1
|
Pan H, Li S, Ning Y, Hu Z. Apelin-13 exerts protective effects against acute kidney injury by lysosomal function regulation. Ren Fail 2025; 47:2480243. [PMID: 40125924 PMCID: PMC11934166 DOI: 10.1080/0886022x.2025.2480243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/08/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Recent studies suggest that the loss of lysosomal function is associated with acute kidney injury (AKI), potentially leading to impaired autophagy. Apelin has been known to regulate autophagy processes in cardiovascular and pulmonary diseases. We sought to explore its potential contribution in lysosomal function and autophagy modulation during AKI. METHODS Apelin-13 (30 μg/kg) or a vehicle control was administered to mice intraperitoneally 24 h prior to and at 0 h, 24 h, and 48 h following renal ischemia-reperfusion (I/R) injury or a sham procedure. Kidney and serum samples were collected for analysis 24 or 72 h postoperatively. RESULTS Our findings indicate that apelin-13 significantly mitigated renal damage and inhibited apoptosis post-AKI. Flow cytometry analysis revealed that apelin-13 treatment modulates the macrophages polarization within the kidney from M1 to M2 phenotype. Additionally, apelin-13 was found to reduce the expression of the (pro)renin receptor, restore lysosomal membrane permeability, augment lysosomal biogenesis, and enhance autophagic flux in the kidney following AKI. CONCLUSIONS Our study elucidates novel mechanisms underlying the protective effects of apelin in AKI through modulating lysosomal function and autophagy.
Collapse
Affiliation(s)
- Hao Pan
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shuangshuang Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yong Ning
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhizhi Hu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
2
|
Lee C, Pratap K, Zhang L, Chen HD, Arnaoutova I, Starost MF, Mansfield BC, Chou JY. Liver-Directed Gene Therapy Mitigates Early Nephropathy in Murine Glycogen Storage Disease Type Ia. J Inherit Metab Dis 2025; 48:e70048. [PMID: 40443300 PMCID: PMC12123395 DOI: 10.1002/jimd.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025]
Abstract
Nephropathy is a complication of glycogen storage disease type Ia (GSD-Ia), a metabolic disorder caused by pathogenic variants in glucose-6-phosphatase-α (G6Pase-α or G6PC1). While maintaining blood glucose homeostasis can delay the progression of renal disease in GSD-Ia, the benefits of liver-directed G6PC1 gene therapy on nephropathy remain unclear. This study evaluates the effects of low- and high-dose G6PC1 liver gene augmentation therapy on kidney function. The G6pc-/- mice, which lack G6Pase-α activity in both liver and kidney, were treated with G6PC1 gene therapy to restore either low or near-normal levels of liver G6Pase-α activity, and renal phenotype was examined at age 12 weeks. Both groups exhibited impaired renal glucose homeostasis, altered renal glucose reabsorption, acute kidney injury, and early signs of renal fibrosis. However, mice with near-normal liver G6Pase-α activity had better renal glucose reabsorption and homeostasis with lower serum levels of cystatin C and blood urea nitrogen, key markers of kidney function. These findings highlight the potential of liver-directed G6PC1 gene therapy to enhance metabolic control and mitigate early kidney disease in GSD-Ia.
Collapse
Affiliation(s)
- Cheol Lee
- Section on Cellular Differentiation, Division of Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Kunal Pratap
- Section on Cellular Differentiation, Division of Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Lisa Zhang
- Section on Cellular Differentiation, Division of Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Hung Dar Chen
- Section on Cellular Differentiation, Division of Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Irina Arnaoutova
- Section on Cellular Differentiation, Division of Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Matthew F. Starost
- Division of Veterinary ResourcesNational Institutes of HealthBethesdaMarylandUSA
| | - Brian C. Mansfield
- Section on Cellular Differentiation, Division of Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Janice Y. Chou
- Section on Cellular Differentiation, Division of Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMarylandUSA
| |
Collapse
|
3
|
Huang JHC, Lourenço BN, Schmiedt CW, Tarigo JL, Coleman AE. Post hoc comparison of the intrarenal and circulating renin-angiotensin(-aldosterone) systems in cats with ischemia-induced chronic kidney disease. Physiol Rep 2025; 13:e70417. [PMID: 40560995 DOI: 10.14814/phy2.70417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2025] [Revised: 05/26/2025] [Accepted: 05/28/2025] [Indexed: 06/28/2025] Open
Abstract
Activities of the circulating and intrarenal renin-angiotensin(-aldosterone) systems (RA[A]S) are incompletely understood in people and cats with chronic kidney disease (CKD). We measured circulating and intrarenal RA(A)S markers in healthy cats (n = 8) and cats with induced CKD (n = 6 subjected to unilateral renal ischemia [RI group] and n = 5 subjected to RI and delayed contralateral nephrectomy [RI-DCN group]). Serum equilibrium concentrations of angiotensin peptides and aldosterone, plasma renin activity, and urinary aldosterone-to-creatinine ratio were evaluated before and after renal injury in CKD cats and at a single timepoint in healthy cats. Renal tissular concentrations of angiotensin peptides and mRNA levels of RA(A)S-related genes were measured in all cats. There was no significant correlation between circulating angiotensin peptide concentrations and their respective renal concentrations. Intrarenal angiotensin I concentrations and AGT transcript levels were positively correlated, and ACE transcript levels were negatively correlated with serum creatinine concentration. Circulating RA(A)S markers were not different between healthy and CKD groups, except for serum angiotensin 1-5, which was lower in the RI group compared to the healthy group. Intrarenal angiotensin peptide concentrations did not differ among groups. Compared to healthy cats, mRNA levels of ACE, AT1R, and REN were lower, and AGT levels were higher in one or both CKD group(s).
Collapse
Affiliation(s)
- Jane H C Huang
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jaime L Tarigo
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Park E, Yim HE, Son MH, Nam YJ, Lee YS, Jeong SH, Lee JH. Long-Term Alterations of Renal Microvasculature in Rats Following Maternal PM 2.5 Exposure: Vitamin D Effects. Biomedicines 2025; 13:1166. [PMID: 40426993 PMCID: PMC12109430 DOI: 10.3390/biomedicines13051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background: This study aimed to investigate the long-term effects of maternal exposure to fine particulate matter (PM2.5) with or without vitamin D supplementation on the renal microvasculature in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were exposed to normal saline, PM2.5, and PM2.5 with vitamin D for one month during nephrogenesis. Male offspring kidneys were taken for analyses on postnatal day 56. Results: Adult offspring rats exposed to maternal PM2.5 exhibited lower body weights and greater glomerular and tubular injury scores compared to control rats. Semi-quantitative analysis revealed a significant reduction in glomerular and peritubular capillary endothelial cells, along with a decrease in the number of glomeruli in the PM2.5 group. Maternal vitamin D supplementation reduced these changes. In offspring rats exposed to maternal PM2.5, intrarenal expression of renin, angiotensin-converting enzyme (ACE), cytochrome P450 27B1, and vascular endothelial growth factor-A (VEGF-A) increased, while expression of the vitamin D receptor, Klotho, VEGF receptor 2, angiopoietin-1, and Tie-2 decreased. Maternal vitamin D supplementation restored VEGF receptor 2 and angiopoietin-1 activities and reduced ACE and VEGF-A protein expression in adult offspring kidneys. Conclusions: Early-life exposure to PM2.5 may lead to long-term alterations in renal microvasculature and nephron loss. Maternal vitamin D supplementation during renal development can ameliorate PM2.5-induced capillary rarefaction and nephron loss in the kidneys of adult offspring.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Hyung-Eun Yim
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea;
| | - Min-Hwa Son
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea;
| | - Yoon-Jeong Nam
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea; (Y.-J.N.); (Y.-S.L.); (S.-H.J.)
| | - Yu-Seon Lee
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea; (Y.-J.N.); (Y.-S.L.); (S.-H.J.)
| | - Sang-Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea; (Y.-J.N.); (Y.-S.L.); (S.-H.J.)
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea;
| |
Collapse
|
5
|
Li XQ, Xiao ZZ, Ma K, Liu XY, Liu HH, Hu B, Zhao Q, Li HY, Chen RC, Meng Y, Yin LH. Angiotensin-Converting Enzyme-Dependent Intrarenal Angiotensin II Contributes to CTP: Phosphoethanolamine Cytidylyltransferase Downregulation, Mitochondrial Membranous Disruption, and Reactive Oxygen Species Overgeneration in Diabetic Tubulopathy. Antioxid Redox Signal 2025; 42:767-786. [PMID: 39495586 DOI: 10.1089/ars.2024.0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Aims: The limited therapeutic options for diabetic tubulopathy (DT) in early diabetic kidney disease (DKD) reflect the difficulty of targeting renal tubular compartment. While renin-angiotensin-aldosterone system (RAS) inhibitors are commonly utilized in the management of DKD, how intrarenal RAS contributes to diabetic tubular injury is not fully understood. Mitochondrial disruption and reactive oxygen species (ROS) overgeneration have been involved in diabetic tubular injury. Herein, we aim to test the hypothesis that angiotensin-converting enzyme (ACE)-dependent intrarenal angiotensin II (AngII) disrupts tubular mitochondrial membranous homeostasis and causes excessive ROS generation in DT. Results: Mice suffered from renal tubular mitochondrial disruption and ROS overgeneration following high-fat diet/streptozocin-type 2 diabetic induction. Intrarenal AngII generation is ACE-dependent in DT. Local AngII accumulation in renal tissues was achieved by intrarenal artery injection. ACE-dependent intrarenal AngII-treated mice exhibit markedly elevated levels of makers of tubular injury. CTP: Phosphoethanolamine cytidylyltransferase (PCYT2), the primary regulatory enzyme for the biosynthesis of phosphatidylethanolamine, was enriched in renal tubules according to single-cell RNA sequencing. ACE-dependent intrarenal AngII-induced tubular membranous disruption, ROS overgeneration, and PCYT2 downregulation. The diabetic ambiance deteriorated the detrimental effect of ACE-dependent intrarenal AngII on renal tubules. Captopril, the ACE inhibitor (ACEI), showed efficiency in partially ameliorating ACE-dependent intrarenal AngII-induced tubular deterioration pre- and post-diabetic induction. Innovation and Conclusion: This study uncovers a critical role of ACE-dependent intrarenal AngII in mitochondrial membranous disruption, ROS overgeneration, and PCYT2 deficiency in diabetic renal tubules, providing novel insight into DT pathogenesis and ACEI-combined therapeutic targets. Antioxid. Redox Signal. 42, 767-786.
