1
|
Ayasse N, Berg P, Sørensen MV, Svendsen SL, Weinstein AM, Leipziger J. Revisiting voltage-coupled H + secretion in the collecting duct. Am J Physiol Renal Physiol 2024; 327:F931-F945. [PMID: 39323388 PMCID: PMC11918339 DOI: 10.1152/ajprenal.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Experimental studies have shown that V-type ATPase-driven H+ secretion is dependent on transepithelial voltage. On this basis, the "voltage hypothesis" of urinary acidification by the collecting duct was derived. Accordingly, it has been supposed that the lumen-negative potential created by the reabsorption of Na+ via the epithelial Na+ channel (ENaC) enhances electrogenic H+ secretion via V-type H+-ATPase. This concept continues to be widely used to explain acid/base disorders. Importantly, however, a solid proof of principle for the voltage hypothesis in physiologically relevant situations has not been reached. Rather, it has been challenged by recent in vivo functional studies. In this review, we outline the arguments and experimental observations explaining why voltage-coupled H+ secretion in the collecting duct often appears poorly applicable for rationalizing changes in H+ secretion as a function of more or less ENaC function in the collecting duct.
Collapse
Affiliation(s)
- Niklas Ayasse
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mads V Sørensen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Sharma Y, Lo R, Tomilin VN, Ha K, Deremo H, Pareek AV, Dong W, Liao X, Lebedeva S, Charu V, Kambham N, Mutig K, Pochynyuk O, Bhalla V. ClC-Kb pore mutation disrupts glycosylation and triggers distal tubular remodeling. JCI Insight 2024; 9:e175998. [PMID: 39405114 PMCID: PMC11601903 DOI: 10.1172/jci.insight.175998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Mutations in the CLCNKB gene (1p36), encoding the basolateral chloride channel ClC-Kb, cause type 3 Bartter syndrome. We identified a family with a mixed Bartter/Gitelman phenotype and early-onset kidney failure and by employing a candidate gene approach, identified what we believe is a novel homozygous mutation (CLCNKB c.499G>T [p.Gly167Cys]) in exon 6 of CLCNKB in the index patient. We then validated these results with Sanger and whole-exome sequencing. Compared with wild-type ClC-Kb, the Gly167Cys mutant conducted less current and exhibited impaired complex N-linked glycosylation in vitro. We demonstrated that loss of Gly-167, rather than gain of a mutant Cys, impairs complex glycosylation, but that surface expression remains intact. Moreover, Asn-364 was necessary for channel function and complex glycosylation. Morphologic evaluation of human kidney biopsies revealed typical basolateral localization of mutant Gly167Cys ClC-Kb in cortical distal tubular epithelia. However, we detected attenuated expression of distal sodium transport proteins, changes in abundance of distal tubule segments, and hypokalemia-associated intracellular condensates from the index patient compared with control nephrectomy specimens. The present data establish what we believe are novel regulatory mechanisms of ClC-Kb activity and demonstrate nephron remodeling in humans, caused by mutant ClC-Kb, with implications for renal electrolyte handling, blood pressure control, and kidney disease.
Collapse
Affiliation(s)
- Yogita Sharma
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Robin Lo
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Viktor N. Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kotdaji Ha
- Department of Physiology, UCSF, San Francisco, California, USA
| | - Holly Deremo
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aishwarya V. Pareek
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Wuxing Dong
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Xiaohui Liao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vivek Charu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Mehta YR, Lewis SA, Leo KT, Chen L, Park E, Raghuram V, Chou CL, Yang CR, Kikuchi H, Khundmiri S, Poll BG, Knepper MA. "ADPKD-omics": determinants of cyclic AMP levels in renal epithelial cells. Kidney Int 2022; 101:47-62. [PMID: 34757121 PMCID: PMC10671900 DOI: 10.1016/j.kint.2021.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
The regulation of cyclic adenosine monophosphate (cAMP) levels in kidney epithelial cells is important in at least 2 groups of disorders, namely water balance disorders and autosomal dominant polycystic kidney disease. Focusing on the latter, we review genes that code for proteins that are determinants of cAMP levels in cells. We identify which of these determinants are expressed in the 14 kidney tubule segments using recently published RNA-sequencing and protein mass spectrometry data ("autosomal dominant polycystic kidney disease-omics"). This includes G protein-coupled receptors, adenylyl cyclases, cyclic nucleotide phosphodiesterases, cAMP transporters, cAMP-binding proteins, regulator of G protein-signaling proteins, G protein-coupled receptor kinases, arrestins, calcium transporters, and calcium-binding proteins. In addition, compartmentalized cAMP signaling in the primary cilium is discussed, and a specialized database of the proteome of the primary cilium of cultured "IMCD3" cells is provided as an online resource (https://esbl.nhlbi.nih.gov/Databases/CiliumProteome/). Overall, this article provides a general resource in the form of a curated list of proteins likely to play roles in determination of cAMP levels in kidney epithelial cells and, therefore, likely to be determinants of progression of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Yash R Mehta
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Spencer A Lewis
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Syed Khundmiri
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Agarwal S, Sudhini YR, Polat OK, Reiser J, Altintas MM. Renal cell markers: lighthouses for managing renal diseases. Am J Physiol Renal Physiol 2021; 321:F715-F739. [PMID: 34632812 DOI: 10.1152/ajprenal.00182.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | | - Onur K Polat
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | |
Collapse
|
5
|
Nakamura M, Satoh N, Tsukada H, Mizuno T, Fujii W, Suzuki A, Horita S, Nangaku M, Suzuki M. Stimulatory effect of insulin on H+-ATPase in the proximal tubule via the Akt/mTORC2 pathway. Physiol Int 2020; 107:376-389. [PMID: 32990653 DOI: 10.1556/2060.2020.00030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/12/2020] [Indexed: 11/19/2022]
Abstract
Purpose Acid-base transport in renal proximal tubules (PTs) is mainly sodium-dependent and conducted in coordination by the apical Na+/H+ exchanger (NHE3), vacuolar H+-adenosine triphosphatase (V-ATPase), and the basolateral Na+/HCO3- cotransporter. V-ATPase on PTs is well-known to play an important role in proton excretion. Recently we reported a stimulatory effect of insulin on these transporters. However, it is unclear whether insulin is involved in acid-base balance in PTs. Thus, we assessed the role of insulin in acid-base balance in PTs. Methods V-ATPase activity was evaluated using freshly isolated PTs obtained from mice, and specific inhibitors were then used to assess the signaling pathways involved in the observed effects. Results V-ATPase activity in PTs was markedly enhanced by insulin, and its activation was completely inhibited by bafilomycin (a V-ATPase-specific inhibitor), Akt inhibitor VIII, and PP242 (an mTORC1/2 inhibitor), but not by rapamycin (an mTORC1 inhibitor). V-ATPase activity was stimulated by 1 nm insulin by approximately 20% above baseline, which was completely suppressed by Akt1/2 inhibitor VIII. PP242 completely suppressed the insulin-mediated V-ATPase stimulation in mouse PTs, whereas rapamycin failed to influence the effect of insulin. Insulin-induced Akt phosphorylation in the mouse renal cortex was completely suppressed by Akt1/2 inhibitor VIII and PP242, but not by rapamycin. Conclusion Our results indicate that stimulation of V-ATPase activity by insulin in PTs is mediated via the Akt2/mTORC2 pathway. These results reveal the mechanism underlying the complex signaling in PT acid-base balance, providing treatment targets for renal disease.
Collapse
Affiliation(s)
- M Nakamura
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - N Satoh
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - H Tsukada
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - T Mizuno
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - W Fujii
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - A Suzuki
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan.,2Department of Nephrology, Japan Community Health care Organization (JCHO), Tokyo Yamate Medical Center, Tokyo, Japan
| | - S Horita
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - M Nangaku
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - M Suzuki
- 3Health Service Center, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
6
|
Weydert C, Decuypere JP, De Smedt H, Janssens P, Vennekens R, Mekahli D. Fundamental insights into autosomal dominant polycystic kidney disease from human-based cell models. Pediatr Nephrol 2019; 34:1697-1715. [PMID: 30215095 DOI: 10.1007/s00467-018-4057-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Several animal- and human-derived models are used in autosomal dominant polycystic kidney disease (ADPKD) research to gain insight in the disease mechanism. However, a consistent correlation between animal and human ADPKD models is lacking. Therefore, established human-derived models are relevant to affirm research results and translate findings into a clinical set-up. In this review, we give an extensive overview of the existing human-based cell models. We discuss their source (urine, nephrectomy and stem cell), immortalisation procedures, genetic engineering, kidney segmental origin and characterisation with nephron segment markers. We summarise the most studied pathways and lessons learned from these different ADPKD models. Finally, we issue recommendations for the derivation of human-derived cell lines and for experimental set-ups with these cell lines.
