1
|
Huang CL, Fu XY, Feng Y, Li XK, Sun Y, Mao XL, Li SW. Relationship between the microenvironment and survival in kidney transplantation: a bibliometric analysis from 2013 to 2023. Front Immunol 2024; 15:1379742. [PMID: 38596670 PMCID: PMC11002143 DOI: 10.3389/fimmu.2024.1379742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Background Kidney transplantation is considered the most effective treatment for end-stage renal failure. Recent studies have shown that the significance of the immune microenvironment after kidney transplantation in determining prognosis of patients. Therefore, this study aimed to conduct a bibliometric analysis to provide an overview of the knowledge structure and research trends regarding the immune microenvironment and survival in kidney transplantation. Methods Our search included relevant publications from 2013 to 2023 retrieved from the Web of Science core repository and finally included 865 articles. To perform the bibliometric analysis, we utilized tools such as VOSviewer, CiteSpace, and the R package "bibliometrix". The analysis focused on various aspects, including country, author, year, topic, reference, and keyword clustering. Results Based on the inclusion criteria, a total of 865 articles were found, with a trend of steady increase. China and the United States were the countries with the most publications. Nanjing Medical University was the most productive institution. High-frequency keywords were clustered into 6 areas, including kidney transplantation, transforming growth factor β, macrophage, antibody-mediated rejection, necrosis factor alpha, and dysfunction. Antibody mediated rejection (2019-2023) was the main area of research in recent years. Conclusion This groundbreaking bibliometric study comprehensively summarizes the research trends and advances related to the immune microenvironment and survival after kidney transplantation. It identifies recent frontiers of research and highlights promising directions for future studies, potentially offering fresh perspectives to scholars in the field.
Collapse
Affiliation(s)
- Chun-Lian Huang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-Yu Fu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi Feng
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xiao-Kang Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yi Sun
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
2
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Hart M, Satoskar AA, Abdel-Rasoul M, Breuer CK, Bumgardner GL. CXCR5 + CD8 + T Cell-mediated Suppression of Humoral Alloimmunity and AMR in Mice Is Optimized With mTOR and Impaired With Calcineurin Inhibition. Transplantation 2024; 108:679-692. [PMID: 37872660 PMCID: PMC10922067 DOI: 10.1097/tp.0000000000004828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Adoptive cellular therapy (ACT) with antibody-suppressor CXCR5 + CD8 + T cells (CD8 + T Ab-supp ) inhibits alloantibody production, antibody-mediated rejection (AMR), and prolongs graft survival in multiple transplant mouse models. However, it is not known how conventional immunosuppressive agents impact the efficacy of CD8 + T Ab-supp ACT. METHODS We investigated the efficacy of CD8 + T Ab-supp cell ACT when combined with calcineurin inhibitor (CNi) or mammalian target of rapamycin inhibitor (mTORi) in a murine model of kidney transplant. RESULTS ACT-mediated decrease in germinal center B cells, posttransplant alloantibody titer, and amelioration of AMR in high alloantibody-producing CCR5 knockout kidney transplant recipients were impaired when ACT was combined with CNi and enhanced when combined with mTORi. CNi (but not mTORi) reduced ACT-mediated in vivo cytotoxicity of IgG + B cells and was associated with increased quantity of germinal center B cells. Neither CNi nor mTORi treatment impacted the expression of cytotoxic effector molecules (FasL, Lamp1, perforin, granzyme B) by CD8 + T Ab-supp after ACT. Concurrent treatment with CNi (but not mTORi) reduced in vivo proliferation of CD8 + T Ab-supp after ACT. The increase in quantity of splenic CD44 + CXCR5 + CD8 + T cells that occurs after ACT was reduced by concurrent treatment with CNi but not by concurrent treatment with mTORi (dose-dependent). CONCLUSIONS Impaired efficacy of ACT by CNi is attributed to reduced persistence and/or expansion of CD8 + T Ab-supp cells after ACT. In contrast, concurrent immunosuppression with mTORi preserves CD8 + T Ab-supp cells quantity, in vivo proliferation, and in vivo cytotoxic effector function after ACT and enhances suppression of humoral alloimmunity and AMR.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Madison Hart
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | | | | | - Ginny L. Bumgardner
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS, Orlando G. Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol 2022; 10:942750. [PMID: 36507264 PMCID: PMC9732032 DOI: 10.3389/fbioe.2022.942750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Insights into the use of cellular therapeutics, extracellular vesicles (EVs), and tissue engineering strategies for regenerative medicine applications are continually emerging with a focus on personalized, patient-specific treatments. Multiple pre-clinical and clinical trials have demonstrated the strong potential of cellular therapies, such as stem cells, immune cells, and EVs, to modulate inflammatory immune responses and promote neoangiogenic regeneration in diseased organs, damaged grafts, and inflammatory diseases, including COVID-19. Over 5,000 registered clinical trials on ClinicalTrials.gov involve stem cell therapies across various organs such as lung, kidney, heart, and liver, among other applications. A vast majority of stem cell clinical trials have been focused on these therapies' safety and effectiveness. Advances in our understanding of stem cell heterogeneity, dosage specificity, and ex vivo manipulation of stem cell activity have shed light on the potential benefits of cellular therapies and supported expansion into clinical indications such as optimizing organ preservation before transplantation. Standardization of manufacturing protocols of tissue-engineered grafts is a critical first step towards the ultimate goal of whole organ engineering. Although various challenges and uncertainties are present in applying cellular and tissue engineering therapies, these fields' prospect remains promising for customized patient-specific treatments. Here we will review novel regenerative medicine applications involving cellular therapies, EVs, and tissue-engineered constructs currently investigated in the clinic to mitigate diseases and possible use of cellular therapeutics for solid organ transplantation. We will discuss how these strategies may help advance the therapeutic potential of regenerative and transplant medicine.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, Children’s Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Paulo N. Martins