Collapse
Affiliation(s)
- Xia-Qing Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Zhang-Zhang Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, Houjie Hospital of Dongguan, Dongguan, China
| | - Ke Ma
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Xia-Yun Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Huan-Huan Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qian Zhao
- Department of Infectious Diseases and Hepatology Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Yue Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Rui-Chang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Liang-Hong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Huangpu Institute of Materials, Guangzhou, China
| |
Collapse
|
6
|
Ornello R, Caponnetto V, Ahmed F, Al-Khazali HM, Ambrosini A, Ashina S, Baraldi C, Bellotti A, Brighina F, Calabresi P, Casillo F, Cevoli S, Cheng S, Chiang CC, Chiarugi A, Christensen RH, Chu MK, Coppola G, Corbelli I, Crema S, De Icco R, de Tommaso M, Di Lorenzo C, Di Stefano V, Diener HC, Ekizoğlu E, Fallacara A, Favoni V, Garces KN, Geppetti P, Goicochea MT, Granato A, Granella F, Guerzoni S, Ha WS, Hassan A, Hirata K, Hoffmann J, Hüssler EM, Hussein M, Iannone LF, Jenkins B, Labastida-Ramirez A, Laporta A, Levin M, Lupica A, Mampreso E, Martinelli D, Monteith TS, Orologio I, Özge A, Pan LLH, Panneerchelvam LL, Peres MFP, Souza MNP, Pozo-Rosich P, Prudenzano MP, Quattrocchi S, Rainero I, Romanenko V, Romozzi M, Russo A, Sances G, Sarchielli P, Schwedt TJ, Silvestro M, Swerts DB, Tassorelli C, Tessitore A, Togha M, Vaghi G, Wang SJ, Ashina M, Sacco S. Evidence-based guidelines for the pharmacological treatment of migraine. Cephalalgia 2025; 45:3331024241305381. [PMID: 40277319 DOI: 10.1177/03331024241305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We here present evidence-based guidelines for the pharmacological treatment of migraine. These guidelines, created by the Italian Society for the Study of Headache and the International Headache Society, aim to offer clear, actionable recommendations to healthcare professionals. They incorporate evidence-based recommendations from randomized controlled trials and expert-based opinions. The guidelines follow the Grading of Recommendations, Assessment, Development and Evaluation approach for assessing the quality of evidence. The guideline development involved a systematic review of literature across multiple databases, adherence to Cochrane review methods, and a structured framework for data extraction and interpretation. Although the guidelines provide a robust foundation for migraine treatment, they also highlight gaps in current research, such as the paucity of head-to-head drug comparisons and the need for long-term outcome studies. These guidelines serve as a resource to standardize migraine treatment and promote high-quality care across different healthcare settings.
Collapse
Affiliation(s)
- Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fayyaz Ahmed
- Hull University Teaching Hospitals NHS Trust., Hull, UK
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Sait Ashina
- Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Baraldi
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Alessia Bellotti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Shuli Cheng
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | | | - Alberto Chiarugi
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Ilenia Corbelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Santiago Crema
- Headache Clinic, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Marina de Tommaso
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Hans-Christoph Diener
- Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Esme Ekizoğlu
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Adriana Fallacara
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Valentina Favoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Kimberly N Garces
- Department of Neurology-Headache Division, University of Miami, Miller School of Medicine, Miami, USA
| | - Pierangelo Geppetti
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
- Department of Molecular Pathobiology and Pain Research Center, College of Dentistry, New York University, New York, USA
| | | | - Antonio Granato
- Clinical Unit of Neurology, Headache Center, Department of Medical, Surgical and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Trieste, Italy
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Guerzoni
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Woo-Seok Ha
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Amr Hassan
- Department of Neurology, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Egypt
| | | | - Jan Hoffmann
- Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eva-Maria Hüssler
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-Suef, Egypt
| | - Luigi Francesco Iannone
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | | | - Alejandro Labastida-Ramirez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Anna Laporta
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Morris Levin
- Headache Center, University of California, San Francisco, CA, USA
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | | | - Daniele Martinelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Teshamae S Monteith
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Ilaria Orologio
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Aynur Özge
- Department of Neurology, Mersin University Medical School, Mersin, Turkey
| | | | | | - Mario F P Peres
- Department of Neurology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Patricia Pozo-Rosich
- Headache Clinic, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain; Headache and Neurological Pain Research Group, VHIR, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Prudenzano
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Silvia Quattrocchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Innocenzo Rainero
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | | | - Marina Romozzi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Russo
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Grazia Sances
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paola Sarchielli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Marcello Silvestro
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Alessandro Tessitore
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Headache Department, Neurology Ward, Sina Hospital, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Shuu-Jiun Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei
- College of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
7
|
Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 2025; 46:836-851. [PMID: 39482471 PMCID: PMC11950336 DOI: 10.1038/s41401-024-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024]
Abstract
Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shui-Juan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
8
|
Yang WX, Su K, Liao MC, Zhou J, Peng J, Hébert MJ, Leal DN, Yamashita M, Miyata KN, Filep JG, Ingelfinger JR, Zhang SL, Chan JS. Renal Tubule-Specific Angiotensinogen Deletion Attenuates SGLT2 Expression and Ameliorates Diabetic Kidney Disease in Murine Models of Type 1 Diabetes. Diabetes 2025; 74:554-568. [PMID: 39752561 PMCID: PMC11926280 DOI: 10.2337/db24-0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/27/2024] [Indexed: 03/22/2025]
Abstract
ARTICLE HIGHLIGHTS Renin-angiotensin system (RAS) activation plays an important role in the progression of diabetic kidney disease (DKD). However, systemic RAS blockade alone is insufficient to reverse DKD progression. We hypothesized that intrarenal renin-angiotensin system (iRAS) activation plays a crucial role in the progression of DKD. We sought to elucidate the role of the iRAS in DKD progression. Selective deletion of angiotensinogen in renal tubules ameliorated the pathological features of DKD. Our study indicates that iRAS inactivation may be a potential approach for preventing DKD disease severity and its progression.
Collapse
Affiliation(s)
- Wen-Xia Yang
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Ke Su
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Min-Chun Liao
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Jing Zhou
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Junzheng Peng
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Marie-Josée Hébert
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel N. Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kana N. Miyata
- Division of Nephrology, Department of Internal Medicine, Saint Louis University, St. Louis, MO
| | - Janos G. Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Quebec, Canada
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - John S.D. Chan
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
9
|
Cheng D, Huang X, Shao B, Zhang C, Li X, Li M. Preventive efficacy of sprouting black soybean peptides on high-salt diet-induced hypertension in mice. J Food Sci 2025; 90:e70014. [PMID: 39961801 DOI: 10.1111/1750-3841.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 05/09/2025]
Abstract
This study examined possible mechanisms of action as well as the preventive and interventional effects of sprouting black soybean peptides (SBSPs) and black soybean peptides (BSPs) on hypertension in C57BL/6j mice that was brought on by a high-salt diet. BSP and SBSP were administered to mice in the black soybean peptide prevention (BSP-P) group and sprouting black soybean peptide prevention (SBSP-P) group starting 4 weeks prior to the high-salt diet, respectively. Mice in the black soybean peptide intervention (BSP-I) group and the sprouting black soybean peptide intervention (SBSP-I) group received oral doses of BSP and SBSP, respectively, together with a high-salt diet. The findings demonstrated that BSP-I, BSP-P, SBSP-I, and SBSP-P prevented the activation of localized angiotensin converting enzyme (ACE)/angiotensin II (Ang II) pathways in the kidneys and circulation, delayed the rise in blood pressure in mice, and preserved the functional nitric oxide/endothelin-1 (NO/ET-1) balance of endothelium. The inflammatory factors tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and interleukin-6 (IL-6) had decreased plasma levels. Additionally, it improved fibrosis, renal edema phenomena, and cardiomegaly. Furthermore, the expression of genes related to the renin-angiotensin system and endothelial function is regulated by SBSP and BSP. On the other hand, compared to intervention effects, SBSP and BSP showed more noticeable preventive benefits on hypertension brought on by a high-salt diet. When all else was equal, SBSP was more effective than BSP at avoiding hypertension. As a result, this study offers theoretical backing for SBSP as a dietary supplement source for the prevention of high-salt diet-induced hypertension.
Collapse
Affiliation(s)
- Dawei Cheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinyu Huang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ben Shao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Caihong Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xueling Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meiqing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Yang T, Gao ZX, Mao ZH, Wu P. Soluble (pro)renin receptor as a novel regulator of renal medullary Na + reabsorption. Am J Physiol Renal Physiol 2025; 328:F239-F247. [PMID: 39508841 DOI: 10.1152/ajprenal.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
Epithelial sodium channel (ENaC) represents a major route of Na+ reabsorption in the aldosterone-sensitive distal nephron where the bulk of ENaC activity is considered to occur in the cortical collecting duct (CCD). Relatively, ENaC activity in the medulla, especially the inner medulla, is often neglected. (Pro)renin receptor (PRR), also termed ATP6ap2, a newly characterized member of the renin-angiotensin system, has emerged as an important regulator of ENaC in the distal nephron. The ENaC regulatory action of PRR is largely mediated by the 28 kDa soluble PRR (sPRR). Although all three subunits of ENaC are under the control of aldosterone, sPRR only mediates the upregulation of α-ENaC but not the other two subunits. Furthermore, sPRR-dependent regulation of α-ENaC only occurs in the renal inner medulla but not in the cortex. sPRR also rapidly upregulates ENaC activity via Nox4-derived H2O2. Overall, sPRR has emerged as an important regulator of renal medullary Na+ reabsorption in the context of overactivation of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Zhong-Xiuzi Gao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zi-Hui Mao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
11
|
Zhou Y, Xu W, Ruan B, Zhu L, Jiang Y, Cai H, Huang J. Molecular Imaging of Renin Activity using Fluorogenic Nanoprobes for Precision Antihypertensive Therapy. Angew Chem Int Ed Engl 2025; 64:e202416002. [PMID: 39279688 DOI: 10.1002/anie.202416002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/18/2024]
Abstract
Life-threatening hypertension remains inadequately controlled in clinics due to its heterogeneous renin levels. Rapid stratification of hypertension through renin analysis is crucial for effective personalized treatment, yet an ultrasensitive detection approach is currently lacking. Here, we report activatable renin nanoprobes (ARNs) for non-invasive and ultrasensitive profiling of renin activity and guiding antihypertensive treatment decision through near-infrared fluorescence (NIRF) in vivo imaging and in vitro urinalysis. ARNs are intrinsically non-fluorescent due to NIRF reporter connected to a gold nanocluster through a renin-responsive peptide. In hyperreninemia mouse models, ARNs specifically react with renin to liberate the renal clearable NIRF reporter for accurate renin detection that outperforms the gold standard radioimmunoassay. Such specific and sensitive detection also enables imaging-based high-throughput screening of antihypertensive drugs. In hypertensive rat models, ARNs enable ultrasensitive detection of both plasma and urinary renin, facilitating renin-guided precision treatment and significantly improving hypertension control rate (90 % versus 58 %). Our nanoprobe platform holds great potential for assisting clinicians in rapidly and accurately classifying hypertensive patients and improving outcomes through tailored treatment selection.
