Yuan C. Selenium-enriched polysaccharides from Pyracantha fortuneana (Se-PFPs) inhibit the growth and invasive potential of ovarian cancer cells through inhibiting β-catenin signaling. Oncotarget 2017; 7:28369-83. [PMID: 27058760 PMCID: PMC5053732 DOI: 10.18632/oncotarget.8619] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
Polysaccharides from medicinal plants exert antitumor activity in many cancers. Our previous study demonstrated that polysaccharides extracted from the selenium-enriched Pyracantha fortuneana (Se-PFPs) showed antiproliferative effect in breast cancer cell line. This study aimed to investigate the antitumor effect of Se-PFPs in ovarian cancer cells in vitro and in vivo. Se-PFPs could decrease cell viability, induce apoptosis, and inhibit migratory and invasive potentials in HEY and SKOV3 cells. These findings are supported by reduced expression of cyclin D1, Bcl-2 and MMP-9, enhanced cleavage of PARP and caspase-3, elevated activity of caspase-3 and caspase-9, and EMT (epithelial to mesenchymal transition) inhibition (elevated expression of E-cadherin and cytokeratin 19, and reduced expression of N-cadherin, vimentin, ZEB1 and ZEB2). Moreover, Se-PFPs inhibited xenografted tumor growth through inhibiting cell proliferation and inducing cell apoptosis. More importantly, Se-PFPs significantly reduced cytoplasmic β-catenin particularly nuclear β-catenin expression but increased β-catenin phosphorylation in a GSK-3β-dependent mechanism. Furthermore, β-catenin knockdown exerted similar effects on cell proliferation and invasion as seen in Se-PFPs-treated cells, while β-catenin overexpression neutralized the inhibitory effects of Se-PFPs on cell proliferation and invasion. Take together,Se-PFPs exert antitumor activity through inhibiting cell proliferation, migration, invasion and EMT, and inducing cell apoptosis. These effects are achieved by the inhibition of β-catenin signaling. Thus Se-PFPs can be used as potential therapeutic agents in the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qianling Sun
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Mengmeng Dong
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Zhihui Wang
- Renhe Hospital of China Three Gorges University, Yichang, HuBei 443002, China
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Deqiao Sheng
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Zhihong Li
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Debin Huang
- Department of Pharmacology, Hubei Institute for Nationalities, Enshi, HuBei 445000, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| |
Collapse
|
42
|
Abstract
Tubulointerstitial fibrosis is a chronic and progressive process affecting kidneys during aging and in chronic kidney disease (CKD), regardless of cause. CKD and renal fibrosis affect half of adults above age 70 and 10% of the world's population. Although no targeted therapy yet exists to slow renal fibrosis, a number of important recent advances have clarified the cellular and molecular mechanisms underlying the disease. In this review, I highlight these advances with a focus on cells and pathways that may be amenable to therapeutic targeting. I discuss pathologic changes regulating interstitial myofibroblast activation, including profibrotic and proinflammatory paracrine signals secreted by epithelial cells after either acute or chronic injury. I conclude by highlighting novel therapeutic targets and approaches with particular promise for development of new treatments for patients with fibrotic kidney disease.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
43
|
Nlandu-Khodo S, Neelisetty S, Phillips M, Manolopoulou M, Bhave G, May L, Clark PE, Yang H, Fogo AB, Harris RC, Taketo MM, Lee E, Gewin LS. Blocking TGF- β and β-Catenin Epithelial Crosstalk Exacerbates CKD. J Am Soc Nephrol 2017; 28:3490-3503. [PMID: 28701516 DOI: 10.1681/asn.2016121351] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/08/2017] [Indexed: 11/03/2022] Open
Abstract
The TGF-β and Wnt/β-catenin pathways have important roles in modulating CKD, but how these growth factors affect the epithelial response to CKD is not well studied. TGF-β has strong profibrotic effects, but this pleiotropic factor has many different cellular effects depending on the target cell type. To investigate how TGF-β signaling in the proximal tubule, a key target and mediator of CKD, alters the response to CKD, we injured mice lacking the TGF-β type 2 receptor specifically in this epithelial segment. Compared with littermate controls, mice lacking the proximal tubular TGF-β receptor had significantly increased tubular injury and tubulointerstitial fibrosis in two different models of CKD. RNA sequencing indicated that deleting the TGF-β receptor in proximal tubule cells modulated many growth factor pathways, but Wnt/β-catenin signaling was the pathway most affected. We validated that deleting the proximal tubular TGF-β receptor impaired β-catenin activity in vitro and in vivo Genetically restoring β-catenin activity in proximal tubules lacking the TGF-β receptor dramatically improved the tubular response to CKD in mice. Deleting the TGF-β receptor alters many growth factors, and therefore, this ameliorated response may be a direct effect of β-catenin activity or an indirect effect of β-catenin interacting with other growth factors. In conclusion, blocking TGF-β and β-catenin crosstalk in proximal tubules exacerbates tubular injury in two models of CKD.