Collapse
Affiliation(s)
- Caroline Weydert
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
| | - Jean-Paul Decuypere
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Janssens
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
- Department of Nephrology, University Hospitals Brussels, Brussels, Belgium
| | - Rudi Vennekens
- VIB Center for Brain and Disease Research, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Ydegaard R, Svenningsen P, Bistrup C, Andersen RF, Stubbe J, Buhl KB, Marcussen N, Hinrichs GR, Iraqi H, Zamani R, Dimke H, Jensen BL. Nephrotic syndrome is associated with increased plasma K + concentration, intestinal K + losses, and attenuated urinary K + excretion: a study in rats and humans. Am J Physiol Renal Physiol 2019; 317:F1549-F1562. [PMID: 31566427 DOI: 10.1152/ajprenal.00179.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study tested the hypotheses that nephrotic syndrome (NS) leads to renal K+ loss because of augmented epithelial Na+ channel (ENaC) activity followed by downregulation of renal K+ secretory pathways by suppressed aldosterone. The hypotheses were addressed by determining K+ balance and kidney abundance of K+ and Na+ transporter proteins in puromycin aminonucleoside (PAN)-induced rat nephrosis. The effects of amiloride and angiotensin II type 1 receptor and mineralocorticoid receptor (MR) antagonists were tested. Glucocorticoid-dependent MR activation was tested by suppression of endogenous glucocorticoid with dexamethasone. Urine and plasma samples were obtained from pediatric patients with NS in acute and remission phases. PAN-induced nephrotic rats had ENaC-dependent Na+ retention and displayed lower renal K+ excretion but elevated intestinal K+ secretion that resulted in less cumulated K+ in NS. Aldosterone was suppressed at day 8. The NS-associated changes in intestinal, but not renal, K+ handling responded to suppression of corticosterone, whereas angiotensin II type 1 receptor and MR blockers and amiloride had no effect on urine K+ excretion during NS. In PAN-induced nephrosis, kidney protein abundance of the renal outer medullary K+ channel and γ-ENaC were unchanged, whereas the Na+-Cl- cotransporter was suppressed and Na+-K+-ATPase increased. Pediatric patients with acute NS displayed suppressed urine Na+-to-K+ ratios compared with remission and elevated plasma K+ concentration, whereas fractional K+ excretion did not differ. Acute NS is associated with less cumulated K+ in a rat model, whereas patients with acute NS have elevated plasma K+ and normal renal fractional K+ excretion. In NS rats, K+ balance is not coupled to ENaC activity but results from opposite changes in renal and fecal K+ excretion with a contribution from corticosteroid MR-driven colonic secretion.
Collapse
Affiliation(s)
- Rikke Ydegaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Gitte Rye Hinrichs
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Hiba Iraqi
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Reza Zamani
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Peng H, Xu J, Yang XP, Kassem KM, Rhaleb IA, Peterson E, Rhaleb NE. N-acetyl-seryl-aspartyl-lysyl-proline treatment protects heart against excessive myocardial injury and heart failure in mice. Can J Physiol Pharmacol 2019; 97:753-765. [PMID: 30998852 PMCID: PMC6824427 DOI: 10.1139/cjpp-2019-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) in mice results in cardiac rupture at 4-7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Jiang Xu
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Xiao-Ping Yang
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Kamal M Kassem
- b Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Imane A Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
| | - Ed Peterson
- c Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Role of Calbindin-D28k in Diabetes-Associated Advanced Glycation End-Products-Induced Renal Proximal Tubule Cell Injury. Cells 2019; 8:cells8070660. [PMID: 31262060 PMCID: PMC6678974 DOI: 10.3390/cells8070660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes-associated advanced glycation end-products (AGEs) can increase extracellular matrix (ECM) expression and induce renal fibrosis. Calbindin-D28k, which plays a role in calcium reabsorption in renal distal convoluted tubules, is increased in a diabetic kidney. The role of calbindin-D28k in diabetic nephropathy still remains unclear. Here, calbindin-D28k protein expression was unexpectedly induced in the renal tubules of db/db diabetic mice. AGEs induced the calbindin-D28k expression in human renal proximal tubule cells (HK2), but not in mesangial cells. AGEs induced the expression of fibrotic molecules, ECM proteins, epithelial-mesenchymal transition (EMT) markers, and endoplasmic reticulum (ER) stress-related molecules in HK2 cells, which could be inhibited by a receptor for AGE (RAGE) neutralizing antibody. Calbindin-D28k knockdown by siRNA transfection reduced the cell viability and obviously enhanced the protein expressions of fibrotic factors, EMT markers, and ER stress-related molecules in AGEs-treated HK2 cells. Chemical chaperone 4-Phenylbutyric acid counteracted the AGEs-induced ER stress and ECM and EMT markers expressions. Calbindin-D28k siRNA in vivo delivery could enhance renal fibrosis in db/db diabetic mice. These findings suggest that inducible calbindin-D28k protects against AGEs/RAGE axis-induced ER stress-activated ECM induction and cell injury in renal proximal tubule cells.
Collapse
|
10
|
Chen L, Clark JZ, Nelson JW, Kaissling B, Ellison DH, Knepper MA. Renal-Tubule Epithelial Cell Nomenclature for Single-Cell RNA-Sequencing Studies. J Am Soc Nephrol 2019; 30:1358-1364. [PMID: 31253652 DOI: 10.1681/asn.2019040415] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jevin Z Clark
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon; and
| | | | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon; and
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
11
|
Ravarotto V, Simioni F, Sabbadin C, Pagnin E, Maiolino G, Armanini D, Calò LA. Proinflammatory/profibrotic effects of aldosterone in Gitelman's syndrome, a human model opposite to hypertension. J Endocrinol Invest 2019; 42:521-526. [PMID: 30136149 DOI: 10.1007/s40618-018-0942-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Aldosterone proinflammatory/profibrotic effects are mediated by the induction of mononuclear leucocytes (MNL) to express oxidative stress (OxSt)-related proteins, such as p22phox, and by the activation of RhoA/Rho kinase pathway. Gitelman's syndrome (GS), an autosomal recessive tubulopathy, is an interesting opposite model to hypertension, being characterized by hypokalemia, activation of renin-angiotensin-aldosterone system yet normo/hypotension and lack of cardiovascular-renal remodeling. We aimed to evaluate the proinflammatory/profibrotic effect of aldosterone in MNL of 6 GS patients compared with 6 healthy subjects (HS). METHODS p22phox expression and MYPT-1 phosphorylation status, a marker of RhoA/Rho kinase pathway activation, were evaluated in MNL of GS patients and HS at baseline and after incubation with aldosterone (1 × 10-8 M) alone or with canrenone (1 × 10-6 M). RESULTS At basal condition, p22phox expression was significantly higher in HS than in GS patients (1.02 ± 0.05 densitometric unit (du) vs 0.40 ± 0.1 du, respectively). Aldosterone significantly increased p22phox expression in HS and this effect was reversed by coincubation with canrenone (1.4 ± 0.05 du and 1.09 ± 0.03 du, respectively). No significant change was reported in GS after incubation of MNL with aldosterone and/or canrenone compared with basaline. Even MYPT-1 phosphorylation was significantly higher in HS compared with GS patients at basal condition (1.16 ± 0.1 du vs 0.69 ± 0.07, respectively). Aldosterone significantly increased MYPT-1 phosphorylation only in HS (1.37 ± 0.1 du vs 0.83 ± 0.12 du in GS). CONCLUSIONS GS patients seem to be protected by the OxSt status induced by aldosterone and revealed in HS. This human model could provide additional clues to highlight the proinflammatory/cardiovascular remodeling effects of aldosterone.