Collapse
Affiliation(s)
- Ya Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bankang Ruan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lijuan Zhu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA-94305, USA
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen, 518107, China
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Yu D, Shen J, Li L, Long Q, Xie S, Zhou M, Tian Q, Cai Y. Investigating the biological significance of the TCM principle "promoting urination to regulate bowel movements" through the influence of the intestinal microbiota and their metabolites on the renal-intestinal axis. Front Cell Infect Microbiol 2025; 14:1523708. [PMID: 39867340 PMCID: PMC11757259 DOI: 10.3389/fcimb.2024.1523708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Treatment methods in traditional Chinese medicine (TCM) are foundational to their theoretical, methodological, formulaic, and pharmacological systems, significantly contributing to syndrome differentiation and therapy. The principle of "promoting urination to regulate bowel movements" is a common therapeutic approach in TCM. The core concept is "promoting the dispersion and drainage of water dampness, regulating urination to relieve diarrhea," yet its scientific underpinning remains unclear. Modern medical treatment for watery diarrhea primarily focuses on electrolyte replenishment, as diuretics may lead to dehydration and other side effects. Some reports suggest that this TCM approach lacks scientific validity. Microecology, an area associated with the origins of TCM, is closely related to the development, diagnosis, and treatment of diarrhea. The renal-intestinal axis offers a molecular biological basis for examining associated pathological mechanisms, advancing therapeutic targets such as "treating the intestine to address kidney issues" and highlighting the interactions within the "renal-intestinal microbiota-liquid metabolism" framework, thus providing an endogenous mechanism to support "treating the intestine through the kidney." An increasing number of studies have shown that the intestinal microbiota and its metabolites, as unique mediators, are involved in the physiological and pathological changes of the body. Therefore, this study explores the relationship between fluid metabolism and diarrhea from the perspective of the intestinal microbiota and its metabolites, aiming to elucidate the biological mechanisms underlying the "promoting urination to regulate bowel movements" therapeutic approach and to clarify the scientific basis for treating diarrhea via the renal-intestinal axis. This research provides new insights for the study of TCM microbiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Zheng J, Hao H. Targeting renal damage: The ACE2/Ang-(1-7)/mas axis in chronic kidney disease. Cell Signal 2024; 124:111413. [PMID: 39293746 DOI: 10.1016/j.cellsig.2024.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The renin-angiotensin system (RAS) is a crucial factor in chronic kidney disease (CKD) progression, affecting renal function and contributing significantly to renal tissue inflammation and fibrosis. Activation of the classical ACE/Ang II/AT1 axis exacerbates renal damage, while the ACE2/Ang-(1-7)/Mas axis has shown promise in reducing CKD progression in numerous animal models. Recently, the ACE2/Ang-(1-7)/Mas axis has emerged as a promising target for CKD interventions. This review provides a comprehensive review of the pivotal role of this axis in CKD pathogenesis and systematically examines various molecules and pharmaceutical agents targeting this pathway. This review aims to elucidate potential strategies for delaying or halting CKD progression, offering patients more effective treatment options.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China.
| |
Collapse
|
14
|
Zhu M, Yi X, Song S, Yang H, Yu J, Xu C. Principle role of the (pro)renin receptor system in cardiovascular and metabolic diseases: An update. Cell Signal 2024; 124:111417. [PMID: 39321906 DOI: 10.1016/j.cellsig.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
(Pro)renin receptor (PRR), along with its soluble form, sPRR, functions not only as a crucial activator of the local renin-angiotensin system but also engages with and activates various angiotensin II-independent signaling pathways, thus playing complex and significant roles in numerous physiological and pathophysiological processes, including cardiovascular and metabolic disorders. This article reviews current knowledge on the intracellular partners of the PRR system and explores its physiological and pathophysiological impacts on cardiovascular diseases as well as conditions related to glucose and lipid metabolism, such as hypertension, heart disease, liver disease, diabetes, and diabetic complications. Targeting the PRR system could emerge as a promising therapeutic strategy for treating these conditions. Elevated levels of circulating sPRR might indicate the severity of these diseases, potentially serving as a biomarker for diagnosis and prognosis in clinical settings. A comprehensive understanding of the functions and regulatory mechanisms of the PRR system could facilitate the development of novel therapeutic approaches for the prevention and management of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Mengzhi Zhu
- College of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
15
|
Pang J, Yang C, Liu J, Wang Z, Tao X, Cao Z. Correlation between vitamin D metabolic pathway-related gene polymorphisms and cardiovascular disease. Food Funct 2024; 15:11342-11364. [PMID: 39494806 DOI: 10.1039/d4fo03234a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Vitamin D plays important roles in various physiological processes such as cardiovascular health, calcium balance regulation, bone health, immune system support, neurological function regulation, muscle function maintenance, and anti-inflammatory effects. Therefore, maintaining its adequate levels is essential for overall health. Genetic polymorphisms in vitamin D metabolic pathways have become a key factor affecting the susceptibility and progression of cardiovascular disease (CVD). This article reviews the relationship between gene polymorphisms in vitamin D metabolic pathways and vitamin D levels or CVD. It is emphasized that the polymorphisms of key genes such as GC, VDR, CYP2R1, CYP24A1 and CYP27B1 are related to the pathogenesis of CVD. These polymorphisms can regulate serum levels of vitamin D, thereby affecting the susceptibility, comorbidities and clinical manifestations of CVD. Despite the progress made, there are still inconsistencies and gaps in the literature. Thus, it is necessary to conduct large-scale, multicenter studies to verify these findings and deepen our understanding of the intricate interactions between gene polymorphisms in vitamin D metabolic pathways and CVD.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- College of Life Science, Northwest University, Xi'an City, 710069, China
| | - Chunshuo Yang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Jiaqi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211103, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
16
|
Daghbouche-Rubio N, Álvarez-Miguel I, Flores VA, Rojo-Mencía J, Navedo M, Nieves-Citrón M, Cidad P, Pérez-García MT, López-López JR. The P2Y6 Receptor as a Potential Keystone in Essential Hypertension. FUNCTION 2024; 5:zqae045. [PMID: 39322240 DOI: 10.1093/function/zqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Essential hypertension (HT) is a highly prevalent cardiovascular disease of unclear physiopathology. Pharmacological studies suggest that purinergic P2Y6 receptors (P2ry6) play important roles in cardiovascular function and may contribute to angiotensin II (AgtII) pathophysiological effects. Here, we tested the hypothesis that functional coupling between P2ry6 and AgtII receptors mediates altered vascular reactivity in HT. For this, a multipronged approach was implemented using mesenteric vascular smooth muscle cells (VSMCs) and arteries from Blood Pressure Normal (BPN) and Blood Pressure High (BPH) mice. Differential transcriptome profiling of mesenteric artery VSMCs identified P2ry6 purinergic receptor mRNA as one of the top upregulated transcripts in BPH. P2Y receptor activation elicited distinct vascular responses in mesenteric arteries from BPN and BPH mice. Accordingly, 10 µm UTP produced a contraction close to half-maximal activation in BPH arteries but no response in BPN vessels. AgtII-induced contraction was also higher in BPH mice despite having lower AgtII receptor type-1 (Agtr1) expression and was sensitive to P2ry6 modulators. Proximity ligation assay and super-resolution microscopy showed closer localization of Agtr1 and P2ry6 at/near the membrane of BPH mice. This proximal association was reduced in BPN mice, suggesting a functional role for Agtr1-P2ry6 complexes in the hypertensive phenotype. Intriguingly, BPN mice were resistant to AgtII-induced HT and showed reduced P2ry6 expression in VSMCs. Altogether, results suggest that increased functional coupling between P2ry6 and Agtr1 may contribute to enhanced vascular reactivity during HT. In this regard, blocking P2ry6 could be a potential pharmacological strategy to treat HT.
Collapse
MESH Headings
- Animals
- Essential Hypertension/metabolism
- Essential Hypertension/genetics
- Mice
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Mice, Inbred C57BL
- Angiotensin II/pharmacology
- Blood Pressure/genetics
Collapse
Affiliation(s)
- Nuria Daghbouche-Rubio
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - Inés Álvarez-Miguel
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | | | - Jorge Rojo-Mencía
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - Manuel Navedo
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | | | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| |
Collapse
|
17
|
Luo R, Yang KT, Wang F, Zheng H, Yang T. Collecting Duct Pro(Renin) Receptor Contributes to Unilateral Ureteral Obstruction-Induced Kidney Injury via Activation of the Intrarenal RAS. Hypertension 2024; 81:2152-2161. [PMID: 39171392 PMCID: PMC11410543 DOI: 10.1161/hypertensionaha.123.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Although the concept of the intrarenal renin-angiotensin system (RAS) in renal disease is well-described in the literature, the precise pathogenic role and mechanism of this local system have not been directly assessed in the absence of confounding influence from the systemic RAS. The present study used novel mouse models of collecting duct (CD)-specific deletion of (pro)renin receptor (PRR) or renin together with pharmacological inhibition of soluble PRR production to unravel the precise contribution of the intrarenal RAS to renal injury induced by unilateral ureteral obstruction. METHODS We examined the impact of CD-specific deletion of PRR, CD-specific deletion of renin, and S1P (site-1 protease) inhibitor PF429242 treatment on renal fibrosis and inflammation and the indices of the intrarenal RAS in a mouse model of unilateral ureteral obstruction. RESULTS After 3 days of unilateral ureteral obstruction, the indices of the intrarenal RAS including the renal medullary renin content, activity and mRNA expression, and Ang (angiotensin) II content in obstructed kidneys of floxed mice were all increased. That effect was reversed with CD-specific deletion of PRR, CD-specific deletion of renin, and PF429242 treatment, accompanied by consistent improvement in renal fibrosis and inflammation. On the other hand, renal cortical renin levels were unaffected by unilateral ureteral obstruction, irrespective of the genotype. Similar results were obtained via pharmacological inhibition of S1P, the key protease for the generation of soluble PRR. CONCLUSIONS Our results reveal that PRR-dependent/soluble PRR-dependent activation of CD renin represents a key determinant of the intrarenal RAS and, thus, obstruction-induced renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Huaqing Zheng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
19
|
Ni WJ, Li ZL, Wen XL, Ji JL, Liu H, Yin Q, Jiang LYZ, Zhang YL, Wen Y, Tang TT, Jiang W, Lv LL, Gan WH, Liu BC, Wang B. HIF-1α and adaptor protein LIM and senescent cell antigen-like domains protein 1 axis promotes tubulointerstitial fibrosis by interacting with vimentin in angiotensin II-induced hypertension. Br J Pharmacol 2024; 181:3098-3117. [PMID: 38698737 DOI: 10.1111/bph.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.