- Department of Surgery, Transplant Division, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, United States
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Basak E. Uygun
- Massachusetts General Hospital, Shriners Hospitals for Children in Boston and Harvard Medical School, Boston, MA, United States
| | - Vijay S. Gorantla
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
4
|
Chu KY, Yu HS, Yu S. Current and Innovated Managements for Autoimmune Bullous Skin Disorders: An Overview. J Clin Med 2022; 11:3528. [PMID: 35743598 PMCID: PMC9224787 DOI: 10.3390/jcm11123528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Autoimmune bullous skin disorders are a group of disorders characterized by the formation of numerous blisters and erosions on the skin and/or the mucosal membrane, arising from autoantibodies against the intercellular adhesion molecules and the structural proteins. They can be classified into intraepithelial or subepithelial autoimmune bullous dermatoses based on the location of the targeted antigens. These dermatoses are extremely debilitating and fatal in certain cases, depending on the degree of cutaneous and mucosal involvement. Effective treatments should be implemented promptly. Glucocorticoids serve as the first-line approach due to their rapid onset of therapeutic effects and remission of the acute phase. Nonetheless, long-term applications may lead to major adverse effects that outweigh the benefits. Hence, other adjuvant therapies are mandatory to minimize the potential harm and ameliorate the quality of life. Herein, we summarize the current therapeutic strategies and introduce promising therapies for intractable autoimmune bullous diseases.
Collapse
Affiliation(s)
- Kuan-Yu Chu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Hsin-Su Yu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Dermatology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
5
|
Mamo T, Hippen KL, MacMillan ML, Brunstein CG, Miller JS, Wagner JE, Blazar BR, McKenna DH. Regulatory T cells: A review of manufacturing and clinical utility. Transfusion 2022; 62:904-915. [PMID: 35015309 PMCID: PMC8986575 DOI: 10.1111/trf.16797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Tewodros Mamo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Keli L. Hippen
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Margaret L. MacMillan
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Claudio G. Brunstein
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Jeffrey S. Miller
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Bruce R. Blazar
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David H. McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Parsons RF, Baquerizo A, Kirchner VA, Malek S, Desai CS, Schenk A, Finger EB, Brennan TV, Parekh KR, MacConmara M, Brayman K, Fair J, Wertheim JA. Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. Am J Transplant 2021; 21:3225-3238. [PMID: 34212485 DOI: 10.1111/ajt.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.
Collapse
Affiliation(s)
- Ronald F Parsons
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Angeles Baquerizo
- Scripps Center for Cell and Organ Transplantation, La Jolla, California
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Malek
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chirag S Desai
- Division of Transplantation, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Austin Schenk
- Division of Transplantation, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Erik B Finger
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Todd V Brennan
- Department of Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Malcolm MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Brayman
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Fair
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jason A Wertheim
- Departments of Surgery and Biomedical Engineering, University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
7
|
Cao C, Yao Y, Zeng R. Lymphocytes: Versatile Participants in Acute Kidney Injury and Progression to Chronic Kidney Disease. Front Physiol 2021; 12:729084. [PMID: 34616308 PMCID: PMC8488268 DOI: 10.3389/fphys.2021.729084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Acute kidney injury (AKI) remains a major global public health concern due to its high morbidity and mortality. The progression from AKI to chronic kidney disease (CKD) makes it a scientific problem to be solved. However, it is with lack of effective treatments. Summary: Both innate and adaptive immune systems participate in the inflammatory process during AKI, and excessive or dysregulated immune responses play a pathogenic role in renal fibrosis, which is an important hallmark of CKD. Studies on the pathogenesis of AKI and CKD have clarified that renal injury induces the production of various chemokines by renal parenchyma cells or resident immune cells, which recruits multiple-subtype lymphocytes in circulation. Some infiltrated lymphocytes exacerbate injury by proinflammatory cytokine production, cytotoxicity, and interaction with renal resident cells, which constructs the inflammatory environment and induces further injury, even death of renal parenchyma cells. Others promote tissue repair by producing protective cytokines. In this review, we outline the diversity of these lymphocytes and their mechanisms to regulate the whole pathogenic stages of AKI and CKD; discuss the chronological responses and the plasticity of lymphocytes related to AKI and CKD progression; and introduce the potential therapies targeting lymphocytes of AKI and CKD, including the interventions of chemokines, cytokines, and lymphocyte frequency regulation in vivo, adaptive transfer of ex-expanded lymphocytes, and the treatments of gut microbiota or metabolite regulations based on gut-kidney axis. Key Message: In the process of AKI and CKD, T helper (Th) cells, innate, and innate-like lymphocytes exert mainly pathogenic roles, while double-negative T (DNT) cells and regulatory T cells (Tregs) are confirmed to be protective. Understanding the mechanisms by which lymphocytes mediate renal injury and renal fibrosis is necessary to promote the development of specific therapeutic strategies to protect from AKI and prevent the progression of CKD.