Collapse
Affiliation(s)
- V Ravarotto
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - F Simioni
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - C Sabbadin
- Department of Medicine-Endocrinology, University of Padova, Padua, Italy
| | - E Pagnin
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - G Maiolino
- Department of Medicine-Hypertension, University of Padova, Padua, Italy
| | - D Armanini
- Department of Medicine-Endocrinology, University of Padova, Padua, Italy
| | - L A Calò
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
12
|
Layton AT, Layton HE. A computational model of epithelial solute and water transport along a human nephron. PLoS Comput Biol 2019; 15:e1006108. [PMID: 30802242 PMCID: PMC6405173 DOI: 10.1371/journal.pcbi.1006108] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/07/2019] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
We have developed the first computational model of solute and water transport from Bowman space to the papillary tip of the nephron of a human kidney. The nephron is represented as a tubule lined by a layer of epithelial cells, with apical and basolateral transporters that vary according to cell type. The model is formulated for steady state, and consists of a large system of coupled ordinary differential equations and algebraic equations. Model solution describes luminal fluid flow, hydrostatic pressure, luminal fluid solute concentrations, cytosolic solute concentrations, epithelial membrane potential, and transcellular and paracellular fluxes. We found that if we assume that the transporter density and permeabilities are taken to be the same between the human and rat nephrons (with the exception of a glucose transporter along the proximal tubule and the H+-pump along the collecting duct), the model yields segmental deliveries and urinary excretion of volume and key solutes that are consistent with human data. The model predicted that the human nephron exhibits glomerulotubular balance, such that proximal tubular Na+ reabsorption varies proportionally to the single-nephron glomerular filtration rate. To simulate the action of a novel diabetic treatment, we inhibited the Na+-glucose cotransporter 2 (SGLT2) along the proximal convoluted tubule. Simulation results predicted that the segment’s Na+ reabsorption decreased significantly, resulting in natriuresis and osmotic diuresis. In addition to its well-known function of waste removal from the body, the kidney is also responsible for the critical regulation of the body’s salt, potassium, acid content, and blood pressure. The kidneys perform these life-sustaining task by filtering and returning to blood stream about 200 quarts of blood every 24 hours. What isn’t returned to blood stream is excreted as urine. The production of urine involves highly complex steps of secretion and reabsorption. To study these processes without employing invasive experimental procedures, we developed the first computational model of the human nephron (which is the functional unit of a kidney). The model contains detailed representation of the transport processes that take place in the epithelial cells that form the walls of the nephron. Using that model, we conducted simulations to predict how much filtered solutes and and water is transported along each individual and functionally distinct nephron segment. We conducted these simulations under normal physiological conditions, and under pharmacological conditions. The nephron model can be used as an essential component in an integrated model of kidney function in humans.
Collapse
Affiliation(s)
- Anita T. Layton
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Departments of Applied Mathematics and Biology, School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Harold E. Layton
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Preadmission Diuretic Use and Mortality in Patients Hospitalized With Hyponatremia: A Propensity Score–Matched Cohort Study. Am J Ther 2019; 26:e79-e91. [DOI: 10.1097/mjt.0000000000000544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Abstract
The kidneys regulate many vital functions that require precise control throughout the day. These functions, such as maintaining sodium balance or regulating arterial pressure, rely on an intrinsic clock mechanism that was commonly believed to be controlled by the central nervous system. Mounting evidence in recent years has unveiled previously underappreciated depth of influence by circadian rhythms and clock genes on renal function, at the molecular and physiological level, independent of other external factors. The impact of circadian rhythms in the kidney also affects individuals from a clinical standpoint, as the loss of rhythmic activity or clock gene expression have been documented in various cardiovascular diseases. Fortunately, the prognostic value of examining circadian rhythms may prove useful in determining the progression of a kidney-related disease, and chronotherapy is a clinical intervention that requires consideration of circadian and diurnal rhythms in the kidney. In this review, we discuss evidence of circadian regulation in the kidney from basic and clinical research in order to provide a foundation on which a great deal of future research is needed to expand our understanding of circadian relevant biology.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
15
|
Kiryluk K, Bomback A, Cheng YL, Camara PG, Rabadan R, Sims P, Barasch J. Precision Medicine for Acute Kidney Injury (AKI): Redefining AKI by Agnostic Kidney Tissue Interrogation and Genetics. Semin Nephrol 2018; 38:40-51. [PMID: 29291761 PMCID: PMC5753434 DOI: 10.1016/j.semnephrol.2017.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acute kidney injury (AKI) currently is diagnosed by a temporal trend of a single blood analyte: serum creatinine. This measurement is neither sensitive nor specific to kidney injury or its protean forms. Newer biomarkers, neutrophil gelatinase-associated lipocalin (NGAL, Lipocalin 2, Siderocalin), or kidney injury molecule-1 (KIM-1, Hepatitis A Virus Cellular Receptor 1), accelerate the diagnosis of AKI as well as prospectively distinguish rapidly reversible from prolonged causes of serum creatinine increase. Nonetheless, these biomarkers lack the capacity to subfractionate AKI further (eg, sepsis versus ischemia versus nephrotoxicity from medications, enzymes, or metals) or inform us about the primary and secondary sites of injury. It also is unknown whether all nephrons are injured in AKI, whether all cells in a nephron are affected, and whether injury responses can be stimulus-specific or cell type-specific or both. In this review, we summarize fully agnostic tissue interrogation approaches that may help to redefine AKI in cellular and molecular terms, including single-cell and single-nuclei RNA sequencing technology. These approaches will empower a shift in the current paradigm of AKI diagnosis, classification, and staging, and provide the renal community with a significant advance toward precision medicine in the analysis AKI.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Andrew Bomback
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yim-Ling Cheng
- Department of Systems Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Pablo G. Camara
- Department of Systems Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Peter Sims
- Department of Systems Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jonathan Barasch
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Poulsen SB, Christensen BM. Long-term aldosterone administration increases renal Na+-Cl− cotransporter abundance in late distal convoluted tubule. Am J Physiol Renal Physiol 2017; 313:F756-F766. [DOI: 10.1152/ajprenal.00352.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022] Open
Abstract
Renal Na+-Cl− cotransporter (NCC) is expressed in early distal convoluted tubule (DCT) 1 and late DCT (DCT2). NCC activity can be stimulated by aldosterone administration, and the mechanism is assumed to depend on the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates glucocorticoids that would otherwise occupy aldosterone receptors. Because 11β-HSD2 in rat may only be abundantly expressed in DCT2 cells and not in DCT1 cells, it has been speculated that aldosterone specifically stimulates NCC activity in DCT2 cells. In mice, however, it is debated if 11β-HSD2 is expressed in DCT2 cells. The present study examined whether aldosterone administration in mice stimulates NCC abundance and phosphorylation in DCT2 cells but not in DCT1 cells. B6/C57 male mice were administered 100 µg aldosterone·kg body weight−1·24 h−1 for 6 days and euthanized during isoflurane inhalation. Western blotting of whole kidney homogenate showed that aldosterone administration stimulated NCC and pT58-NCC abundances ( P < 0.001). In DCT1 cells, confocal microscopy detected no effect of the aldosterone administration on NCC and pT58-NCC abundances. By contrast, NCC and pT58-NCC abundances were stimulated by aldosterone administration in the middle of DCT2 ( P < 0.001 and <0.01, respectively) and at the junction between DCT2 and CNT ( P < 0.001 and <0.05, respectively). In contrast to rat, immunohistochemistry in mouse showed no/very weak 11β-HSD2 expression in DCT2 cells. Collectively, long-term aldosterone administration stimulates mouse NCC and pT58-NCC abundances in DCT2 cells and presumably not in DCT1 cells.
Collapse
|
17
|
Wynne BM, Mistry AC, Al-Khalili O, Mallick R, Theilig F, Eaton DC, Hoover RS. Aldosterone Modulates the Association between NCC and ENaC. Sci Rep 2017. [PMID: 28646163 PMCID: PMC5482882 DOI: 10.1038/s41598-017-03510-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Distal sodium transport is a final step in the regulation of blood pressure. As such, understanding how the two main sodium transport proteins, the thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC), are regulated is paramount. Both are expressed in the late distal nephron; however, no evidence has suggested that these two sodium transport proteins interact. Recently, we established that these two sodium transport proteins functionally interact in the second part of the distal nephron (DCT2). Given their co-localization within the DCT2, we hypothesized that NCC and ENaC interactions might be modulated by aldosterone (Aldo). Aldo treatment increased NCC and αENaC colocalization (electron microscopy) and interaction (coimmunoprecipitation). Finally, with co-expression of the Aldo-induced protein serum- and glucocorticoid-inducible kinase 1 (SGK1), NCC and αENaC interactions were increased. These data demonstrate that Aldo promotes increased interaction of NCC and ENaC, within the DCT2 revealing a novel method of regulation for distal sodium reabsorption.