Collapse
Affiliation(s)
- Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xian-Li Wen
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Liang-Yun-Zi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
21
|
Jang HS, Noh MR, Ha L, Kim J, Padanilam BJ. Effect of Tissue-derived Angiotensinogen on Kidney Injury and Fibrosis in Obstructive Nephropathy. In Vivo 2024; 38:2107-2114. [PMID: 39187331 PMCID: PMC11363765 DOI: 10.21873/invivo.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Angiotensinogen (AGT), a precursor of angiotensin II (AngII), contributes to regulating (patho)physiological conditions, including blood pressure changes, inflammation, and kidney fibrosis. However, the precise role of tissue-specific AGT in kidney fibrosis independent of blood pressure remains to be fully understood. This study investigated the source of intrarenal AGT and its role in kidney injury and fibrosis during obstructive nephropathy. MATERIALS AND METHODS Proximal tubule- (PT, major source secreting AGT in the kidney; PKO) or liver- (major source of circulating AGT; LKO) AGT knockout (KO) mice were subjected to unilateral ureteral obstruction (UUO), a blood pressure-independent fibrosis model. RESULTS UUO increased AGT mRNA and protein levels in the kidneys. PKO decreased AGT mRNA, but LKO enhanced it in UUO kidneys compared with the control. In contrast, the intrarenal protein levels of AGT increased in PKO, but not in LKO in UUO kidneys, indicating that the liver is a major source of intrarenal AGT protein. Expression of megalin, a PT receptor involved in the uptake of circulating AGT, was down-regulated in UUO kidneys and was independent of PKO or LKO. However, none of these changes prevented UUO-induced tubular injury and kidney fibrosis. CONCLUSION Hepatic and proximal tubule AGT play distinct roles in contributing to intrarenal AGT levels during UUO, and their genetic inhibitions fail to prevent kidney injury and fibrosis, suggesting a highly complicated signaling pathway of the renin-angiotensin system and an associated compensatory mechanism in obstructive nephropathy.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.;
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Mi Ra Noh
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Ligyeom Ha
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Babu J Padanilam
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.;
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| |
Collapse
|
22
|
See EJ, Chaba A, Spano S, Maeda A, Clapham C, Burrell LM, Liu J, Khasin M, Liskaser G, Eastwood G, Bellomo R. Renin Levels and Angiotensin II Responsiveness in Vasopressor-Dependent Hypotension. Crit Care Med 2024; 52:1218-1227. [PMID: 38511994 DOI: 10.1097/ccm.0000000000006273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
OBJECTIVES The relationship between renin levels, exposure to renin-angiotensin system (RAS) inhibitors, angiotensin II (ANGII) responsiveness, and outcome in patients with vasopressor-dependent vasodilatory hypotension is unknown. DESIGN We conducted a single-center prospective observational study to explore whether recent RAS inhibitor exposure affected baseline renin levels, whether baseline renin levels predicted ANGII responsiveness, and whether renin levels at 24 hours were associated with clinical outcomes. SETTING An academic ICU in Melbourne, VIC, Australia. PATIENTS Forty critically ill adults who received ANGII as the primary agent for vasopressor-dependent vasodilatory hypotension who were included in the Acute Renal effects of Angiotensin II Management in Shock study. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS After multivariable adjustment, recent exposure to a RAS inhibitor was independently associated with a relative increase in baseline renin levels by 198% (95% CI, 36-552%). The peak amount of ANGII required to achieve target mean arterial pressure was independently associated with baseline renin level (increase by 46% per ten-fold increase; 95% CI, 8-98%). Higher renin levels at 24 hours after ANGII initiation were independently associated with fewer days alive and free of continuous renal replacement therapy (CRRT) (-7 d per ten-fold increase; 95% CI, -12 to -1). CONCLUSIONS In patients with vasopressor-dependent vasodilatory hypotension, recent RAS inhibitor exposure was associated with higher baseline renin levels. Such higher renin levels were then associated with decreased ANGII responsiveness. Higher renin levels at 24 hours despite ANGII infusion were associated with fewer days alive and CRRT-free. These preliminary findings emphasize the importance of the RAS and the role of renin as a biomarker in patients with vasopressor-dependent vasodilatory hypotension.
Collapse
Affiliation(s)
- Emily J See
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Institute of Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
| | - Anis Chaba
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Sofia Spano
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Akinori Maeda
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Caroline Clapham
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Louise M Burrell
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Institute of Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
| | - Jasmine Liu
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Monique Khasin
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Grace Liskaser
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Glenn Eastwood
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, Australia
| | - Rinaldo Bellomo
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Powell NR, Shugg T, Leighty J, Martin M, Kreutz RP, Eadon MT, Lai D, Lu T, Skaar TC. Analysis of the combined effect of rs699 and rs5051 on angiotensinogen expression and hypertension. Chronic Dis Transl Med 2024; 10:102-117. [PMID: 38872760 PMCID: PMC11166681 DOI: 10.1002/cdt3.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 06/15/2024] Open
Abstract
Background Hypertension (HTN) involves genetic variability in the renin-angiotensin system and influences antihypertensive response. We previously reported that angiotensinogen (AGT) messenger RNA (mRNA) is endogenously bound by miR-122-5p and rs699 A > G decreases reporter mRNA in the microRNA functional-assay PASSPORT-seq. The AGT promoter variant rs5051 C > T is in linkage disequilibrium (LD) with rs699 A > G and increases AGT transcription. The independent effect of these variants is understudied due to their LD therefore we aimed to test the hypothesis that increased AGT by rs5051 C > T counterbalances AGT decreased by rs699 A > G, and when these variants occur independently, it translates to HTN-related phenotypes. Methods We used in silico, in vitro, in vivo, and retrospective models to test this hypothesis. Results In silico, rs699 A > G is predicted to increase miR-122-5p binding affinity by 3%. Mir-eCLIP results show rs699 is 40-45 nucleotides from the strongest microRNA-binding site in the AGT mRNA. Unexpectedly, rs699 A > G increases AGT mRNA in an AGT-plasmid-cDNA HepG2 expression model. Genotype-Tissue Expression (GTEx) and UK Biobank analyses demonstrate liver AGT expression and HTN phenotypes are not different when rs699 A > G occurs independently from rs5051 C > T. However, GTEx and the in vitro experiments suggest rs699 A > G confers cell-type-specific effects on AGT mRNA abundance, and suggest paracrine renal renin-angiotensin-system perturbations could mediate the rs699 A > G associations with HTN. Conclusions We found that rs5051 C > T and rs699 A > G significantly associate with systolic blood pressure in Black participants in the UK Biobank, demonstrating a fourfold larger effect than in White participants. Further studies are warranted to determine if altered antihypertensive response in Black individuals might be due to rs5051 C > T or rs699 A > G. Studies like this will help clinicians move beyond the use of race as a surrogate for genotype.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Tyler Shugg
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Jacob Leighty
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Matthew Martin
- Department of Pharmacology and ToxicologySchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Rolf P. Kreutz
- Department of CardiologySchool of Medicine, Krannert Institute of Cardiology, Indiana UniversityIndianapolisIndianaUSA
| | - Michael T. Eadon
- Division of Nephrology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Dongbing Lai
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Tao Lu
- Department of Pharmacology and ToxicologySchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Todd C. Skaar
- Division of Clinical Pharmacology, Department of MedicineSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
24
|
Garcia Marrero TM, Ward JL, Tropf MA, Bourgois‐Mochel A, Guillot E, Domenig O, Yuan L, Kundu D, Mochel JP. Effect of amlodipine on the circulating renin-angiotensin-aldosterone system in healthy cats. J Vet Intern Med 2024; 38:913-921. [PMID: 38334012 PMCID: PMC10937479 DOI: 10.1111/jvim.17006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Systemic hypertension (SH) is a common cardiovascular disease in older cats that is treated primarily with the calcium channel blocker amlodipine besylate (AML). The systemic effect of AML on the classical and alterative arms of the renin-angiotensin-aldosterone system (RAAS) in cats is incompletely characterized. HYPOTHESIS/OBJECTIVES To determine the effect of AML compared to placebo on circulating RAAS biomarkers in healthy cats using RAAS fingerprinting. ANIMALS Twenty healthy client-owned cats. METHODS Cats were administered amlodipine besylate (0.625 mg in toto) or placebo by mouth once daily for 14 days in a crossover design with a 4-week washout period. Plasma AML concentrations and RAAS biomarker concentrations were measured at multiple timepoints after the final dose in each treatment period. Time-weighted averages for RAAS biomarkers over 24 hours after dosing were compared between treatment groups using Wilcoxon rank-sum testing. RESULTS Compared to placebo, AML treatment was associated with increases in markers of plasma renin concentration (median 44% increase; interquartile range [IQR] 19%-86%; P = .009), angiotensin I (59% increase; IQR 27-101%; P = .006), angiotensin II (56% increase; IQR 5-70%; P = .023), angiotensin IV (42% increase; -19% to 89%; P = .013); and angiotensin 1-7 (38% increase; IQR 9-118%; P = .015). CONCLUSIONS AND CLINICAL IMPORTANCE In healthy cats, administration of AML resulted in nonspecific activation of both classical and alternative RAAS pathways.