Collapse
Affiliation(s)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Pilat N, Lefsihane K, Brouard S, Kotsch K, Falk C, Steiner R, Thaunat O, Fusil F, Montserrat N, Amarelli C, Casiraghi F. T- and B-cell therapy in solid organ transplantation: current evidence and future expectations. Transpl Int 2021; 34:1594-1606. [PMID: 34448274 DOI: 10.1111/tri.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023]
Abstract
Cell therapy has emerged as an attractive therapeutic option in organ transplantation. During the last decade, the therapeutic potency of Treg immunotherapy has been shown in various preclinical animal models and safety was demonstrated in first clinical trials. However, there are still critical open questions regarding specificity, survival, and migration to the target tissue so the best Treg population for infusion into patients is still under debate. Recent advances in CAR technology hold the promise for Treg-functional superiority. Another exciting strategy is the generation of B-cell antibody receptor (BAR) Treg/cytotoxic T cells to specifically regulate or deplete alloreactive memory B cells. Finally, B cells are also capable of immune regulation, making them promising candidates for immunomodulatory therapeutic strategies. This article summarizes available literature on cell-based innovative therapeutic approaches aiming at modulating alloimmune response for transplantation. Crucial areas of investigation that need a joined effort of the transplant community for moving the field toward successful achievement of tolerance are highlighted.
Collapse
Affiliation(s)
- Nina Pilat
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Katia Lefsihane
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sophie Brouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Katja Kotsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department for General and Visceral Surgery, Berlin Institute of Health, Berlin, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Olivier Thaunat
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Floriane Fusil
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristiano Amarelli
- Department of Cardiac Surgery and Transplants Monaldi, A.O. dei Colli, Naples, Italy
| | | |
Collapse
|
9
|
Buscher K, Heitplatz B, van Marck V, Song J, Loismann S, Rixen R, Hüchtmann B, Kurian S, Ehinger E, Wolf D, Ley K, Pavenstädt H, Reuter S. Data-Driven Kidney Transplant Phenotyping as a Histology-Independent Framework for Biomarker Discovery. J Am Soc Nephrol 2021; 32:1933-1945. [PMID: 34078665 PMCID: PMC8455252 DOI: 10.1681/asn.2020121685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In transplant medicine, clinical decision making largely relies on histology of biopsy specimens. However, histology suffers from low specificity, sensitivity, and reproducibility, leading to suboptimal stratification of patients. We developed a histology-independent immune framework of kidney graft homeostasis and rejection. METHODS We applied tailored RNA deconvolution for leukocyte enumeration and coregulated gene network analysis to published bulk human kidney transplant RNA transcriptomes as input for unsupervised, high-dimensional phenotype clustering. We used framework-based graft survival analysis to identify a biomarker that was subsequently characterized in independent transplant biopsy specimens. RESULTS We found seven immune phenotypes that confirm known rejection types and uncovered novel signatures. The molecular phenotypes allow for improved graft survival analysis compared with histology, and identify a high-risk group in nonrejecting transplants. Two fibrosis-related phenotypes with distinct immune features emerged with reduced graft survival. We identified lysyl oxidase-like 2 (LOXL2)-expressing peritubular CD68+ macrophages as a framework-derived biomarker of impaired allograft function. These cells precede graft fibrosis, as demonstrated in longitudinal biopsy specimens, and may be clinically useful as a biomarker for early fibrogenesis. CONCLUSIONS This study provides a comprehensive, data-driven atlas of human kidney transplant phenotypes and demonstrates its utility to identify novel clinical biomarkers.