Collapse
Affiliation(s)
- Brandi M Wynne
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA. .,Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, 30322, USA.
| | - Abinash C Mistry
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Otor Al-Khalili
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA
| | - Rickta Mallick
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Franziska Theilig
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA.,Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, 30322, USA
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.,Department of Physiology, Emory University, Atlanta, GA, 30322, USA.,Research Service, Atlanta Veteran's Administration Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
18
|
Raikwar NS, Thomas CP. Aldosterone regulates a 5' variant sgk1 transcript via a shared hormone response element in the sgk1 5' regulatory region. Physiol Rep 2017; 5:5/7/e13221. [PMID: 28408636 PMCID: PMC5392512 DOI: 10.14814/phy2.13221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/24/2022] Open
Abstract
We previously identified a 5ʹ variant alternate transcript of Sgk1 (Sgk1_v3) encoding an NH2‐terminal variant Sgk1 isoform, Sgk1_i3 that, like Sgk1, is expressed in the distal convoluted tubule, connecting tubule and collecting duct and can stimulate epithelial Na+ transport (Am J Physiol Renal Physiol 303: F1527–F1533, 2012). We now demonstrate that, similar to Sgk1, aldosterone and glucocorticoids stimulate Sgk1_v3 expression in cell lines from the collecting duct and airway epithelia. In mice, short term aldosterone infusion and maneuvers that increase endogenous aldosterone secretion including dietary Na+ deprivation and K+ loading increases distal nephron Sgk1_v3 expression in vivo. Although Sgk1_v3 has a different 5ʹ proximal regulatory region from Sgk1, the transcription start sites are less than 1000 bp apart. We cloned the 5ʹ regulatory region for Sgk1 and Sgk_v3 upstream of a luciferase gene and by deletion and reporter gene analysis we localized the corticosteroid regulatory region for Sgk1_v3 to a glucocorticoid response element (GRE) that had previously been identified for Sgk1 (Am J Physiol Endo Metab 283: E971–E979, 2002). We tested this element with MR in an MR‐null cell line and demonstrate that aldosterone stimulates Sgk1 and Sgk1_v3 via this GRE. We conclude that corticosteroids stimulate Sgk1 and Sgk1_v3 expression in epithelial cells via activation of a common conserved GRE in the 5ʹ flanking region of Sgk1.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa
| | - Christie P Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa .,The Graduate Program in Molecular Biology, University of Iowa College of Medicine, Iowa City, Iowa.,The Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
19
|
The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochem J 2016; 473:3237-52. [PMID: 27422782 DOI: 10.1042/bcj20160312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.
Collapse
|
20
|
Procino G, Carmosino M, Milano S, Dal Monte M, Schena G, Mastrodonato M, Gerbino A, Bagnoli P, Svelto M. β3 adrenergic receptor in the kidney may be a new player in sympathetic regulation of renal function. Kidney Int 2016; 90:555-67. [PMID: 27206969 PMCID: PMC4996630 DOI: 10.1016/j.kint.2016.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
To date, the study of the sympathetic regulation of renal function has been restricted to the important contribution of β1- and β2-adrenergic receptors (ARs). Here we investigate the expression and the possible physiologic role of β3-adrenergic receptor (β3-AR) in mouse kidney. The β3-AR is expressed in most of the nephron segments that also express the type 2 vasopressin receptor (AVPR2), including the thick ascending limb and the cortical and outer medullary collecting duct. Ex vivo experiments in mouse kidney tubules showed that β3-AR stimulation with the selective agonist BRL37344 increased intracellular cAMP levels and promoted 2 key processes in the urine concentrating mechanism. These are accumulation of the water channel aquaporin 2 at the apical plasma membrane in the collecting duct and activation of the Na-K-2Cl symporter in the thick ascending limb. Both effects were prevented by the β3-AR antagonist L748,337 or by the protein kinase A inhibitor H89. Interestingly, genetic inactivation of β3-AR in mice was associated with significantly increased urine excretion of water, sodium, potassium, and chloride. Stimulation of β3-AR significantly reduced urine excretion of water and the same electrolytes. Moreover, BRL37344 promoted a potent antidiuretic effect in AVPR2-null mice. Thus, our findings are of potential physiologic importance as they uncover the antidiuretic effect of β3-AR stimulation in the kidney. Hence, β3-AR agonism might be useful to bypass AVPR2-inactivating mutations.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Giorgia Schena
- Department of Sciences, University of Basilicata, Potenza, Italy
| | | | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
21
|
Alexander RT, Beggs MR, Zamani R, Marcussen N, Frische S, Dimke H. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia. Am J Physiol Renal Physiol 2015; 309:F604-16. [PMID: 26180241 DOI: 10.1152/ajprenal.00651.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/11/2015] [Indexed: 01/07/2023] Open
Abstract
Plasma membrane Ca(2+)-ATPases (PMCAs) participate in epithelial Ca(2+) transport and intracellular Ca(2+) signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca(2+) channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca(2+) flux and investigated the localization and regulation of Pmca4 in Ca(2+)-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca(2+) channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na(+)-Cl(-) cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing to a housekeeping function of the pump in Ca(2+)-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca(2+)-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca(2+) transport.
Collapse
Affiliation(s)
- R Todd Alexander
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Megan R Beggs
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Reza Zamani
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Sebastian Frische
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark
| |
Collapse
|
22
|
Koulouridis E, Koulouridis I. Molecular pathophysiology of Bartter's and Gitelman's syndromes. World J Pediatr 2015; 11:113-25. [PMID: 25754753 DOI: 10.1007/s12519-015-0016-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the last two decades, progress in cytogenetic and genome research has enabled investigators to unravel the underlying molecular mechanisms of inherited tubulopathies such as Bartter's and Gitelman's syndromes and helped physicians to better understand not only these two pathologic entities but also renal pathophysiology and salt sensitive hypertension. DATA SOURCES Articles collected from PubMed and open access journals included original articles, research articles, and comprehensive reviews. They were evaluated by the authors with an special emphasis on originality and up to date information about molecular pathophysiology. RESULTS Bartter's and Gitelman's syndromes are two different inherited salt loosing tubulopathies. They are characterized by various inability of distal nephron to reabsorb sodium chloride with resultant extarcellular volume contraction and increased activity of the renin angiotensin aldosterone system. Hypokalemic metabolic alkalosis is a common feature of these two forms of tubulopathies. Hypercalciuria characterizes the majority of Bartter's syndrome, and hypomagnesemia with hypocalciuria characterizes Gitelman's syndrome. Low blood pressure is a common feature among patients who suffered from these tubulopathies. Bartter's syndromes encompass a heterogeneous group of ion channels defects localized at the thick ascending limp of Henle's loop with resultant loss of function of sodium-potassium-2 chloride cotransporter. These defects result in the impairment of the countercurrent multiplication system of the kidney as well as calcium, potassium and acid base disturbances which in the majority of cases are proved lethal especially in the antenatal and/or immediate postnatal life period. The underlying pathology in Gitelman's syndrome is defined to the distal convoluted tubule and is related to loss of function of the sodium-chloride cotransporter. The results of this defect encompass the inability of extracellular volume homeostasis, magnesium and potassium conservation, and acid base disturbances which are generally mild and in the majority of cases are not life-threatening. CONCLUSIONS Recent advances in molecular pathophysiology of Bartter's and Gitelman's syndromes have helped physicians to better understand the underlying mechanisms of these pathologic entities which remain obscure. Data collected from experiments among genetically manipulated animals enable us to better understand the pathophysiology of mammalian kidney and the underlying mechanisms of salt sensitive hypertension and to lay a foundation for the future development of new drugs, especially diuretics and antihypertensive drugs.
Collapse
|
23
|
Jensen TB, Cheema MU, Szymiczek A, Damkier HH, Praetorius J. Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance. PLoS One 2015; 10:e0124902. [PMID: 25874770 PMCID: PMC4395387 DOI: 10.1371/journal.pone.0124902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells.
Collapse
Affiliation(s)
| | | | - Agata Szymiczek
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
24
|
AVP-induced increase in AQP2 and p-AQP2 is blunted in heart failure during cardiac remodeling and is associated with decreased AT1R abundance in rat kidney. PLoS One 2015; 10:e0116501. [PMID: 25658446 PMCID: PMC4319737 DOI: 10.1371/journal.pone.0116501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/10/2014] [Indexed: 01/02/2023] Open
Abstract
AIM The objective was to examine the renal effects of long-term increased angiotensin II and vasopressin plasma levels in early-stage heart failure (HF). We investigated the regulations of the V2 vasopressin receptor, the type 1A angiotensin II receptor, the (pro)renin receptor, and the water channels AQP2, AQP1, AQP3, and AQP4 in the inner medulla of rat kidney. METHODS HF was induced by coronary artery ligation. Sixty-eight rats were allocated to six groups: Sham (N = 11), HF (N = 11), sodium restricted sham (N = 11), sodium restricted HF (N = 11), sodium restricted sham + DDAVP (N = 12), and sodium restricted HF + DDAVP (N = 12). 1-desamino-8-D-arginine vasopressin (0.5 ng h-1 for 7 days) or vehicle was administered. Pre- and post-treatment echocardiographic evaluation was performed. The rats were sacrificed at day 17 after surgery, before cardiac remodeling in rat is known to be completed. RESULTS HF rats on standard sodium diet and sodium restriction displayed biochemical markers of HF. These rats developed hyponatremia, hypo-osmolality, and decreased fractional excretion of sodium. Increase of AQP2 and p(Ser256)-AQP2 abundance in all HF groups was blunted compared with control groups even when infused with DDAVP and despite increased vasopressin V2 receptor and Gsα abundance. This was associated with decreased protein abundance of the AT1A receptor in HF groups vs. controls. CONCLUSION Early-stage HF is associated with blunted increase in AQP2 and p(Ser256)-AQP2 despite of hyponatremia, hypo-osmolality, and increased inner medullary vasopressin V2 receptor expression. Decreased type 1A angiotensin II receptor abundance likely plays a role in the transduction of these effects.