Collapse
Affiliation(s)
- Tatiana M. Garcia Marrero
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Jessica L. Ward
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Melissa A. Tropf
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Agnes Bourgois‐Mochel
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Emilie Guillot
- Ceva Santé Animale, Companion Animal FranchiseLibourneFrance
| | | | - Lingnan Yuan
- Department of Veterinary Biomedical SciencesSMART Pharmacology, College of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Debosmita Kundu
- Department of StatisticsCollege of Liberal Arts and Sciences, Iowa State UniversityAmesIowaUSA
| | - Jonathan P. Mochel
- Department of Veterinary Biomedical SciencesSMART Pharmacology, College of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
- Department of Veterinary PathologySMART Pharmacology, College of Veterinary Medicine, University of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
25
|
Martínez-Rojas MÁ, Balcázar H, González-Soria I, González-Rivera JM, Rodríguez-Vergara ME, Velazquez-Villegas LA, León-Contreras JC, Pérez-Villalva R, Correa F, Rosetti F, Bobadilla NA. Transient inhibition of sodium-glucose cotransporter 2 after ischemia/reperfusion injury ameliorates chronic kidney disease. JCI Insight 2024; 9:e173675. [PMID: 38516890 PMCID: PMC11063941 DOI: 10.1172/jci.insight.173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-Rojas
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Hiram Balcázar
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Isaac González-Soria
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Jesús Manuel González-Rivera
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Mauricio E. Rodríguez-Vergara
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | | | - Juan Carlos León-Contreras
- Departmento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Francisco Correa
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Florencia Rosetti
- Departmento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A. Bobadilla
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| |
Collapse
|
26
|
Xu C. Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone. Endocrine 2024; 83:285-301. [PMID: 37847370 DOI: 10.1007/s12020-023-03566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Accumulating evidence has demonstrated the existence of extra-adrenal aldosterone in various tissues, including the brain, heart, vascular, adipocyte, and kidney, mainly based on the detection of the CYP11B2 (aldosterone synthase, cytochrome P450, family 11, subfamily B, polypeptide 2) expression using semi-quantitative methods including reverse transcription-polymerase chain reaction and antibody-based western blotting, as well as local tissue aldosterone levels by antibody-based immunosorbent assays. This mini-review highlights the current evidence and challenges in extra-adrenal aldosterone, focusing on intrarenal aldosterone. METHODS A narrative review. RESULTS Locally synthesized aldosterone may play a vital role in various physio-pathological processes, especially cardiovascular events. The site of local aldosterone synthesis in the kidney may include the mesangial cells, podocytes, proximal tubules, and collecting ducts. The synthesis of renal aldosterone may be regulated by (pro)renin receptor/(pro)renin, angiotensin II/Angiotensin II type 1 receptor, wnt/β-catenin, cyclooxygenase-2/prostaglandin E2, and klotho. Enhanced renal aldosterone release promotes Na+ reabsorption and K+ excretion in the distal nephron and may contribute to the progress of diabetic nephropathy and salt-related hypertension. CONCLUSIONS Inhibition of intrarenal aldosterone signaling by aldosterone synthase inhibitors or mineralocorticoid receptor antagonists may be a hopeful pharmacological technique for the therapy of diabetic nephropathy and saltrelated hypertension. Yet, current reports are often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone exists, or whether it is of any physiological and pathophysiological significance.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330002, Jiangxi, China.
| |
Collapse
|
27
|
Qian M, Ren X, Mao P, Li Z, Qian T, Wang L, Liu H. Transcriptomics-based analysis reveals the nephrotoxic effects of triphenyltin (TPT) on SD rats by affecting RAS, AQPs and lipid metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105792. [PMID: 38458666 DOI: 10.1016/j.pestbp.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 03/10/2024]
Abstract
Triphenyltin (TPT) is a class of organotin compounds that are extensively used in industry and agriculture. They have endocrine-disrupting effects and cause severe environmental contamination. Pollutants may accumulate in the kidneys and cause pathological complications. However, the mechanism of TPT's toxicological effects on the kidney remains unclear. This study aimed to investigate the toxic effects and mechanism of action of TPT exposure on renal impairment in rats. Male SD rats were divided into four groups: the Ctrl group (control group), TPT-L group (0.5 mg/kg/d), TPT-M group (1 mg/kg/d), and TPT-H group (2 mg/kg/d). After 28 days of exposure to TPT, we observed the morphology and structure of kidney tissue using HE, PASM, and Masson staining. We also detected serum biochemical indexes, performed transcriptome sequencing of rat kidney tissue using RNA-seq. Furthermore, protein expression levels were measured through immunohistochemistry and gene expression levels were determined using RT-qPCR. The study results indicated a decrease in kidney weight and relative kidney weight after 28 days of exposure to TPT. Additionally, TPT caused damage to kidney structure and function, as evidenced by HE staining, PASM staining, and serum biochemical tests. Transcriptomics identified 352 DEGs, and enrichment analyses revealed that TPT exposure primarily impacted the renin-angiotensin system (RAS). The expression levels of water channel proteins were reduced, and the expression levels of RAS and lipid metabolism-related genes (Mme, Ace, Fasn, Cyp4a8, Cpt1b and Ppard) were significantly decreased in the TPT-treated group. In summary, exposure to TPT may impair renal structure and function in rats by affecting RAS, AQPs, and lipid metabolism.
Collapse
Affiliation(s)
- Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xijuan Ren
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Penghui Mao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Zhi Li
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Tingting Qian
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
28
|
Gamiño-Gutiérrez JA, Terán-Hernández IM, Castellar-Lopez J, Villamizar-Villamizar W, Osorio-Llanes E, Palacios-Cruz M, Rosales W, Chang AY, Díaz-Ariza LA, Ospino MC, Mendoza-Torres E. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin-Angiotensin System. Biomedicines 2024; 12:255. [PMID: 38397857 PMCID: PMC10887066 DOI: 10.3390/biomedicines12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.
Collapse
Affiliation(s)
| | - Ivana María Terán-Hernández
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Jairo Castellar-Lopez
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Wendy Villamizar-Villamizar
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Estefanie Osorio-Llanes
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | | | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Luis Antonio Díaz-Ariza
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - María Clara Ospino
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| |
Collapse
|
29
|
Kumar K, Rawat P, Kaur S, Singh N, Yadav HN, Singh D, Jaggi AS, Sethi D. Unveiling Wide Spectrum Therapeutic Implications and Signaling Mechanisms of Valsartan in Diverse Disorders: A Comprehensive Review. Curr Drug Res Rev 2024; 16:268-288. [PMID: 37461345 DOI: 10.2174/2589977515666230717120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2024]
Abstract
Valsartan is an orally active non-peptide angiotensin receptor antagonist, an effective and well-tolerated anti-hypertensive drug. Besides its antihypertensive action, it has clinical implications in many other disorders, like heart failure (HF), arrhythmia, chronic kidney disease (CKD), diabetic complications (DM), atherosclerosis, etc. Besides angiotensin receptor blocking activity, valsartan reduces circulating levels of biochemical markers, such as hs-CRP, which is responsible for its anti-inflammatory and anti-oxidant activity. Moreover, valsartan also acts by inhibiting or inducing various signalling pathways, such as inducing autophagy via the AKT/mTOR/S6K pathway or inhibiting the TLR/NF-kB pathway. The current review exhaustively discusses the therapeutic implications of valsartan with specific emphasis on the mechanism of action in various disorders. The article provides a detailed spectrum of the therapeutic profile of valsartan and will likely be very useful to researchers working in the relevant research areas.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Pooja Rawat
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Simrat Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Dimple Sethi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
30
|
Lee C, Pratap K, Zhang L, Chen HD, Gautam S, Arnaoutova I, Raghavankutty M, Starost MF, Kahn M, Mansfield BC, Chou JY. Inhibition of Wnt/β-catenin signaling reduces renal fibrosis in murine glycogen storage disease type Ia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166874. [PMID: 37666439 PMCID: PMC10841171 DOI: 10.1016/j.bbadis.2023.166874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the enzyme glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the gluconeogenic organs, namely liver, kidney cortex, and intestine. Renal G6Pase-α deficiency in GSD-Ia is characterized by impaired gluconeogenesis, nephromegaly due to elevated glycogen accumulation, and nephropathy caused, in part, by renal fibrosis, mediated by activation of the renin-angiotensin system (RAS). The Wnt/β-catenin signaling regulates the expression of a variety of downstream mediators implicated in renal fibrosis, including multiple genes in the RAS. Sustained activation of Wnt/β-catenin signaling is associated with the development and progression of renal fibrotic lesions that can lead to chronic kidney disease. In this study, we examined the molecular mechanism underlying GSD-Ia nephropathy. Damage to the kidney proximal tubules is known to trigger acute kidney injury (AKI) that can, in turn, activate Wnt/β-catenin signaling. We show that GSD-Ia mice have AKI that leads to activation of the Wnt/β-catenin/RAS axis. Renal fibrosis was demonstrated by increased renal levels of Snail1, α-smooth muscle actin (α-SMA), and extracellular matrix proteins, including collagen-Iα1 and collagen-IV. Treating GSD-Ia mice with a CBP/β-catenin inhibitor, ICG-001, significantly decreased nuclear translocated active β-catenin and reduced renal levels of renin, Snail1, α-SMA, and collagen-IV. The results suggest that inhibition of Wnt/β-catenin signaling may be a promising therapeutic strategy for GSD-Ia nephropathy.
Collapse
Affiliation(s)
- Cheol Lee
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Kunal Pratap
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Lisa Zhang
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Hung Dar Chen
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Sudeep Gautam
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Irina Arnaoutova
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Mahadevan Raghavankutty
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20802, USA
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckmann Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Brian C Mansfield
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA
| | - Janice Y Chou
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20802, USA.
| |
Collapse
|
31
|
Gallego-López MDC, Ojeda ML, Romero-Herrera I, Rua RM, Carreras O, Nogales F. Folic acid antioxidant supplementation to binge drinking adolescent rats improves hydric-saline balance and blood pressure, but fails to increase renal NO availability and glomerular filtration rate. FASEB J 2024; 38:e23341. [PMID: 38031982 DOI: 10.1096/fj.202301609r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.