Collapse
Affiliation(s)
- Konrad Buscher
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany,Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California
| | - Barbara Heitplatz
- Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Veerle van Marck
- Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Rebecca Rixen
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| | - Birte Hüchtmann
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| | - Sunil Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Erik Ehinger
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California,Department of Cardiology and Angiology I, University Heart Center, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California
| | - Hermann Pavenstädt
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
10
|
Jahromi M, Al-Otaibi T, Ashry Gheith O, Farouk Othman N, Mahmoud T, Nair P, A-Halim M, Aggarwal P, Messenger G, Chu P, De Serres SA, Azzi JR. Analysis of the frequency of single nucleotide polymorphisms in cytokine genes in patients with New Onset Diabetes After Transplant. Sci Rep 2021; 11:6014. [PMID: 33727573 PMCID: PMC7966742 DOI: 10.1038/s41598-021-84400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/13/2021] [Indexed: 12/03/2022] Open
Abstract
New Onset Diabetes After Transplantation (NODAT) is a serious metabolic complication. While β-cell dysfunction is considered the main contributing factor in the development of NODAT, the precise pathogenesis is not well understood. Cytokines are thought to be involved in the inflammation of islet β-cells in diabetes; however, few studies have investigated this hypothesis in NODAT. A total of 309 kidney transplant recipients (KTRs) were included in this study. An association between kidney transplants, and the development of diabetes after transplant (NODAT) was investigated. Comparison was made between KTRs who develop diabetes (NODAT cases) or did not develop diabetes (control), using key cytokines, IL-6 G (- 174)C, macrophage mediator; IL-4 C (- 490)T, T helper (Th)-2 cytokine profile initiator; Th-1 cytokine profile initiator interferon-γ T (+ 874) A gene and TGF β1 C (+ 869) T gene polymorphisms were investigated. The genes were amplified using well-established polymerase chain reaction (PCR) techniques in our laboratory. Compared to the AA and AT genotypes of interferon gamma (IFNG), there was a strong association between the TT genotype of IFNG and NODAT kidney transplant recipients (KTRs) versus non-NODAT KTRs (p = 0.005). The AA genotype of IFNG was found to be predominant in the control group (p = 0.004). Also, significant variations of IL6 G (- 174) C, IL-4 C (- 590) T, interferon-γ T (+ 874) A gene and transforming growth factor β1 C (+ 869) T may contribute to NODAT. Our data is consistent with theTh-1/T-reg pathway of immunity. Further larger pan Arab studies are required to confirm our findings.
Collapse
Affiliation(s)
- Mohamed Jahromi
- Clinical Research, Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait.
- Sehatek Awal, Manama, Bahrain.
| | - Torki Al-Otaibi
- Nephrology Department, Hamad Al-Essa Organ Transplantation Center, Kuwait City, Kuwait
| | - Osama Ashry Gheith
- Nephrology Department, Hamad Al-Essa Organ Transplantation Center, Kuwait City, Kuwait
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nashwa Farouk Othman
- Community department, Faculty of Nursing, Manoura University, Mansoura, Egypt
- Education, Clinical Services Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Tarek Mahmoud
- Nephrology Department, Hamad Al-Essa Organ Transplantation Center, Kuwait City, Kuwait
| | - Parasad Nair
- Nephrology Department, Hamad Al-Essa Organ Transplantation Center, Kuwait City, Kuwait
| | - Medhat A-Halim
- Nephrology Department, Hamad Al-Essa Organ Transplantation Center, Kuwait City, Kuwait
| | | | - Grace Messenger
- Podiatry Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | | | - Jamil R Azzi
- Kidney Division, Transplantation Research Center, Harvard Medical School, Brigham and Women's Hospital, Boston, USA
| |
Collapse
|
11
|
Hickson LJ, Herrmann SM, McNicholas BA, Griffin MD. Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. KIDNEY360 2021; 2:542-557. [PMID: 34316720 PMCID: PMC8312727 DOI: 10.34067/kid.0005692020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Drawing from basic knowledge of stem-cell biology, embryonic development, wound healing, and aging, regenerative medicine seeks to develop therapeutic strategies that complement or replace conventional treatments by actively repairing diseased tissue or generating new organs and tissues. Among the various clinical-translational strategies within the field of regenerative medicine, several can be broadly described as promoting disease resolution indirectly through local or systemic interactions with a patient's cells, without permanently integrating or directly forming new primary tissue. In this review, we focus on such therapies, which we term disease-modulating regenerative therapies (DMRT), and on the extent to which they have been translated into the clinical arena in four distinct areas of nephrology: renovascular disease (RVD), sepsis-associated AKI (SA-AKI), diabetic kidney disease (DKD), and kidney transplantation (KTx). As we describe, the DMRT that has most consistently progressed to human clinical trials for these indications is mesenchymal stem/stromal cells (MSCs), which potently modulate ischemic, inflammatory, profibrotic, and immune-mediated tissue injury through diverse paracrine mechanisms. In KTx, several early-phase clinical trials have also tested the potential for ex vivo-expanded regulatory immune cell therapies to promote donor-specific tolerance and prevent or resolve allograft injury. Other promising DMRT, including adult stem/progenitor cells, stem cell-derived extracellular vesicles, and implantable hydrogels/biomaterials remain at varying preclinical stages of translation for these renal conditions. To date (2021), no DMRT has gained market approval for use in patients with RVD, SA-AKI, DKD, or KTx, and clinical trials demonstrating definitive, cost-effective patient benefits are needed. Nonetheless, exciting progress in understanding the disease-specific mechanisms of action of MSCs and other DMRT, coupled with increasing knowledge of the pathophysiologic basis for renal-tissue injury and the experience gained from pioneering early-phase clinical trials provide optimism that influential, regenerative treatments for diverse kidney diseases will emerge in the years ahead.