Collapse
|
25
|
Ennulat D, Adler S. Recent Successes in the Identification, Development, and Qualification of Translational Biomarkers. Toxicol Pathol 2014; 43:62-9. [DOI: 10.1177/0192623314554840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of novel safety or efficacy biomarkers has increasingly been used to improve safety monitoring and minimize attrition during drug development; however, for new biomarkers, the failure rate can equal or exceed that of new chemical entities. Drug-induced kidney injury is recognized to occur throughout the drug development process, with histopathology considered to be the gold standard for preclinical toxicologic screening. Renal biomarkers used clinically are primarily biomarkers of renal function and are considered insensitive for the detection of drug-induced kidney injury during first-in-man studies, particularly for compounds known to induce renal injury in preclinical species. Recent efforts by public–private partnerships have led to unprecedented success in the identification, development, and qualification of several new translatable biomarkers of kidney injury in the rat. To optimize the chance of success in current and future biomarker efforts in preclinical species and man, selection and development of biomarkers should emphasize biological considerations including marker variability and biology in both health and disease. The research to support the qualification of novel renal safety markers for routine use in the clinical setting is currently underway, and results from this work are greatly anticipated.
Collapse
Affiliation(s)
| | - Scott Adler
- AstraZeneca Research & Development, Wilmington, Delaware, USA
| |
Collapse
|
26
|
Cai X, Srivastava S, Surindran S, Li Z, Skolnik EY. Regulation of the epithelial Ca²⁺ channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell 2014; 25:1244-50. [PMID: 24523290 PMCID: PMC3982990 DOI: 10.1091/mbc.e13-04-0180] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The kidney, together with bone and intestine, plays a crucial role in maintaining whole-body calcium (Ca(2+)) homoeostasis, which is primarily mediated by altering the reabsorption of Ca(2+) filtered by the glomerulus. The transient receptor potential-vanilloid-5 (TRPV5) channel protein forms a six- transmembrane Ca(2+)-permeable channel that regulates urinary Ca(2+) excretion by mediating active Ca(2+) reabsorption in the distal convoluted tubule of the kidney. Here we show that the histidine kinase, nucleoside diphosphate kinase B (NDPK-B), activates TRPV5 channel activity and Ca(2+) flux, and this activation requires histidine 711 in the carboxy-terminal tail of TRPV5. In addition, the histidine phosphatase, protein histidine phosphatase 1, inhibits NDPK-B-activated TRPV5 in inside/out patch experiments. This is physiologically relevant to Ca(2+) reabsorption in vivo, as short hairpin RNA knockdown of NDPK-B leads to decreased TRPV5 channel activity, and urinary Ca(2+) excretion is increased in NDPK-B(-/-) mice fed a high-Ca(2+) diet. Thus these findings identify a novel mechanism by which TRPV5 and Ca(2+) reabsorption is regulated by the kidney and support the idea that histidine phosphorylation plays other, yet-uncovered roles in mammalian biology.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Nephrology, New York University Langone Medical Center, New York, NY 10016 Department of Molecular Pathogenesis, New York University Langone Medical Center, New York, NY 10016 The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016 Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016
| | | | | | | | | |
Collapse
|
27
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
28
|
Abstract
Chloride transport along the nephron is one of the key actions of the kidney that regulates extracellular volume and blood pressure. To maintain steady state, the kidney needs to reabsorb the vast majority of the filtered load of chloride. This is accomplished by the integrated function of sequential chloride transport activities along the nephron. The detailed mechanisms of transport in each segment generate unique patterns of interactions between chloride and numerous other individual components that are transported by the kidney. Consequently, chloride transport is inextricably intertwined with that of sodium, potassium, protons, calcium, and water. These interactions not only allow for exquisitely precise regulation but also determine the particular patterns in which the system can fail in disease states.
Collapse
Affiliation(s)
- John C Edwards
- UNC Kidney Center and the Departments of Medicine and Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
29
|
Pathare G, Hoenderop JGJ, Bindels RJM, San-Cristobal P. A molecular update on pseudohypoaldosteronism type II. Am J Physiol Renal Physiol 2013; 305:F1513-20. [PMID: 24107425 DOI: 10.1152/ajprenal.00440.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The DCT (distal convoluted tubule) is the site of microregulation of water reabsorption and ion handling in the kidneys, which is mainly under the control of aldosterone. Aldosterone binds to and activates mineralocorticoid receptors, which ultimately lead to increased sodium reabsorption in the distal part of the nephron. Impairment of mineralocorticoid signal transduction results in resistance to aldosterone and mineralocorticoids, and, therefore, causes disturbances in electrolyte balance. Pseudohypoaldosteronism type II (PHAII) or familial hyperkalemic hypertension (FHHt) is a rare, autosomal dominant syndrome characterized by hypertension, hyperkalemia, metabolic acidosis, elevated or low aldosterone levels, and decreased plasma renin activity. PHAII is caused by mutations in the WNK isoforms (with no lysine kinase), which regulate the Na-Cl and Na-K-Cl cotransporters (NCC and NKCC2, respectively) and the renal outer medullary potassium (ROMK) channel in the DCT. This review focuses on new candidate genes such as KLHL3 and Cullin3, which are instrumental to unraveling novel signal transductions pathways involving NCC, to better understand the cause of PHAII along with the molecular mechanisms governing the pathophysiology of PHAII and its clinical manifestations.
Collapse
Affiliation(s)
- Ganesh Pathare
- 286, Dept. of Physiology, Radboud Univ. Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Lee CT, Lien YHH, Lai LW, Ng HY, Chiou TTY, Chen HC. Variations of dietary salt and fluid modulate calcium and magnesium transport in the renal distal tubule. Nephron Clin Pract 2013; 122:19-27. [PMID: 23774784 DOI: 10.1159/000353199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 05/15/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The renal distal tubule fine-tunes renal epithelial calcium transport. Dietary intake of salt and fluid varies day-to-day and the kidney adapts accordingly to maintain homeostasis. The alternations in salt and fluid balance affect calcium and magnesium transport in the distal tubule, but the mechanisms are not fully understood. METHODS Sprague-Dawley rats were grouped into high-salt, low-salt and dehydration treatment. Daily intake, water consumption and urine output were recorded. At the end of the experiment, blood and urine samples were collected for hormonal and biochemical tests. Genetic analysis, immunoblotting and immunofluorescence studies were then performed to assess the alterations of calcium and magnesium transport-related molecules. RESULTS High-salt treatment increased urinary sodium, calcium and magnesium excretion. Low-salt treatment and dehydration were associated with decreased urinary excretion of all electrolytes. High-salt treatment was associated with increased intact parathyroid hormone levels. A significant increase in gene expression of TRPV5, TRPV6, calbindin-D28k and TRPM6 was found during high-salt treatment, while low salt and dehydration diminished expression. These findings were confirmed with immunofluorescence studies. High-salt and low-salt intake or dehydration did not cause any significant changes in WNK1, WNK3 and WNK4. CONCLUSIONS Alternations in salt and water intake affect renal calcium and magnesium handling. High-salt intake increases the distal delivery of the divalent cations which upregulates distal tubule calcium and magnesium transport molecules, while the opposite effects are associated with low-salt intake or dehydration.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
New Insights into the Renal Progenitor Cells and Kidney Diseases by Studying CD133. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:113-23. [PMID: 23161079 DOI: 10.1007/978-1-4614-5894-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CD133(+) progenitor cells have been found in different segments of the human nephron. In particular, CD133-expressing cells are present in the cortex, in Bowman's capsule of the glomerulus, and in proximal convoluted tubules and in medulla, in the Henle's loop, and its thin limb segments. The collecting ducts are negative. During repair of renal injury, CD133-expressing cells are increased, suggesting a contribution in renal regeneration. An increase has also been observed in pathological conditions. CD133(+) cells contribute to the formation of glomerular crescents and are lining the cysts in the polycystic kidney disease. Therefore, an altered regulation of CD133(+) cell proliferation or differentiation could be involved in glomerular and tubular response to injury in pathological condition. In clear cell renal carcinoma, despite CD133(+) cells appeared to contribute to tumor vascularization, they did not display features of tumor-initiating cells.