Collapse
Affiliation(s)
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
32
|
Miao H, Wang YN, Su W, Zou L, Zhuang SG, Yu XY, Liu F, Zhao YY. Sirtuin 6 protects against podocyte injury by blocking the renin-angiotensin system by inhibiting the Wnt1/β-catenin pathway. Acta Pharmacol Sin 2024; 45:137-149. [PMID: 37640899 PMCID: PMC10770168 DOI: 10.1038/s41401-023-01148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Sirtuins (Sirts) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases that share diverse cellular functions. Increasing evidence shows that Sirts play a critical role in podocyte injury, which is a major determinant of proteinuria-associated renal disease. Membranous nephropathy (MN) is a typical glomerular disease in which podocyte damage mediates proteinuria development. In this study we investigated the molecular mechanisms underlying the regulatory roles of Sirt in podocyte injury in MN patients, rats with cationic bovine serum albumin (CBSA)-induced MN and zymosan activation serum (ZAS)-stimulated podocytes. Compared with healthy controls, MN patients showed significant reduction in intrarenal Sirt1 and Sirt6 protein expression. In CBSA-induced MN rats, significant reduction in intrarenal Sirt1, Sirt3 and Sirt6 protein expression was observed. However, only significant decrease in Sirt6 protein expression was found in ZAS-stimulated podocytes. MN patients showed significantly upregulated protein expression of Wnt1 and β-catenin and renin-angiotensin system (RAS) components in glomeruli. CBSA-induced MN rats exhibited significantly upregulated protein expression of intrarenal Wnt1 and β-catenin and their downstream gene products as well as RAS components. Similar results were observed in ZAS-stimulated podocytes. In ZAS-stimulated podocytes, treatment with a specific Sirt6 activator UBCS039 preserved the protein expression of podocin, nephrin and podocalyxin, accompanied by significant inhibition of the protein expression of β-catenin and its downstream gene products, including Snail1 and Twist; treatment with a β-catenin inhibitor ICG-001 significantly preserved the expression of podocyte-specific proteins and inhibited the upregulation of downstream β-catenin gene products accompanied by significant suppression of the protein expression of RAS components. Thus, we demonstrate that Sirt6 ameliorates podocyte injury by blocking RAS signalling via the Wnt1/β-catenin pathway. Sirt6 is a specific therapeutic target for the treatment of podocyte damage-associated renal disease.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, 721008, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Shou-Gang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, 710003, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
33
|
Lin X, Wang X, Feng W, Wan Y, Chai J, Li F, Xu M. The Counteracting Effects of Ang II and Ang-(1-7) on the Function andGrowth of Insulin-secreting NIT-1 Cells. Curr Diabetes Rev 2024; 20:e010124225112. [PMID: 38173074 DOI: 10.2174/0115733998276291231204115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION China now has the highest number of diabetes in the world. Angiotensin II (Ang II) causes insulin resistance by acting on the insulin signaling pathway of peripheral target tissues. However, its effect on islet β-cells remains unclear. The possible role of Angiotensin-( 1-7) [Ang-(1-7)] as an antagonist to the effects of Ang II and in treating diabetes needs to be elucidated. OBJECTIVES To assess the effects of Ang II and Ang-(1-7) on the function and growth of islet β cell line NIT-1, which is derived from the islets of non-obese diabetic/large T-antigen (NOD/LT) mice with insulinoma. METHODS NIT-1 cells were treated with Ang II, Ang-(1-7) and their respective receptor antagonists. The impact on cell function and growth was then evaluated. RESULTS Ang II significantly reduced insulin-stimulated IR-β-Tyr and Akt-Ser; while Ang-(1-7), saralasin (an Ang II receptor antagonist), and diphenyleneiodonium [DPI, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) antagonist] reversed the inhibiting effect. Conversely, Ang II significantly increased insulin-stimulated intracellular H2O2 and P47 phox, while saralasin and DPI reverted the effect. Furthermore, Ang-(1-7) reduced the elevated concentrations of ROS and MDA while increasing the proliferation rate that was reduced by high glucose, all of which were reversed by A-779, an antagonist of the Mas receptor (MasR). CONCLUSION Angiotensin II poses a negative regulatory effect on insulin signal transduction, increases oxidative stress, and may inhibit the transcription of insulin genes stimulated by insulin in NIT-1 cells. Meanwhile, angiotensin-(1-7) blocked these effects via MasR. These results corroborate the rising potential of the renin-angiotensin system (RAS) in treating diabetes.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Wang
- Department of Endocrinology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, People's Republic of China
| | - Weilian Feng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiani Chai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
34
|
Lotfi A, Hajian P, Abbasi L, Gargari MK, Fard NNG, Naderi D. A Review on Role of Inflammation in Coronavirus Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1488-1505. [PMID: 38303532 DOI: 10.2174/0118715303265274231204075802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
The respiratory illness known as COVID-19 is caused by the novel coronavirus, SARS-CoV-2. While the precise pathogenic mechanism of COVID-19 remains unclear, the occurrence of a cytokine storm subsequent to viral infection plays a pivotal role in the initiation and advancement of the disease. The infection of SARS-CoV-2 induces a state of immune system hyperactivity, leading to an excessive production of inflammatory cytokines. Consequently, the identification of the various signaling pathways implicated in the inflammation induced by COVID-19 will enable researchers to investigate new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Pouran Hajian
- Department of Anesthesiology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
35
|
Zhu J, Shao A, Wang C, Zeng C, Wang H. Inhibition of endoplasmic reticulum stress restores the balance of renal RAS components and lowers blood pressure in the spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2202367. [PMID: 37144334 DOI: 10.1080/10641963.2023.2202367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of hypertension. However, the underlying mechanisms for lowering blood pressure (BP) by suppressing ER stress remain unclear. Here, we hypothesized that inhibition of ER stress could restore the balance between RAS components and lower BP in spontaneously hypertensive rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or 4-PBA, an ER stress inhibitor, in the drinking water for 4 weeks. BP was measured by tail-cuff plethysmography, and the expression of RAS components was examined by Western blot. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure and increased renal ER stress and oxidative stress, accompanied by impaired diuresis and natriuresis. Moreover, SHRs had higher ACE and AT1R and lower AT2R, ACE2, and MasR expressions in the kidney. Interestingly, 4-PBA treatment improved impaired diuresis and natriuresis and lowered blood pressure in SHRs, accompanied by reducing ACE and AT1R protein expression and increasing AT2R, ACE2, and MasR expression in the kidneys of SHRs. In addition, these changes were associated with the reduction of ER stress and oxidative stress. CONCLUSIONS These results suggest that the imbalance of renal RAS components was associated with increased ER stress in SHRs. Inhibition of ER stress with 4-PBA reversed the imbalance of renal RAS components and restored the impaired diuresis and natriuresis, which, at least in part, explains the blood pressure-lowering effects of 4-PBA in hypertension.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, Shanghai Hospital Wanzhou District, Chongqing, China
| | - Anjing Shao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Wang
- Department of Surgery, Third People's Hospital, Kaizhou District, Chongqing, China
| | - Chensi Zeng
- Department of Hematology, Chongqing Cancer Hospital, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
36
|
Wu T, Zheng Y, Huang Q, Tian S. Paeonol improves renal and vascular angiotensin II type 1 receptor function via inhibiting oxidative stress in spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2182884. [PMID: 36855263 DOI: 10.1080/10641963.2023.2182884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Oxidative stress has been shown to play a critical role in the pathogenesis of hypertension. Paeonol, a major phenolic component extracted from Moutan Cortex, exerts a beneficial effect in preventing cardiovascular disease via reducing oxidative stress. The present study investigated the protective mechanism of paeonol against high blood pressure in spontaneous hypertension rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or peaonol in the drinking water for 5 weeks. Blood pressure was measured by tail-cuff plethysmography and oxidative stress in kidney and vascular tissue was examined by enzyme-linked immunosorbed assay. The functions of angiotensin II type 1 receptors (AT1R) in the kidney and mesenteric artery were measured by natriuresis and vasoconstrictor response, respectively. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure, increased oxidative stress, accompanied by exaggerated diuretic and natriuretic responses to candesartan (AT1 receptor antagonist) and vasoconstrictor responses to angiotensin II (Ang II). Moreover, SHRs had higher ACE and AT1R in the kidney and mesenteric artery, and higher Ang II and lower renin levels. Interestingly, paeonol treatment reduced the candesartan-induced increase in diuresis and natriuresis and vasoconstrictor responses to Ang II, and lowered blood pressure in SHRs, accompanied by reducing AT1R protein expression in the kidney and mesenteric artery of SHR, and Ang II levels in plasma and increasing renin levels in renal cortex. In addition, these changes were associated with reducing oxidative stress. CONCLUSIONS The present study suggests that paeonol improves renal and vascular AT1R functions by inhibition of oxidative stress, thus lowering blood pressure in SHRs.
Collapse
Affiliation(s)
- Tingchun Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Yuhua Zheng
- Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Qianqian Huang
- Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Shui Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
37
|
Fang H, Li X, Lin D, Wang L, Yang T, Yang B. Inhibition of intrarenal PRR-RAS pathway by Ganoderma lucidum polysaccharide peptides in proteinuric nephropathy. Int J Biol Macromol 2023; 253:127336. [PMID: 37852403 DOI: 10.1016/j.ijbiomac.2023.127336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Excessive proteinuria leads to renal dysfunction and damage. Ganoderma lucidum polysaccharide peptide (GL-PP) and Ganoderma lucidum polysaccharide peptide 2 (GL-PP2) are biologically active compounds extracted from Ganoderma lucidum. GL-PP has a relative molecular weight of 37,121 with 76.39 % polysaccharides and 16.35 % polypeptides, while GL-PP2 has a relative molecular weight of 31,130, composed of 64.14 % polysaccharides and 17.73 % polypeptides. The xylose: mannose: glucose monosaccharide ratios in GL-PP and GL-PP2 were 4.83:1:7.03 and 2.35:1:9.38, respectively. In this study, we investigated the protective effects of GL-PP and GL-PP2 on proteinuria-induced renal dysfunction and damage using rat and cell models. Both compounds reduced kidney injury, proteinuria, and inhibited the (pro)renin receptor (PRR)-renin-angiotensin system (RAS) pathway, inflammatory cell infiltration, oxidative stress, and fibrosis. GL-PP2 showed stronger inhibition of cyclooxygenase-2 and inducible nitric oxide synthase proteins compared to GL-PP. In cell models, both compounds displayed anti-inflammatory properties and improved cellular viability by inhibiting the PRR-RAS pathway. GL-PP2 has higher feasibility and productivity than GL-PP in pharmacology and industrial production. It shows promise in treating proteinuria-induced renal disease with superior anti-inflammatory effects and economic, safe industrial application prospects. Further research is needed to compare efficacy, mechanisms, clinical applications, and commercial feasibility of GL-PP and GL-PP2.