Collapse
Affiliation(s)
- LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
- Critical Care Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| |
Collapse
|
12
|
Zhao Y, Hu W, Chen P, Cao M, Zhang Y, Zeng C, Hara H, Cooper DKC, Mou L, Luan S, Gao H. Immunosuppressive and metabolic agents that influence allo‐ and xenograft survival by in vivo expansion of T regulatory cells. Xenotransplantation 2020; 27:e12640. [PMID: 32892428 DOI: 10.1111/xen.12640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanli Zhao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | | | - Pengfei Chen
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Mengtao Cao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Yingwei Zhang
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Changchun Zeng
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hidetaka Hara
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - David K. C. Cooper
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
| | - Shaodong Luan
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hanchao Gao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| |
Collapse
|
13
|
Chutipongtanate A, Prukviwat S, Pongsakul N, Srisala S, Kamanee N, Arpornsujaritkun N, Gesprasert G, Apiwattanakul N, Hongeng S, Ittichaikulthol W, Sumethkul V, Chutipongtanate S. Effects of Desflurane and Sevoflurane anesthesia on regulatory T cells in patients undergoing living donor kidney transplantation: a randomized intervention trial. BMC Anesthesiol 2020; 20:215. [PMID: 32854613 PMCID: PMC7450591 DOI: 10.1186/s12871-020-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Volatile anesthetic agents used during surgery have immunomodulatory effects which could affect postoperative outcomes. Recognizing that regulatory T cells (Tregs) plays crucial roles in transplant tolerance and high peripheral blood Tregs associated with stable kidney graft function, knowing which volatile anesthetic agents can induce peripheral blood Tregs increment would have clinical implications. This study aimed to compare effects of desflurane and sevoflurane anesthesia on peripheral blood Tregs induction in patients undergoing living donor kidney transplantation. METHODS A prospective, randomized, double-blind trial in living donor kidney transplant recipients was conducted at a single center, tertiary-care, academic university hospital in Thailand during August 2015 - June 2017. Sixty-six patients were assessed for eligibility and 40 patients who fulfilled the study requirement were equally randomized and allocated to desflurane versus sevoflurane anesthesia during transplant surgery. The primary outcome included absolute changes of peripheral blood CD4+CD25+FoxP3+Tregs which measured by flow cytometry and expressed as the percentage of the total population of CD4+ T lymphocytes at pre-exposure (0-h) and post-exposure (2-h and 24-h) to anesthetic gas. P-value < 0.05 denoted statistical significance. RESULTS Demographic data were comparable between groups. No statistical difference of peripheral blood Tregs between desflurane and sevoflurane groups observed at the baseline pre-exposure (3.6 ± 0.4% vs. 3.1 ± 0.4%; p = 0.371) and 2-h post-exposure (3.0 ± 0.3% vs. 3.5 ± 0.4%; p = 0.319). At 24-h post-exposure, peripheral blood Tregs was significantly higher in desflurane group (5.8 ± 0.5% vs. 4.1 ± 0.3%; p = 0.008). Within group analysis showed patients receiving desflurane, but not sevoflurane, had 2.7% increase in peripheral blood Treg over 24-h period (p < 0.001). CONCLUSION This study provides the clinical trial-based evidence that desflurane induced peripheral blood Tregs increment after 24-h exposure, which could be beneficial in the context of kidney transplantation. Mechanisms of action and clinical advantages of desflurane anesthesia based on Treg immunomodulation should be investigated in the future. TRIAL REGISTRATION ClinicalTrials.gov, NCT02559297 . Registered 22 September 2015 - retrospectively registered.
Collapse
Affiliation(s)
- Arpa Chutipongtanate
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sasichol Prukviwat
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nutkridta Pongsakul
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Supanart Srisala
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nakarin Kamanee
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttapon Arpornsujaritkun
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Goragoch Gesprasert
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nopporn Apiwattanakul
- Division of Infectious Disease, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wichai Ittichaikulthol
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Vasant Sumethkul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
Abstract
Costimulation between T cells and antigen-presenting cells is essential for the regulation of an effective alloimmune response and is not targeted with the conventional immunosuppressive therapy after kidney transplantation. Costimulation blockade therapy with biologicals allows precise targeting of the immune response but without non-immune adverse events. Multiple costimulation blockade approaches have been developed that inhibit the alloimmune response in kidney transplant recipients with varying degrees of success. Belatacept, an immunosuppressive drug that selectively targets the CD28-CD80/CD86 pathway, is the only costimulation blockade therapy that is currently approved for kidney transplant recipients. In the last decade, belatacept therapy has been shown to be a promising therapy in subgroups of kidney transplant recipients; however, the widespread use of belatacept has been tempered by an increased risk of acute kidney transplant rejection. The purpose of this review is to provide an overview of the costimulation blockade therapies that are currently in use or being developed for kidney transplant indications.