Collapse
|
32
|
Nesterov V, Dahlmann A, Krueger B, Bertog M, Loffing J, Korbmacher C. Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. Am J Physiol Renal Physiol 2012; 303:F1289-99. [DOI: 10.1152/ajprenal.00247.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone is thought to be the main hormone to stimulate the epithelial sodium channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), the connecting tubule (CNT) and the entire collecting duct (CD). There is immunohistochemical evidence for an axial gradient of ENaC expression along the ASDN with highest expression in the DCT2 and CNT. However, most of our knowledge about renal ENaC function stems from studies in the cortical collecting duct (CCD). Here we investigated ENaC function in the transition zone of DCT2/CNT or CNT/CCD microdissected from mice maintained on different sodium diets to vary plasma aldosterone levels. Single-channel recordings demonstrated amiloride-sensitive Na+ channels in DCT2/CNT with biophysical properties typical for ENaC previously described in CNT/CCD. In animals maintained on a standard salt diet, the average ENaC-mediated whole cell current (Δ Iami) was higher in DCT2/CNT than in CNT/CCD. A low salt diet increased Δ Iami in CNT/CCD but had little effect on Δ Iami in DCT2/CNT. To investigate whether aldosterone is necessary for ENaC activity in the DCT2/CNT, we used aldosterone synthase knockout (AS−/−) mice that lack aldosterone. In CNT/CCD of AS−/− mice, Δ Iami was lower than that in wild-type (WT) animals and was not stimulated by a low salt diet. In contrast, in DCT2/CNT of AS−/− mice, Δ Iami was similar to that in DCT2/CNT of WT animals both on a standard and on a low salt diet. We conclude that ENaC function in the DCT2/CNT is largely independent of aldosterone which is in contrast to its known aldosterone sensitivity in CNT/CCD.
Collapse
Affiliation(s)
- Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Anke Dahlmann
- Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; and
| | - Bettina Krueger
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
33
|
Zennaro MC, Hubert EL, Fernandes-Rosa FL. Aldosterone resistance: structural and functional considerations and new perspectives. Mol Cell Endocrinol 2012; 350:206-15. [PMID: 21664233 DOI: 10.1016/j.mce.2011.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/20/2011] [Accepted: 04/24/2011] [Indexed: 11/30/2022]
Abstract
Aldosterone plays an essential role in the maintenance of fluid and electrolyte homeostasis in the distal nephron. Loss-of-function mutations in two key components of the aldosterone response, the mineralocorticoid receptor and the epithelial sodium channel ENaC, lead to type 1 pseudohypoaldosteronism (PHA1), a rare genetic disease of aldosterone resistance characterized by salt wasting, dehydration, failure to thrive, hyperkalemia and metabolic acidosis. This review describes the clinical, biological and genetic characteristics of the different forms of PHA1 and highlights recent advances in the understanding of the pathogenesis of the disease. We will also discuss genotype-phenotype correlations and new clinical and genetic entities that may prove relevant for patient's care in neonates with renal salt losing syndromes and/or failure to thrive.
Collapse
|
34
|
Lee CT, Chen HC, Ng HY, Lai LW, Lien YHH. Renal adaptation to gentamicin-induced mineral loss. Am J Nephrol 2012; 35:279-86. [PMID: 22378246 DOI: 10.1159/000336518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gentamicin, a well-known nephrotoxic drug, affects calcium and magnesium homeostasis. Although gentamicin induces urinary calcium and magnesium wasting immediately, it rarely causes significant hypocalcemia or hypomagnesemia clinically. METHODS We conducted an animal study to investigate the renal adaptation in calcium and magnesium handling after gentamicin treatment and effects on the expression of calcium and magnesium transport molecules in distal tubule. Gentamicin (40 mg/kg) was injected daily in male Sprague-Dawley rats (220-250 g) for up to 7 days. RESULTS This treatment did not affect serum creatinine, calcium, or magnesium levels. Gentamicin induced significant hypercalciuria (14-fold) and hypermagnesiuria (10-fold) in 6 h, which was associated with upregulation of TRPV5 (175 ± 3%), TRPV6 (170 ± 4%), TRPM6 (156 ± 4%) and calbindin-D28k (174 ± 3%; all p < 0.05 vs. control). This gene upregulation was maintained with daily injection of gentamicin for 7 days. The gentamicin-induced urinary calcium loss was reduced by 80% at days 3 and 7, while magnesium loss was reduced by 52 and 57% at days 3 and 7, respectively. On the other hand, urinary loss of potassium became worse on day 7 (2-fold), and phosphorus loss worse from day 3 to day 7 (3-fold). CONCLUSION There is a rapid adaptation to gentamicin-induced hypercalciuria and hypermagnesiuria. The upregulation of distal tubule transport molecules, TRPV5, TRPV6, TRPM6 and calbindin-D28k occurs within 6 h of gentamicin treatment. This renal adaptation prevents further mineral loss due to gentamicin treatment.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Chang-Gung Memorial Hospital, Kaohsiung Medical Center, Chang-Gung University College of Medicine, Taiwan, ROC
| | | | | | | | | |
Collapse
|
35
|
Bussolati B, Moggio A, Collino F, Aghemo G, D'Armento G, Grange C, Camussi G. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance. Am J Physiol Renal Physiol 2012; 302:F116-28. [DOI: 10.1152/ajprenal.00184.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Low-oxygen tension is an important component of the stem cell microenvironment. In rodents, renal resident stem cells have been described in the papilla, a relatively hypoxic region of the kidney. In the present study, we found that CD133+ cells, previously described as renal progenitors in the human cortex, were enriched in the renal inner medulla and localized within the Henle's loop and thin limb segments. Once isolated, the CD133+ cell population expressed renal embryonic and stem-related transcription factors and was able to differentiate into mature renal epithelial cells. When injected subcutaneously in immunodeficient mice within Matrigel, CD133+ cells generated canalized structures positive for renal specific markers of different nephron segments. Oct4A levels and differentiation potential of papillary CD133+ cells were higher than those of CD133+ cells from cortical tubuli. Hypoxia was able to promote the undifferentiated phenotype of CD133+ progenitors from papilla. Hypoxia stimulated clonogenicity, proliferation, vascular endothelial growth factor synthesis, and expression of CD133 that were in turn reduced by epithelial differentiation with parallel HIF-1α downregulation. In addition, hypoxia downregulated microRNA-145 and promoted the synthesis of Oct4A. Epithelial differentiation increased microRNA-145 and reduced Oct4 level, suggesting a balance between Oct4 and microRNA-145. MicroRNA-145 overexpression in CD133+ cells induced downrelation of Oct4A at the protein level, inhibited cell proliferation, and stimulated terminal differentiation. This study underlines the role of the hypoxic microenvironment in controlling the proliferation and maintaining a progenitor phenotype and stem/progenitor properties of CD133+ cells of the nephron. This mechanism may be at the basis of the maintenance of a CD133+ population in the papillary region and may be involved in renal regeneration after injury.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Aldo Moggio
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Federica Collino
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Giulia Aghemo
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Giuseppe D'Armento
- Department of Biomedical Sciences and Human Oncology, University of Torino, Torino, Italy
| | - Cristina Grange
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Giovanni Camussi
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| |
Collapse
|
36
|
Kostakis ID, Cholidou KG, Perrea D. Syndromes of impaired ion handling in the distal nephron: pseudohypoaldosteronism and familial hyperkalemic hypertension. Hormones (Athens) 2012; 11:31-53. [PMID: 22450343 DOI: 10.1007/bf03401536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The distal nephron, which is the site of the micro-regulation of water absorption and ion handling in the kidneys, is under the control of aldosterone. Impairment of the mineralocorticoid signal transduction pathway results in resistance to the action of aldosterone and of mineralocorticoids in general. Herein, we review two syndromes in which ion handling in the distal nephron is impaired: pseudohypoaldosteronism (PHA) and familial hyperkalemic hypertension (FHH). PHA is a rare inherited syndrome characterized by mineralocorticoid resistance, which leads to salt loss, hypotension, hyperkalemia and metabolic acidosis. There are two types of this syndrome: a renal (autosomal dominant) type due to mutations of the mineralocorticoid receptor (MR), and a systemic (autosomal recessive) type due to mutations of the epithelial sodium channel (ENaC). There is also a transient form of PHA, which may be due to urinary tract infections, obstructive uropathy or several medications. FHH is a rare autosomal dominant syndrome, characterized by salt retention, hypertension, hyperkalemia and metabolic acidosis. In FHH, mutations of WNK (with-no-lysine kinase) 4 and 1 alter the activity of several ion transportation systems in the distal nephron. The study of the pathophysiology of PHA and FHH greatly elucidated our understanding of the renin-angiotensin-aldosterone system function and ion handling in the distal nephron. The physiological role of the distal nephron and the pathophysiology of diseases in which the renal tubule is implicated may hence be better understood and, based on this understanding, new drugs can be developed.