Collapse
Affiliation(s)
| | | | | | | | - Gautam Bhave
- Division of Nephrology, Department of Medicine and.,Departments of Cell and Developmental Biology
| | | | | | | | - Agnes B Fogo
- Division of Nephrology, Department of Medicine and.,Pathology, Microbiology and Immunology.,Pediatrics, and
| | - Raymond C Harris
- Division of Nephrology, Department of Medicine and.,Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee.,Departments of Medicine and
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ethan Lee
- Departments of Cell and Developmental Biology
| | - Leslie S Gewin
- Division of Nephrology, Department of Medicine and .,Departments of Cell and Developmental Biology.,Research, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee; and
| |
Collapse
|
44
|
Dar MS, Singh P, Mir RA, Dar MJ. Βeta-catenin N-terminal domain: An enigmatic region prone to cancer causing mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:122-133. [PMID: 28927523 DOI: 10.1016/j.mrrev.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The Wnt/β-catenin is a highly conserved signaling pathway involved in cell fate decisions during various stages of development. Dysregulation of canonical Wnt/β-catenin signaling has been associated with various diseases including cancer. β-Catenin, the central component of canonical Wnt signaling pathway, is a multi-functional protein playing both structural and signaling roles. β-Catenin is composed of three distinct domains: N-terminal domain, C-terminal domain and a central armadillo repeat domain. N-terminal domain of β-catenin harbours almost all of the cancer causing mutations, thus deciphering its critical structural and functional roles offers great potential in cancer detection and therapy. Here, in this review, we have collected information from pharmacological analysis, bio-physical and structural studies, molecular modeling, in-vivo and in-vitro assays, and transgenic animal experiments employing various N-terminal domain variants of β-catenin to discuss the interaction of β-catenin with its binding partners that specifically interact with this domain and the implications of these interactions on signaling, cell fate determination, and in tumorigenesis. A thorough understanding of interactions between β-catenin and its binding partners will enable us to more effectively understand how β-catenin switches between its multiple roles, and will lead to the development of specific assays for the identification of small molecules as chemotherapeutic agents to treat diseases, including cancer and neurological disorders, where Wnt/β-catenin signaling is dysregulated.
Collapse
Affiliation(s)
- Mohd Saleem Dar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Paramjeet Singh
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India.
| |
Collapse
|
45
|
Nolin AC, Mulhern RM, Panchenko MV, Pisarek-Horowitz A, Wang Z, Shirihai O, Borkan SC, Havasi A. Proteinuria causes dysfunctional autophagy in the proximal tubule. Am J Physiol Renal Physiol 2016; 311:F1271-F1279. [PMID: 27582098 DOI: 10.1152/ajprenal.00125.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022] Open
Abstract
Proteinuria is a major risk factor for chronic kidney disease progression. Furthermore, exposure of proximal tubular epithelial cells to excess albumin promotes tubular atrophy and fibrosis, key predictors of progressive organ dysfunction. However, the link between proteinuria and tubular damage is unclear. We propose that pathological albumin exposure impairs proximal tubular autophagy, an essential process for recycling damaged organelles and toxic intracellular macromolecules. In both mouse primary proximal tubule and immortalized human kidney cells, albumin exposure decreased the number of autophagosomes, visualized by the autophagosome-specific fluorescent markers monodansylcadaverine and GFP-LC3, respectively. Similarly, renal cortical tissue harvested from proteinuric mice contained reduced numbers of autophagosomes on electron micrographs, and immunoblots showed reduced steady-state LC3-II content. Albumin exposure decreased autophagic flux in vitro in a concentration-dependent manner as assessed by LC3-II accumulation rate in the presence of bafilomycin, an H+-ATPase inhibitor that prevents lysosomal LC3-II degradation. In addition, albumin treatment significantly increased the half-life of radiolabeled long-lived proteins, indicating that the primary mechanism of degradation, autophagy, is dysfunctional. In vitro, mammalian target of rapamycin (mTOR) activation, a potent autophagy inhibitor, suppressed autophagy as a result of intracellular amino acid accumulation from lysosomal albumin degradation. mTOR activation was demonstrated by the increased phosphorylation of its downstream target, S6K, with free amino acid or albumin exposure. We propose that excess albumin uptake and degradation inhibit proximal tubule autophagy via an mTOR-mediated mechanism and contribute to progressive tubular injury.