Collapse
|
15
|
Chen D, Yang B, Zhang Y, Chen L, Wei L, Zhang W, Wang X, Tong X, Chen Z. Withdrawing mycophenolate mofetil in treating a young kidney transplant recipient with COVID-19: A case report. Medicine (Baltimore) 2020; 99:e20481. [PMID: 32541471 PMCID: PMC7302670 DOI: 10.1097/md.0000000000020481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Coronavirus disease 2019 (COVID-19) is a novel infectious disease and became a global issue. Treatment of COVID-19 especially in solid organ transplant recipients is empirical and controversial, especially the adjustment of the immunosuppressants. PATIENT CONCERNS A 29-year-old kidney transplant recipient with the symptoms of COVID-19 pneumonia. DIAGNOSES COVID-19 pneumonia after kidney transplantation. INTERVENTIONS He was treated with modified immunosuppressants (unchanged dose of tacrolimus and oral corticosteroids while discontinuing mycophenolate mofetil (MMF)), antibiotics, interferon α-2b inhalation and traditional Chinese medicine. OUTCOMES He recovered from COVID-19 pneumonia after 29 days of hospitalization. And the renal function (measured as blood urea nitrogen, serum creatinine, and urine protein) returned to normal. LESSONS In certain group of COVID-19 (e.g., mild to moderate cases, young patients without comorbidities), a reduction instead of an overall withdrawal of immunosuppressant in kidney transplant recipients is feasible.
Collapse
Affiliation(s)
- Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan
| | - Yan Zhang
- General Medical Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Liang Chen
- Endocrinology Department, Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan
| | - Weijie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan
| | - Xinqiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan
| | - Xiaolin Tong
- Endocrinology Department, Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan
| |
Collapse
|
16
|
Abstract
The present review discusses current developments in tolerance induction for solid organ transplantation with a particular emphasis on chimerism-based approaches. It explains the basic mechanisms of chimerism-based tolerance and provides an update on ongoing clinical tolerance trials. The concept of "delayed tolerance" is presented, and ongoing preclinical studies in the nonhuman primate setting-including current limitations and hurdles regarding this approach-are illustrated. In addition, a brief overview and update on cell-based tolerogenic clinical trials is provided. In a critical approach, advantages, limitations, and potential implications for the future of these different regimens are discussed.
Collapse
|
17
|
Bao Z, Li J, Zhang P, Pan Q, Liu B, Zhu J, Jian Q, Jia D, Yi C, Moeller CJ, Liu H. Toll-Like Receptor 3 Activator Preconditioning Enhances Modulatory Function of Adipose‑Derived Mesenchymal Stem Cells in a Fully MHC-Mismatched Murine Model of Heterotopic Heart Transplantation. Ann Transplant 2020; 25:e921287. [PMID: 32366814 PMCID: PMC7219555 DOI: 10.12659/aot.921287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Donor-specific tolerance is the ultimate goal in organ transplantation. Diverse approaches, including the use of mesenchymal stem cells (MSCs), have been investigated to induce graft tolerance. Non-stimulated MSCs showed limited regulatory functions through interaction with multiple immune-regulatory cells, such as regulatory T cells (Tregs). To augment their functions, MSCs have been preconditioned with toll-like receptor (TLR3/4) agonist in autoimmune disease models, but results were conflicting. Material/Methods We evaluated the immunomodulatory effects of mouse adipose-derived mesenchymal stem cells (ADSCs) preconditioned with various combinations of TLR3/4 agonist and antagonists, including polyinosinic-polycytidylic acid poly(I:C)-TLR3 agonist, lipopolysaccharide (LPS) -TLR4 agonist, and TAK242-TLR4 antagonist. In vitro and in vivo experiments including mixed lymphocyte reaction, cytokines measurement, Tregs analysis, and a fully mismatched MHC heterotopic heart transplantation in mice (BALB/c to C57BL/6) were conducted. Results ADSCs preconditioned with poly(I:C) showed the highest efficiency in inhibiting lymphocyte proliferation, which was correlated with the upregulation of fibrinogen-like protein 2 (FGL2), an effector molecule of Tregs. The mean survival of cardiac allografts was extended from 8 to 12 days by intravenous injection of a single dose of ADSCs preconditioned with TLR3 agonist. The proportion of Tregs in the recipient’s spleen was significantly increased by injecting the poly(I:C)-stimulated ADSCs. Conclusions These results show that short-term TLR3 agonist preconditioning enhances the immunomodulatory efficacy of ADSCs, which can induce the generation of Tregs and upregulate the expression of FGL2, thereby improving the outcome of patients receiving organ transplantation.