Collapse
Affiliation(s)
- Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Xinxuan Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Teng Yang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
38
|
Sudano I, Suter P, Beuschlein F. Secondary hypertension as a cause of treatment resistance. Blood Press 2023; 32:2224898. [PMID: 37334480 DOI: 10.1080/08037051.2023.2224898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
In secondary hypertension, elevated blood pressure is caused by a known and/or potentially treatable underlying disease.Although the prevalence of secondary hypertension depends on the patient population and the thoroughness of applied diagnostic approaches, arterial hypertension is classified in 90 to 95% as primary in nature. In young patients, individuals without a family history of hypertension, late onset of hypertension or worsening of a previous well-controlled hypertension as well as in patients who have a difficult to treat hypertension, the prevalence of secondary hypertension is significantly higher.Because the identification and the specific therapy of secondary hypertension may result in normalisation or improvement of elevated blood pressure in many cases, a targeted diagnostics is of great importance.
Collapse
Affiliation(s)
- Isabella Sudano
- Department of Cardiology, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich Switzerland
| | - Paolo Suter
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
39
|
Liu Y, Jiang M, Li Y, Chen P, Chen X. Advances in the study of ELABELA in renal physiological functions and related diseases. Front Pharmacol 2023; 14:1276488. [PMID: 38026926 PMCID: PMC10644379 DOI: 10.3389/fphar.2023.1276488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly expressed in human embryonic, cardiac, and renal tissues and involves various biological functions, such as embryonic development, blood circulation regulation, and maintaining body fluid homeostasis. ELA is also closely related to the occurrence and development of acute kidney injury, hypertensive kidney damage, diabetic nephropathy, renal tumors, and other diseases. Understanding the physiological role of ELA and its mechanism of action in kidney-related diseases would provide new targets and directions for the clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- YuRong Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - MingChun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Yue Li
- Department of Anatomy, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Peng Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - XiaoYu Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| |
Collapse
|
40
|
Yi X, Xu C, Yang J, Zhong C, Yang H, Tang L, Song S, Yu J. Tiliroside Protects against Lipopolysaccharide-Induced Acute Kidney Injury via Intrarenal Renin-Angiotensin System in Mice. Int J Mol Sci 2023; 24:15556. [PMID: 37958538 PMCID: PMC10648967 DOI: 10.3390/ijms242115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Tiliroside, a natural flavonoid, has various biological activities and improves several inflammatory diseases in rodents. However, the effect of Tiliroside on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and the underlying mechanisms are still unclear. This study aimed to evaluate the potential renoprotective effect of Tiliroside on LPS-induced AKI in mice. Male C57BL/6 mice were intraperitoneally injected with LPS (a single dose, 3 mg/kg) with or without Tiliroside (50 or 200 mg/kg/day for 8 days). Tiliroside administration protected against LPS-induced AKI, as reflected by ameliorated renal dysfunction and histological alterations. LPS-stimulated renal expression of inflammatory cytokines, fibrosis markers, and kidney injury markers in mice was significantly abolished by Tiliroside. This flavonoid also stimulated autophagy flux but inhibited oxidative stress and tubular cell apoptosis in kidneys from LPS-injected mice. Mechanistically, our study showed the regulation of Tiliroside on the intrarenal renin-angiotensin system in LPS-induced AKI mice. Tiliroside treatment suppressed intrarenal AGT, Renin, ACE, and Ang II, but upregulated intrarenal ACE2 and Ang1-7, without affecting plasma Ang II and Ang1-7 levels. Collectively, our data highlight the renoprotective action of Tiliroside on LPS-induced AKI by suppressing inflammation, oxidative stress, and tubular cell apoptosis and activating autophagy flux via the shift towards the intrarenal ACE2/Ang1-7 axis and away from the intrarenal ACE/Ang II axis.
Collapse
Affiliation(s)
- Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Jing Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Chao Zhong
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Le Tang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
41
|
Xu C, Yi X, Tang L, Wang H, Chu S, Yu J. Differential regulation of autophagy on urine-concentrating capability through modulating the renal AQP2 expression and renin-angiotensin system in mice. Am J Physiol Renal Physiol 2023; 325:F503-F518. [PMID: 37589054 DOI: 10.1152/ajprenal.00018.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Autophagy, a cellular process of "self-eating," plays an essential role in renal pathophysiology. However, the effect of autophagy on urine-concentrating ability in physiological conditions is still unknown. This study aimed to determine the relevance and mechanisms of autophagy for maintaining urine-concentrating capability during antidiuresis. The extent of the autophagic response to water deprivation (WD) was different between the renal cortex and medulla in mice. Autophagy activity levels in the renal cortex were initially suppressed and then stimulated by WD in a time-dependent manner. During 48 h WD, the urine-concentrating capability of mice was impaired by rapamycin (Rapa) but not by 3-methyladenine (3-MA), accompanied by suppressed renal aquaporin 2 (AQP2), V2 receptor (V2R), renin, and angiotensin-converting enzyme (ACE) expression, and levels of prorenin/renin, angiotensin II (ANG II), and aldosterone in the plasma and urine. In contrast, 3-MA and chloroquine (CQ) suppressed the urine-concentrating capability in WD72 mice, accompanied by downregulation of AQP2 and V2R expression in the renal cortex. 3-MA and CQ further increased AQP2 and V2R expression in the renal medulla of WD72 mice. Compared with 3-MA and CQ, Rapa administration yielded completely opposite results on the above parameters in WD72 mice. In addition, 3-MA and CQ abolished the upregulation of prorenin/renin, ANG II, and aldosterone levels in the plasma and urine in WD72 mice. Taken together, our study demonstrated that autophagy regulated urine-concentrating capability through differential regulation of renal AQP2/V2R and ACE/ANG II signaling during WD.NEW & NOTEWORTHY Autophagy exhibits a double-edged effect on cell survival and plays an essential role in renal pathophysiology. We for the first time reported a novel function of autophagy that controls the urine-concentrating capability in physiological conditions. We found that water deprivation (WD) differentially regulated autophagy in the kidneys of mice in a time-dependent manner and autophagy regulates the urine-concentrating capability mainly by regulating AQP2/V2R and ACE/ANG II signaling in the renal cortex in WD mice.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Le Tang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Hui Wang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Shuhan Chu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
42
|
Dugbartey GJ. Physiological role of hydrogen sulfide in the kidney and its therapeutic implications for kidney diseases. Biomed Pharmacother 2023; 166:115396. [PMID: 37647689 DOI: 10.1016/j.biopha.2023.115396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
For over three centuries, hydrogen sulfide (H2S) has been known as a toxic and deadly gas at high concentrations, with a distinctive smell of rotten eggs. However, studies over the past two decades have shown that H2S has risen above its historically notorious label and has now received significant scientific attention as an endogenously produced gaseous signaling molecule that participates in cellular homeostasis and influences a myriad of physiological and pathological processes at low concentrations. Its endogenous production is enzymatically regulated, and when dysregulated, contributes to pathogenesis of renal diseases. In addition, exogenous H2S administration has been reported to exhibit important therapeutic characteristics that target multiple molecular pathways in common renal pathologies in which reduced levels of renal and plasma H2S were observed. This review highlights functional anatomy of the kidney and renal production of H2S. The review also discusses current understanding of H2S in renal physiology and seeks to lay the foundation as a new targeted therapeutic agent for renal pathologies such as hypertensive nephropathy, diabetic kidney disease and water balance disorders.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
43
|
Bonnitcha P, Rigdwell M, Ward P, Chesher D. Standard -20 °C freezer storage protocols may cause substantial plasma renin cryoactivation. Clin Chem Lab Med 2023; 61:1428-1435. [PMID: 36800985 DOI: 10.1515/cclm-2022-1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES To assess the appropriate preanalytical process for storage of plasma for renin concentration analysis. This study was initiated due to the wide variation in preanalytical handling of samples observed within our network, particularly with respect to freezing for longer term storage. METHODS Pooled plasma from patient samples was analysed immediately post separation for renin concentration (n=30, concentration 4.0-204 mIU/L). Aliquots from these samples were frozen in a -20 °C freezer and then analysed, with the renin concentration compared to the respective baseline concentration. Comparisons were also made to: aliquots snap frozen using a dry ice/acetone bath, aliquots stored at room temperature, and aliquots stored at 4 °C. Subsequent experiments investigated the potential sources of cryoactivation observed in these initial studies. RESULTS Substantial and highly variable cryoactivation was observed in samples frozen using a -20 °C freezer, with renin concentration increasing over 300% from baseline in some samples (median 21.3%). This cryoactivation could be prevented by snap freezing samples. Subsequent experiments determined that long term storage in a -20 °C freezer could prevent cryoactivation provided samples were initially frozen rapidly in a -70 °C freezer. Rapid defrosting of samples was not required to prevent cryoactivation. CONCLUSIONS Standard -20 °C freezers may not be appropriate for freezing samples for renin analysis. Laboratories should consider snap freezing their samples using a -70 °C freezer or similar to avoid cryoactivation of renin.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark Rigdwell
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter Ward
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Douglas Chesher
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Liu W, Tan Z, Geng M, Jiang X, Xin Y. Impact of the gut microbiota on angiotensin Ⅱ-related disorders and its mechanisms. Biochem Pharmacol 2023:115659. [PMID: 37330020 DOI: 10.1016/j.bcp.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
The renin-angiotensin system (RAS) consists of multiple angiotensin peptides and performs various biological functions mediated by distinct receptors. Angiotensin II (Ang II) is the major effector of the RAS and affects the occurrence and development of inflammation, diabetes mellitus and its complications, hypertension, and end-organ damage via the Ang II type 1 receptor. Recently, considerable interest has been given to the association and interaction between the gut microbiota and host. Increasing evidence suggests that the gut microbiota may contribute to cardiovascular diseases, obesity, type 2 diabetes mellitus, chronic inflammatory diseases, and chronic kidney disease. Recent data have confirmed that Ang II can induce an imbalance in the intestinal flora and further aggravate disease progression. Furthermore, angiotensin converting enzyme 2 is another player in RAS, alleviates the deleterious effects of Ang II, modulates gut microbial dysbiosis, local and systemic immune responses associated with coronavirus disease 19. Due to the complicated etiology of pathologies, the precise mechanisms that link disease processes with specific characteristics of the gut microbiota remain obscure. This review aims to highlight the complex interactions between the gut microbiota and its metabolites in Ang II-related disease progression, and summarize the possible mechanisms. Deciphering these mechanisms will provide a theoretical basis for novel therapeutic strategies for disease prevention and treatment. Finally, we discuss therapies targeting the gut microbiota to treat Ang II-related disorders.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Zining Tan
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Mengrou Geng
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
45
|
Liu HY, Lee CH, Hsu CN, Tain YL. Maternal High-Fat Diet Controls Offspring Kidney Health and Disease. Nutrients 2023; 15:2698. [PMID: 37375602 DOI: 10.3390/nu15122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A balanced diet during gestation is critical for fetal development, and excessive intake of saturated fats during gestation and lactation is related to an increased risk of offspring kidney disease. Emerging evidence indicates that a maternal high-fat diet influences kidney health and disease of the offspring via so-called renal programming. This review summarizes preclinical research documenting the connection between a maternal high-fat diet during gestation and lactation and offspring kidney disease, as well as the molecular mechanisms behind renal programming, and early-life interventions to offset adverse programming processes. Animal models indicate that offspring kidney health can be improved via perinatal polyunsaturated fatty acid supplementation, gut microbiota changes, and modulation of nutrient-sensing signals. These findings reinforce the significance of a balanced maternal diet for the kidney health of offspring.