Collapse
Affiliation(s)
- Angela C Nolin
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Ryan M Mulhern
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Maria V Panchenko
- Department of Pathology, Boston University, Boston, Massachusetts; and
| | | | - Zhiyong Wang
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Orian Shirihai
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Steven C Borkan
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Andrea Havasi
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts;
| |
Collapse
|
46
|
Riascos-Bernal DF, Chinnasamy P, Cao LL, Dunaway CM, Valenta T, Basler K, Sibinga NES. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun 2016; 7:12389. [PMID: 27499244 PMCID: PMC4979065 DOI: 10.1038/ncomms12389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. How p53 is restrained in arterial maturation during embryonic development is unclear. Here, the authors show that β-catenin C-terminal interactions inhibit CREB binding protein-mediated acetylation and activation of p53 in smooth muscle cells, and that this function is essential for artery formation.
Collapse
Affiliation(s)
- Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Prameladevi Chinnasamy
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Longyue Lily Cao
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Charlene M Dunaway
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
47
|
Hwang JH, Joo JC, Kim DJ, Jo E, Yoo HS, Lee KB, Park SJ, Jang IS. Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells. Am J Cancer Res 2016; 6:1758-1771. [PMID: 27648363 PMCID: PMC5004077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023] Open
Abstract
Constitutive activation of extracellular signal regulated kinase (ERK)-Jun NH2-terminal kinase (JNK) signaling commonly occurs in tumors. The activation of ERK promotes cell proliferation, whereas that of JNK induces cell apoptosis. However, the apoptotic mechanism of ERK-JNK signaling in cancer is not well understood. Recently, we identified that apoptosis and activation of the JNK signaling pathway were induced after cordycepin treatment in human renal cancer, suggesting that JNK signaling might contribute to TK-10 cell apoptosis. We investigated the apoptotic effects of cordycepin by evaluating the activation of the ERK-JNK signaling pathway in renal cancer TK-10 cells. We found that cordycepin downregulated ERK and DUSP5, upregulated phosphorylated-JNK (p-JNK), and induced apoptosis. Moreover, we showed that siRNA-mediated inhibition of ERK downregulated DUSP5, whereas ERK overexpression upregulated DUSP5, and that DUSP5 knockdown by siRNA upregulated p-JNK. The JNK-specific inhibitor SP600125 upregulated nuclear translocation of β-catenin, and downregulated Dickkopf-1 (Dkk1), which has been shown to be a potent inhibitor of Wnt signaling. Dkk1 knockdown by siRNA upregulated nuclear β-catenin, suggesting the involvement of the Wnt/β-catenin signaling pathway. DUSP5 overexpression in TK-10 cells decreased p-JNK and increased nuclear β-catenin. The decreased Bax activation markedly protected against cordycepin-induced apoptosis. Bax subfamily proteins induced apoptosis through caspase-3. Taken together, we show that JNK signaling activation by cordycepin mediated ERK inhibition, which might have induced Bax translocation and caspase-3 activation via regulation of DUSP5 in TK-10 cells, thereby promoting the apoptosis of TK-10 cells. Targeting ERK-JNK signaling via the apoptotic effects of cordycepin could be a potential therapeutic strategy to treat renal cancer.