Collapse
Affiliation(s)
- Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jingjing Li
- Department of Pediatric Surgery, Tianjin Children's Hospital, Tianjin, China (mainland)
| | - Pengju Zhang
- Oncology Center of People's Liberation Army (PLA), 81st Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Boqian Liu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jiayi Zhu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Qian Jian
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Degong Jia
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Caiyu Yi
- China Medical University, Shenyang, Liaoning, China (mainland)
| | | | - Hao Liu
- The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
18
|
Abstract
Brazilian-born British biologist Dr. Peter Medawar played an integral role in developing the concepts of immunologic rejection and tolerance, which led to him receiving the Nobel Prize "for the discovery of acquired immunologic tolerance" and eventually made organ transplantation a reality. However, at the time of his early work in tolerance, a paradox to his theories was brought to his attention; how was pregnancy possible? Pregnancy resembles organ transplantation in that the fetus, possessing paternal antigens, is a semi-allogeneic graft that can survive without immunosuppression for 9 months. To answer this question, Medawar proposed three hypotheses of how a mother supports her fetus in utero, now known as "Medawar's Paradox." The mechanisms that govern fetomaternal tolerance are still incompletely understood but may provide critical insight into how to achieve immune tolerance in organ transplantation. Here, we review current understanding of the immune factors responsible for fetomaternal tolerance during pregnancy and discuss the potential implications for advances in transplantation science.
Collapse
Affiliation(s)
- Victoria Rendell
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Natalie M Bath
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
19
|
Abstract
The human major histocompatibility complex is a family of genes that encodes HLAs, which have a crucial role in defence against foreign pathogens and immune surveillance of tumours. In the context of transplantation, HLA molecules are polymorphic antigens that comprise an immunodominant alloreactive trigger for the immune response, resulting in rejection. Remarkable advances in knowledge and technology in the field of immunogenetics have considerably enhanced the safety of transplantation. However, access to transplantation among individuals who have become sensitized as a result of previous exposure to alloantigens is reduced proportional to the breadth of their sensitization. New approaches for crossing the HLA barrier in transplantation using plasmapheresis, intravenous immunoglobulin and kidney paired donation have been made possible by the relative ease with which even low levels of anti-HLA antibodies can now be detected and tracked. The development of novel protocols for the induction of tolerance and new approaches to immunomodulation was also facilitated by advances in HLA technology. Here, we review the progress made in understanding HLAs that has enabled organ transplantation to become a life-saving endeavour that is accessible even for sensitized patients. We also discuss novel approaches to desensitization, immunomodulation and tolerance induction that have the potential to further improve transplantation access and outcomes.
Collapse
|
20
|
Izumi K, Bieber K, Ludwig RJ. Current Clinical Trials in Pemphigus and Pemphigoid. Front Immunol 2019; 10:978. [PMID: 31130959 PMCID: PMC6509547 DOI: 10.3389/fimmu.2019.00978] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Autoimmune bullous dermatoses (AIBDs) are a group of rare chronic inflammatory skin diseases, which clinically manifest as blisters and erosions of the skin and/or mucosa. Immunologically, AIBDs are characterized and caused by autoantibodies targeting adhesion molecules in the skin and mucosa. According to the histological location of the blistering, AIBDs are classified into the following two main subtypes: pemphigus (intraepidermal blistering) and pemphigoid (subepidermal blistering). Most AIBDs were potentially life-threatening diseases before the advent of immunosuppressive drugs, especially systemic steroid therapies, which suppress pathogenic immunological activity. Although there have been recent advancements in the understanding of the pathogenesis of AIBDs, glucocorticosteroids and/or adjuvant immunosuppressive drugs are still needed to control disease activity. However, the long-term use of systemic immunosuppression is associated with major adverse events, including death. Based on the growing understanding of AIBD pathogenesis, novel treatment targets have emerged, some of which are currently being evaluated in clinical trials. Within this article, we review the current clinical trials involving pemphigus and pemphigoid and discuss the rationale that lead to these trials. Overall, we aim to foster insights into translational research in AIBDs to improve patient care.
Collapse
Affiliation(s)
- Kentaro Izumi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Lübeck Institute of Experimental Dermatology, Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
LeGuern C, Germana S. On the elusive TCR specificity of thymic regulatory T cells. Am J Transplant 2019; 19:15-20. [PMID: 30378738 DOI: 10.1111/ajt.15165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/25/2023]
Abstract
Therapies using thymus-derived regulatory T cells (Tregs) are promising strategies for preventing autoimmunity or graft rejection. The efficacy of these approaches is, however, contingent on a better understanding of Treg mode of action, especially about factors controlling their activation in vivo. Although key parameters of Treg suppression have been identified, little information is available on Treg activation in vivo via the TCR. In light of recent studies using TCR transgenic mouse models as well as unpublished data, we discuss evidence in support of the view that Treg TCR specificities are not necessarily highly diverse, that the accessibility of Treg selective antigens control Treg development, and that peptides derived from MHC class II (MHC-II) could be prevailing antigens involved in Treg selection. This novel perspective provides insights on Treg development as well as a conceptual basis to a significant contribution of MHC-II derived peptides in the shaping of the Treg TCR repertoire.