Collapse
Affiliation(s)
- Hsi-Yun Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
46
|
Hettiarachchi SD, Kwon YM, Omidi Y, Speth RC. Nanoparticle approaches for the renin-angiotensin system. Heliyon 2023; 9:e16951. [PMID: 37484281 PMCID: PMC10361043 DOI: 10.1016/j.heliyon.2023.e16951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
The renin-angiotensin system (RAS) is a hormonal cascade that contributes to several disorders: systemic hypertension, heart failure, kidney disease, and neurodegenerative disease. Activation of the RAS can promote inflammation and fibrosis. Drugs that target the RAS can be classified into 3 categories, AT1 angiotensin receptor blockers (ARBs), angiotensin-converting enzyme (ACE) inhibitors, and renin inhibitors. The therapeutic efficacy of current RAS-inhibiting drugs is limited by poor penetration across the blood-brain barrier, low bioavailability, and to some extent, short half-lives. Nanoparticle-mediated drug delivery systems (DDSs) are possible emerging alternatives to overcome such limitations. Nanoparticles are ideally 1-100 nm in size and are considered efficient DDSs mainly due to their unique characteristics, including water dispersity, prolonged half-life in blood circulation, smaller size, and biocompatibility. Nano-scale DDSs can reduce the drug dosage frequency and acute toxicity of drugs while enhancing therapeutic success. Different types of nanoparticles, such as chitosan, polymeric, and nanofibers, have been examined in RAS-related studies, especially in hypertension, cardiovascular disease, and COVID-19. In this review article, we summarize the physical and chemical characteristics of each nanoparticle to elaborate on their potential use in RAS-related nano-drug delivery research and clinical application.
Collapse
Affiliation(s)
- Sajini D. Hettiarachchi
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Young M. Kwon
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
- Department of Pharmacology and Physiology, School of Medicine Georgetown University, 3900 Reservoir Rd. NW, Washington, DC, 20057, USA
| |
Collapse
|
47
|
Chen CJ, Cheng MC, Hsu CN, Tain YL. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites 2023; 13:688. [PMID: 37367846 DOI: 10.3390/metabo13060688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogen sulfide (H2S) plays a decisive role in kidney health and disease. H2S can ben synthesized via enzymatic and non-enzymatic pathways, as well as gut microbial origins. Kidney disease can originate in early life induced by various maternal insults throughout the process, namely renal programming. Sulfur-containing amino acids and sulfate are essential in normal pregnancy and fetal development. Dysregulated H2S signaling behind renal programming is linked to deficient nitric oxide, oxidative stress, the aberrant renin-angiotensin-aldosterone system, and gut microbiota dysbiosis. In animal models of renal programming, treatment with sulfur-containing amino acids, N-acetylcysteine, H2S donors, and organosulfur compounds during gestation and lactation could improve offspring's renal outcomes. In this review, we summarize current knowledge regarding sulfide/sulfate implicated in pregnancy and kidney development, current evidence supporting the interactions between H2S signaling and underlying mechanisms of renal programming, and recent advances in the beneficial actions of sulfide-related interventions on the prevention of kidney disease. Modifying H2S signaling is the novel therapeutic and preventive approach to reduce the global burden of kidney disease; however, more work is required to translate this into clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ming-Chou Cheng
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
48
|
Zhou S, Yu Z, Chen Z, Ning F, Hu X, Wu T, Li M, Xin H, Reilly S, Zhang X. Olmesartan alleviates SARS-CoV-2 envelope protein induced renal fibrosis by regulating HMGB1 release and autophagic degradation of TGF-β1. Front Pharmacol 2023; 14:1187818. [PMID: 37256223 PMCID: PMC10225711 DOI: 10.3389/fphar.2023.1187818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Background and aims: Renal damage in severe coronavirus disease 2019 (COVID-19) is highly associated with mortality. Finding relevant therapeutic candidates that can alleviate it is crucial. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) have been shown to be harmless to COVID-19 patients, but it remains elusive whether ACEIs/ARBs have protective benefits to them. We wished to determine if ACEIs/ARBs had a protective effect on the renal damage associated with COVID-19, and to investigate the mechanism. Methods: We used the envelope (E) protein of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) to induce COVID-19-like multiple organ damage and observed renal fibrosis. We induced the epithelial-mesenchymal transformation of HK-2 cells with E protein, and found that olmesartan could alleviate it significantly. The protective effects of olmesartan on E protein-induced renal fibrosis were evaluated by renal-function assessment, pathologic alterations, inflammation, and the TGF-β1/Smad2/3 signaling pathway. The distribution of high-mobility group box (HMGB)1 was examined after stimulation with E protein and olmesartan administration. Results: E protein stimulated HMGB1 release, which triggered the immune response and promoted activation of TGF-β1/Smad2/3 signaling: both could lead to renal fibrosis. Olmesartan regulated the distribution of HMGB1 under E protein stimulation. Olmesartan inhibited the release of HMGB1, and reduced the inflammatory response and activation of TGF-β1/Smad2/3 signaling. Olmesartan increased the cytoplasmic level of HMGB1 to promote the autophagic degradation of TGF-β1, thereby alleviating fibrosis further. Conclusion: Olmesartan alleviates E protein-induced renal fibrosis by regulating the release of HMGB1 and its mediated autophagic degradation of TGF-β1.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zihui Chen
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Tiangang Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Liao Y, Wu X, Luo W, Chen J, Huang Y, Ma K, Zhang C, Wang J, Yang Y, Deng M, Wang X. Azelaic Acid Regulates the Renin-Angiotensin System and Improves Colitis Based on Network Pharmacology and Experimentation. ACS OMEGA 2023; 8:15217-15228. [PMID: 37151561 PMCID: PMC10157865 DOI: 10.1021/acsomega.3c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses Crohn's disease and ulcerative colitis, has a complicated etiology that might be brought on by metabolic dysbiosis. Previous metabonomic studies have found a correlation between decreased azelaic acid (AzA) and IBD. Herein, data from the Metabolomics Workbench showed that the content of AzA decreased in IBD patients (PR000639) and dextran sulfate sodium (DSS)-induced mice (PR000837). The effects of AzA on IBD were then examined using a DSS-induced mouse model, and the results demonstrated that AzA alleviated clinical activity, decreased pro-inflammatory cytokine production, and reduced CD4+CD25+Foxp3+Treg percentages in mesenteric lymph nodes. Through network pharmacology analysis, we discovered 99 candidate IBD-associated genes that are potentially regulated by AzA. After the enrichment analysis of the candidate genes, the renin-angiotensin system (RAS) pathway was one of the most substantially enriched pathways. Additionally, AzA reversed the increased expression of important RAS components (ACE, ACE2, and MAS1L) following DSS induction, suggesting that AzA exerts therapeutic effects possibly via the RAS pathway. This study suggests that AzA may be a promising drug for treating IBD.
Collapse
Affiliation(s)
- Yangjie Liao
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Xing Wu
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Weiwei Luo
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Jiang Chen
- The
Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yujun Huang
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Kejia Ma
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Chao Zhang
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Jiayi Wang
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Yan Yang
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| | - Minzi Deng
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoyan Wang
- Department
of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan
Key Laboratory of Non Resolving Inflammation and Cancer, Changsha 410008, China
| |
Collapse
|
50
|
Zhu C, Gu W, Sun D, Wei W. The mechanism underlying fluoride-induced low-renin hypertension is related to an imbalance in the circulatory and local renin-angiotensin systems. Toxicol Lett 2023; 381:36-47. [PMID: 37105417 DOI: 10.1016/j.toxlet.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
The renin-angiotensin system (RAS) is an important fluid regulation system in the body, and excessive activation of the circulatory or local RAS can increase blood pressure (BP). Excess fluoride can increase BP, although the underlying mechanism related to activation of the RAS remains unclear. Thus, the aim of this study was to elucidate the role of the RAS in fluoride-induced hypertension. Markers of the circulating and local RASs related to pathological changes to the kidneys, myocardium, and aorta were measured. Fluoride reduced serum levels of renin, angiotensin II (Ang II), and angiotensin (1-7) [Ang (1-7)], and dysregulated plasma levels of aldosterone and potassium levels. Excess fluoride can damage the kidneys, myocardium, and aorta, overactivate the renal angiotensin converting enzyme (ACE)-Ang II-angiotensin type 1 receptor axis, and inhibit activation of the ACE2-Ang (1-7)-Mas axis, leading to dysregulation of alpha epithelial sodium channels and significantly increased expression of Ang II in the myocardium and aorta. Hence, excess fluoride can cause low-renin hypertension via an imbalance between the circulatory and local RASs.
Collapse
Affiliation(s)
- Chenpeng Zhu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China.
| | - Wei Wei
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China.
| |
Collapse
|