Collapse
Affiliation(s)
- Ioannis D Kostakis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University, Medical School, Athens, Greece
| | | | | |
Collapse
|
37
|
Enuka Y, Hanukoglu I, Edelheit O, Vaknine H, Hanukoglu A. Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol 2011; 137:339-53. [PMID: 22207244 DOI: 10.1007/s00418-011-0904-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2011] [Indexed: 11/29/2022]
Abstract
Epithelial sodium channels (ENaCs) are located on the apical surface of cells and funnel Na(+) ions from the lumen into the cell. ENaC function also regulates extracellular fluid volume as water flows across membranes accompanying Na(+) ions to maintain osmolarity. To examine the sites of expression and intracellular localization of ENaC, we generated polyclonal antibodies against the extracellular domain of human α-ENaC subunit that we expressed in E. coli. Three-dimensional (3D) confocal microscopy of immunofluorescence using these antibodies for the first time revealed that ENaCs are uniformly distributed on the ciliary surface in all epithelial cells with motile cilia lining the bronchus in human lung and female reproductive tract, all along the fimbrial end of the fallopian tube, the ampulla and rare cells in the uterine glands. Quantitative analysis indicated that cilia increase cell surface area >70-fold and the amount of ENaC on cilia is >1,000-fold higher than on non-ciliated cell surface. These findings indicate that ENaC functions as a regulator of the osmolarity of the periciliary fluid bathing the cilia. In contrast to ENaC, cystic fibrosis transmembrane conductance regulator (CFTR) that channels chloride ions from the cytoplasm to the lumen is located mainly on the apical side, but not on cilia. The cilial localization of ENaC requires reevaluation of the mechanisms of action of CFTR and other modulators of ENaC function. ENaC on motile cilia should be essential for diverse functions of motile cilia, such as germ cell transport, fertilization, implantation, clearance of respiratory airways and cell migration.
Collapse
Affiliation(s)
- Yehoshua Enuka
- Department of Molecular Biology, Ariel University Center, Ariel 40700, Israel
| | | | | | | | | |
Collapse
|
38
|
Bauchet AL, Masson R, Guffroy M, Slaoui M. Immunohistochemical identification of kidney nephron segments in the dog, rat, mouse, and cynomolgus monkey. Toxicol Pathol 2011; 39:1115-28. [PMID: 22006284 DOI: 10.1177/0192623311425060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kidney is a major target organ in preclinical studies. In recent years, intense research has been undertaken to characterize novel renal toxicity biomarkers. In this context, we studied nephron segment specific antibodies against aquaporin-1 (AQP-1), α-glutathione-S-transferase (alpha-GST), Tamm-Horsfall protein (TH), calbindin-D(28K) (CalD), and aquaporin-2 (AQP-2), using an immunoperoxidase method on formalin-fixed paraffin-embedded kidney tissues of dogs, rats, mice, and Cynomolgus monkeys. AQP-1 was specific for proximal tubules and thin descending limbs of Henle's loops and AQP-2 for connecting and collecting ducts in dogs, rats, mice, and Cynomolgus monkeys. Alpha-GST stained the straight part of proximal tubules in dogs and proximal convoluted tubule and straight part of proximal tubules in rats. TH was specific for thick ascending limbs of Henle's loops in mice, rats, dogs, and Cynomolgus monkeys and stained additionally scattered cells in cortical connecting/collecting ducts of dogs. CalD was found in distal convoluted tubules and cortical connecting and collecting ducts of dogs, rats, and mice and in distal convoluted tubules, connecting ducts, and cortical and medullary collecting ducts of Cynomolgus monkey. This panel of antibodies may be a helpful tool to identify renal tubules by light microscopy in preclinical studies and to validate new biomarkers of renal toxicity.
Collapse
|
39
|
Pisitkun T, Hoffert JD, Saeed F, Knepper MA. NHLBI-AbDesigner: an online tool for design of peptide-directed antibodies. Am J Physiol Cell Physiol 2011; 302:C154-64. [PMID: 21956165 DOI: 10.1152/ajpcell.00325.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Investigation of physiological mechanisms at a cellular level often requires production of high-quality antibodies, frequently using synthetic peptides as immunogens. Here we describe a new, web-based software tool called NHLBI-AbDesigner that allows the user to visualize the information needed to choose optimal peptide sequences for peptide-directed antibody production (http://helixweb.nih.gov/AbDesigner/). The choice of an immunizing peptide is generally based on a need to optimize immunogenicity, antibody specificity, multispecies conservation, and robustness in the face of posttranslational modifications (PTMs). AbDesigner displays information relevant to these criteria as follows: 1) "Immunogenicity Score," based on hydropathy and secondary structure prediction; 2) "Uniqueness Score," a predictor of specificity of an antibody against all proteins expressed in the same species; 3) "Conservation Score," a predictor of ability of the antibody to recognize orthologs in other animal species; and 4) "Protein Features" that show structural domains, variable regions, and annotated PTMs that may affect antibody performance. AbDesigner displays the information online in an interactive graphical user interface, which allows the user to recognize the trade-offs that exist for alternative synthetic peptide choices and to choose the one that is best for a proposed application. Several examples of the use of AbDesigner for the display of such trade-offs are presented, including production of a new antibody to Slc9a3. We also used the program in large-scale mode to create a database listing the 15-amino acid peptides with the highest Immunogenicity Scores for all known proteins in five animal species, one plant species (Arabidopsis thaliana), and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Trairak Pisitkun
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | |
Collapse
|
40
|
Deschênes G, Fila M. Primary molecular disorders and secondary biological adaptations in bartter syndrome. Int J Nephrol 2011; 2011:396209. [PMID: 21941653 PMCID: PMC3177086 DOI: 10.4061/2011/396209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/01/2011] [Indexed: 12/17/2022] Open
Abstract
Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures.
Collapse
Affiliation(s)
- Georges Deschênes
- Pediatric Nephrology Unit, Hôpital Robert-Debré, 48 Bd Sérurier, 75019 Paris, France
| | | |
Collapse
|
41
|
Arroyo JP, Ronzaud C, Lagnaz D, Staub O, Gamba G. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda) 2011; 26:115-23. [PMID: 21487030 DOI: 10.1152/physiol.00049.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms through which aldosterone promotes apparently opposite effects like salt reabsorption and K(+) secretion remain poorly understood. The identification, localization, and physiological analysis of ion transport systems in distal nephron have revealed an intricate network of interactions between several players, revealing the complex mechanism behind the aldosterone paradox. We review the mechanisms involved in differential regulation of ion transport that allow the fine tuning of salt and K(+) balance.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
42
|
Pereira PCB, Miranda DM, Oliveira EA, Silva ACSE. Molecular pathophysiology of renal tubular acidosis. Curr Genomics 2011; 10:51-9. [PMID: 19721811 PMCID: PMC2699831 DOI: 10.2174/138920209787581262] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/08/2008] [Accepted: 11/12/2008] [Indexed: 01/09/2023] Open
Abstract
Renal tubular acidosis (RTA) is characterized by metabolic acidosis due to renal impaired acid excretion. Hyperchloremic acidosis with normal anion gap and normal or minimally affected glomerular filtration rate defines this disorder. RTA can also present with hypokalemia, medullary nephrocalcinosis and nephrolitiasis, as well as growth retardation and rickets in children, or short stature and osteomalacia in adults. In the past decade, remarkable progress has been made in our understanding of the molecular pathogenesis of RTA and the fundamental molecular physiology of renal tubular transport processes. This review summarizes hereditary diseases caused by mutations in genes encoding transporter or channel proteins operating along the renal tubule. Review of the molecular basis of hereditary tubulopathies reveals various loss-of-function or gain-of-function mutations in genes encoding cotransporter, exchanger, or channel proteins, which are located in the luminal, basolateral, or endosomal membranes of the tubular cell or in paracellular tight junctions. These gene mutations result in a variety of functional defects in transporter/channel proteins, including decreased activity, impaired gating, defective trafficking, impaired endocytosis and degradation, or defective assembly of channel subunits. Further molecular studies of inherited tubular transport disorders may shed more light on the molecular pathophysiology of these diseases and may significantly improve our understanding of the mechanisms underlying renal salt homeostasis, urinary mineral excretion, and blood pressure regulation in health and disease. The identification of the molecular defects in inherited tubulopathies may provide a basis for future design of targeted therapeutic interventions and, possibly, strategies for gene therapy of these complex disorders.