Collapse
Affiliation(s)
- Christian LeGuern
- Massachusetts General Hospital/Harvard Medical School - Center for Transplantation Sciences, Charlestown, Massachusetts
| | - Sharon Germana
- Massachusetts General Hospital/Harvard Medical School - Center for Transplantation Sciences, Charlestown, Massachusetts
| |
Collapse
|
22
|
Martin-Moreno PL, Tripathi S, Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin J Am Soc Nephrol 2018; 13:1760-1764. [PMID: 29789350 PMCID: PMC6237070 DOI: 10.2215/cjn.01750218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.
Collapse
Affiliation(s)
- Paloma Leticia Martin-Moreno
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Nephrology Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sudipta Tripathi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
23
|
Li Y, Liu X, Wang W, Wang S, Zhang J, Jiang S, Wang Y, Li L, Li J, Zhang Y, Huang H. Low-dose IL-2 expands CD4 + regulatory T cells with a suppressive function in vitro via the STAT5-dependent pathway in patients with chronic kidney diseases. Ren Fail 2018; 40:280-288. [PMID: 29619880 PMCID: PMC6014482 DOI: 10.1080/0886022x.2018.1456462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/23/2017] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) often have CD4+ regulatory T cells (Tregs) dysfunction and chronic inflammation. We aim to investigate the effect, function, and related mechanism of low-dose IL-2 on CD4+ regulatory T cells expansion in vitro from patients with CKD. METHODS A total of 148 newly diagnosed patients with CKD at Stage III and 35 healthy volunteer subjects were recruited into our studies. The number of peripheral Tregs in peripheral blood mononuclear cells isolated from CKD patients, which were characterized by FACS as CD4+CD25hi and CD4+CD25+FoxP3+. The effect of low-dose IL-2 on expansion of Tregs, and the suppressive function of expanded Tregs were also analyzed by FACS. The levels of FoxP3 mRNA were detected by qRT-PCR. The activation of IL-2 induced Stat5 and blocking experiments were assessed by Western Blotting and FACS. RESULTS We found that the frequency of peripheral Tregs from CKD patients was significantly lower than that in healthy volunteer subjects. We also showed that IL-2 selectively expanded CD4+CD25hi and CD4+CD25+FoxP3+ regulatory T cells, and also upregulated the expression of FoxP3 mRNA. Our in vitro studies demonstrated that expanded CD4+ regulatory T cells from CKD patients suppressed proinflammatory Th1 and Th17 cell response. Furthermore, STAT5 activation is required for IL-2-induced expansion of regulatory T cells and expression of FoxP3 mRNA from CKD patients. CONCLUSIONS Our findings support the clinical Treg defects in CKD patients with glomerular diseases, and the rationale of evaluating low-dose IL-2 treatment for selectively modulating CD4+ Tregs.
Collapse
Affiliation(s)
- Yuanyuan Li
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Xueyong Liu
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Wei Wang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Shaohua Wang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Jianchun Zhang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Song Jiang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Yang Wang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Liping Li
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Jinghua Li
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Youkang Zhang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
- Renal Division, Key Laboratory of Renal Disease, Department of Medicine, Peking University First Hospital, Beijing, China
| | - Haichang Huang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| |
Collapse
|
24
|
Abramowicz D, Oberbauer R, Heemann U, Viklicky O, Peruzzi L, Mariat C, Crespo M, Budde K, Oniscu GC. Recent advances in kidney transplantation: a viewpoint from the Descartes advisory board. Nephrol Dial Transplant 2018; 33:1699-1707. [PMID: 29342289 PMCID: PMC6168736 DOI: 10.1093/ndt/gfx365] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
Transplantation medicine is a rapidly evolving field. Keeping afloat of the published literature to offer the best clinical care to our patients is a daunting task. As part of its educational mission, the Descartes advisory board identified seven topics in kidney transplantation where there has been substantial progresses over the last years: kidney allocation within Eurotransplant; kidney exchange strategies; kidney machine perfusion strategies; the changing landscape of anti-human leukocyte antigen (HLA) antibodies; the new immunosuppressive drugs in the pipeline; strategies for immunosuppression minimization; and the continuous enigma of focal segmental glomerular sclerosis recurrence after transplantation. Here, we have summarized the main knowledge and the main challenges of these seven topics with the aim to provide transplant professionals at large with key bullet points to successfully understand these new concepts.
Collapse
Affiliation(s)
- Daniel Abramowicz
- Department of Nephrology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Department of Nephrology, KH Elisabethinen, Linz, Austria
| | - Uwe Heemann
- Department of Nephrology, Klinikum Rechts der Isar, München, Germany
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Licia Peruzzi
- Nephrology and Dialysis Department, Regina Margherita Hospital, Torino, Italy
| | - Christophe Mariat
- Department of Nephrological Intensive Care, University Jean Monnet, Saint Etienne, France
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar Barcelona, Barcelona, Spain
| | - Klemens Budde
- Department of Nephrology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|