Collapse
Affiliation(s)
- Jung-Hoo Hwang
- College of Medicine, Chung-Ang UniversitySeoul 156-756, Republic of Korea
| | - Jong Cheon Joo
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Wonkwang UniversityIksan, Jeonbuk 54538, Republic of Korea
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande ValleyEdinburg, TX 78541, USA
| | - Eunbi Jo
- Division of Bioconvergence Analysis, Korea Basic Science InstituteDaejeon 305-333, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon UniversityDaejeon 302-120, Republic of Kore
| | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science InstituteDaejeon 305-333, Republic of Korea
| | - Soo Jung Park
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk UniversityWanju, Jeonbuk 55338, Republic of Korea
| | - Ik-Soon Jang
- Division of Bioconvergence Analysis, Korea Basic Science InstituteDaejeon 305-333, Republic of Korea
| |
Collapse
|
48
|
Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, Liu Y. Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. J Am Soc Nephrol 2016; 27:1727-1740. [PMID: 26453613 PMCID: PMC4884114 DOI: 10.1681/asn.2015040449] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022] Open
Abstract
AKI is increasingly recognized as a major risk factor for progression to CKD. However, the factors governing AKI to CKD progression are poorly understood. In this study, we investigated this issue using moderate (20 minutes) and severe (30 minutes) ischemia/reperfusion injury (IRI) in mice. Moderate IRI led to acute kidney failure and transient Wnt/β-catenin activation, which was followed by the restoration of kidney morphology and function. However, severe IRI resulted in sustained and exaggerated Wnt/β-catenin activation, which was accompanied by development of renal fibrotic lesions characterized by interstitial myofibroblast activation and excessive extracellular matrix deposition. To assess the role of sustained Wnt/β-catenin signaling in mediating AKI to CKD progression, we manipulated this signaling by overexpression of Wnt ligand or pharmacologic inhibition of β-catenin. In vivo, overexpression of Wnt1 at 5 days after IRI induced β-catenin activation and accelerated AKI to CKD progression. Conversely, blockade of Wnt/β-catenin by small molecule inhibitor ICG-001 at this point hindered AKI to CKD progression. In vitro, Wnt ligands induced renal interstitial fibroblast activation and promoted fibronectin expression. However, activated fibroblasts readily reverted to a quiescent phenotype after Wnt ligands were removed, suggesting that fibroblast activation requires persistent Wnt signaling. These results indicate that sustained, but not transient, activation of Wnt/β-catenin signaling has a decisive role in driving AKI to CKD progression.
Collapse
Affiliation(s)
- Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Departments of Pathology and
| | | | - Roderick J Tan
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; and Departments of Pathology and
| |
Collapse
|
49
|
Hwang IH, Park J, Kim JM, Kim SI, Choi JS, Lee KB, Yun SH, Lee MG, Park SJ, Jang IS. Tetraspanin-2 promotes glucotoxic apoptosis by regulating the JNK/β-catenin signaling pathway in human pancreatic β cells. FASEB J 2016; 30:3107-16. [PMID: 27247127 PMCID: PMC5001516 DOI: 10.1096/fj.201600240rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/19/2016] [Indexed: 12/02/2022]
Abstract
Diabetes mellitus is a complex and heterogeneous disease, which has β-cell
dysfunction at its core. Glucotoxicity affects pancreatic islets, causing
β-cell apoptosis. However, the role of JNK/β-catenin signaling in
glucotoxic β-cell apoptosis is not well understood. Recently, we identified
tetraspanin-2 (TSPAN2) protein as a proapoptotic β-cell factor induced by
glucose, suggesting that TSPAN2 might contribute to pancreatic β-cell
glucotoxicity. To investigate the effects of glucose concentration on TSPAN2
expression and apoptosis, we used reverted immortalized RNAKT-15 human pancreatic
β cells. High TSPAN2 levels up-regulated phosphorylated (p) JNK and induced
apoptosis. p-JNK enhanced the phosphorylation of β-catenin and Dickkopf-1
(Dkk1). Dkk1 knockdown by small interfering (si)RNA up-regulated nuclear
β-catenin, suggesting that it is a JNK/β-catenin-dependent pathway.
siRNA-mediated TSPAN2 depletion in RNAKT-15 cells increased nuclear β-catenin.
This decreased BCL2-associated X protein (Bax) activation, leading to marked
protection against high glucose–induced apoptosis. Bax subfamily proteins
induced apoptosis through caspase-3. Thus, TSPAN2 might have induced Bax
translocation and caspase-3 activation in pancreatic β cells, thereby
promoting the apoptosis of RNAKT-15 cells by regulating the JNK/β-catenin
pathway in response to high glucose concentrations. Targeting TSPAN2 could be a
potential therapeutic strategy to treat glucose toxicity-induced β-cell
failure.—Hwang, I.-H., Park, J., Kim, J. M., Kim, S. I., Choi, J.-S., Lee,
K.-B., Yun, S. H., Lee, M.-G., Park, S. J., Jang, I.-S. Tetraspanin-2 promotes
glucotoxic apoptosis by regulating the JNK/β-catenin signaling pathway in
human pancreatic β cells.
Collapse
Affiliation(s)
- In-Hu Hwang
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| | - Seung Il Kim
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Jong-Soon Choi
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Kyung-Bok Lee
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Sung Ho Yun
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Sangji University College of Korean Medicine, Wonju, Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Korea; and
| |
Collapse
|
50
|
Zhou D, Tan RJ, Fu H, Liu Y. Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. J Transl Med 2016; 96:156-167. [PMID: 26692289 PMCID: PMC4731262 DOI: 10.1038/labinvest.2015.153] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|