Collapse
Affiliation(s)
- P C B Pereira
- Pediatric Nephrology Unit, Department of Pediatrics, School of Medicine - Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
43
|
Lehnhardt A, Kemper MJ. Pathogenesis, diagnosis and management of hyperkalemia. Pediatr Nephrol 2011; 26:377-84. [PMID: 21181208 PMCID: PMC3061004 DOI: 10.1007/s00467-010-1699-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 12/13/2022]
Abstract
Hyperkalemia is a potentially life-threatening condition in which serum potassium exceeds 5.5 mmol/l. It can be caused by reduced renal excretion, excessive intake or leakage of potassium from the intracellular space. In addition to acute and chronic renal failure, hypoaldosteronism, and massive tissue breakdown as in rhabdomyolysis, are typical conditions leading to hyperkalemia. Symptoms are non-specific and predominantly related to muscular or cardiac dysfunction. Treatment has to be initiated immediately using different therapeutic strategies to increase potassium shift into the intracellular space or to increase elimination, together with reduction of intake. Knowledge of the physiological mechanisms of potassium handling is essential in understanding the causes of hyperkalemia as well as its treatment. This article reviews the pathomechanisms leading to hyperkalemic states, its symptoms, and different treatment options.
Collapse
Affiliation(s)
- Anja Lehnhardt
- Department of Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Martinistr. 5, 20246 Hamburg, Germany
| | - Markus J. Kemper
- Department of Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Martinistr. 5, 20246 Hamburg, Germany
| |
Collapse
|
44
|
Kato A, Muro T, Kimura Y, Li S, Islam Z, Ogoshi M, Doi H, Hirose S. Differential expression of Na+-Cl- cotransporter and Na+-K+-Cl- cotransporter 2 in the distal nephrons of euryhaline and seawater pufferfishes. Am J Physiol Regul Integr Comp Physiol 2010; 300:R284-97. [PMID: 21084680 DOI: 10.1152/ajpregu.00725.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The process of NaCl reabsorption in the distal nephron allows freshwater fishes to excrete hypotonic urine and seawater fishes to excrete urine containing high concentrations of divalent ions; the relevant transporters, however, have not yet been identified. In the mammalian distal nephron, NaCl absorption is mediated by Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2, Slc12a1) in the thick ascending limb, Na(+)-Cl(-) cotransporter (NCC, Slc12a3) in the distal convoluted tubule, and epithelial sodium channel (ENaC) in the collecting duct. In this study, we compared the expression profiles of these proteins in the kidneys of euryhaline and seawater pufferfishes. Mining the fugu genome identified one NKCC2 gene and one NCC gene, but no ENaC gene. RT-PCR and in situ hybridization analyses demonstrated that NKCC2 was highly expressed in the distal tubules and NCC was highly expressed in the collecting ducts of euryhaline pufferfish (mefugu, Takifugu obscurus). On the other hand, the kidney of seawater pufferfish (torafugu, Takifugu rubripes), which lacked distal tubules, expressed very low levels of NCC, and, in the collecting ducts, high levels of NKCC2. Acclimation of mefugu to seawater resulted in a 2.7× decrease in NCC expression, whereas NKCC2 expression was not markedly affected. Additionally, internalization of NCC from the apical surface of the collecting ducts was observed. These results suggest that NaCl reabsorption in the distal nephron of the fish kidney is mediated by NCC and NKCC2 in freshwater and by NKCC2 in seawater.
Collapse
Affiliation(s)
- Akira Kato
- Dept. of Biological Sciences, Tokyo Institute of Technology, 4259-B-19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Christensen BM, Perrier R, Wang Q, Zuber AM, Maillard M, Mordasini D, Malsure S, Ronzaud C, Stehle JC, Rossier BC, Hummler E. Sodium and potassium balance depends on αENaC expression in connecting tubule. J Am Soc Nephrol 2010; 21:1942-51. [PMID: 20947633 DOI: 10.1681/asn.2009101077] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.
Collapse
|
46
|
Lupp A, Klenk C, Röcken C, Evert M, Mawrin C, Schulz S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol 2010; 162:979-86. [PMID: 20156969 DOI: 10.1530/eje-09-0821] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH) is a crucial regulator of calcium homoeostasis in humans. Although it is well known that PTH acts primarily on kidney and bone, the precise cellular and subcellular sites of PTH action have not been visualised in human tissues. METHOD We developed and characterised a novel anti-peptide antibody to the carboxy-terminal region of the human PTH receptor type 1 (PTHR1). Specificity of the antiserum was demonstrated by i) detection of a broad band migrating at M(r) 85,000-95,000 in western blots of membranes from human kidney and PTHR1-transfected cells; ii) cell surface staining of PTHR1-transfected cells; iii) translocation of PTHR1 receptor immunostaining after agonist exposure; and iv) abolition of tissue immunostaining by preadsorption of the antibody with its immunising peptide. The distribution of PTHR1 receptors was investigated in 320 human tumours and their tissues of origin. RESULTS In the kidney, PTHR1 receptors were predominantly detected at the basolateral plasma membrane of epithelial cells in the proximal and distal tubules but not in the thin limbs of Henle, collecting ducts or glomeruli. In bone, PTHR1 receptors were detected as discrete plasma membrane staining of osteocytes and osteoblasts, whereas osteoclasts remained unstained. In addition, PTHR1 was found in the gut and in a number of neoplastic tissues including colorectal carcinoma, prostate cancer, renal cell carcinoma and osteosarcoma. CONCLUSION This is the first localisation of PTHR1 receptors in human tissues at the cellular level. The overexpression of PTHR1 receptors may provide a molecular basis for efficient targeting of human tumours with radiolabelled PTH analogues.
Collapse
Affiliation(s)
- Amelie Lupp
- Department of Pharmacology and Toxicology, Friedrich-Schiller-University, Jena, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Prominin-2 is a novel marker of distal tubules and collecting ducts of the human and murine kidney. Histochem Cell Biol 2010; 133:527-39. [DOI: 10.1007/s00418-010-0690-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
48
|
Palm C, Hartmann K, Weber K. Expression and Immunolocalization of Calcium Transport Proteins in the Canine Duodenum, Kidney, and Pancreas. Anat Rec (Hoboken) 2010; 293:770-4. [DOI: 10.1002/ar.21104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Kirk A, Campbell S, Bass P, Mason J, Collins J. Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 2010; 25:2107-19. [PMID: 20124215 PMCID: PMC2891746 DOI: 10.1093/ndt/gfq006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background. In renal tubules, paracellular permeability is tightly controlled to facilitate solute absorption and urinary concentration and is regulated by tight junctions, which incorporate claudin proteins. There is very limited information confirming the localization of these proteins in the human renal cortex. Most data is inferred from mouse, bovine and rabbit studies and differences exist between mouse and other species. Methods. A survey of claudin staining was performed on human kidney cortex embedded in glycolmethacrylate resin to enhance tissue morphology and facilitate the cutting of 2 µm serial sections. Results. Claudin-2, -10 and -11 antibodies labelled renal tubular epithelial cells, correlating with Lotus tetragonolobus and N-cadherin positive proximal tubules. Claudin-3, -10, -11 and -16 antibodies strongly stained a population of tubules that were positive for Tamm Horsfall protein on adjacent sections, confirming expression in the thick ascending limb of the Loop of Henle. Claudin-3, -4 and -8 antibodies reacted with tubules that correlated with the distal nephron markers, E-cadherin, epithelial membrane antigen and Dolichos biflorus and claudin-3, -4, -7 and -8 with the distal tubule marker, calbindin, and the collecting duct marker, aquaporin-2. Claudin-14 was localized in distal convoluted tubules, correlating positively with calbindin but negatively with aquaporin-2, whereas claudin-1 staining was identified in the parietal epithelium of Bowman's capsule, distal convoluted tubule and collecting duct. Cellular and tight junction localization of claudin staining in renal tubules was heterogeneous and is discussed. Conclusions. Complex variation in the expression of human claudins likely determines paracellular permeability in the kidney. Altered claudin expression may influence pathologies involving abnormalities of absorption.
Collapse
Affiliation(s)
- Adam Kirk
- 1Division of Infection, Inflammation and Immunity, Mailpoint 813, University of Southampton Medical School, Sir Henry Wellcome Laboratories, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | | | | | | | | |
Collapse
|
50
|
Hudecova S, Sedlakova B, Kvetnansky R, Ondrias K, Krizanova O. Modulation of the sodium-calcium exchanger in the rat kidney by different sequential stressors. Stress 2010; 13:15-21. [PMID: 19658027 DOI: 10.3109/10253890902838835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress, if exaggerated, modulates a variety of metabolic pathways and results in development of serious health consequences. The cell membrane sodium-calcium exchanger (NCX) is a major calcium extrusion system and is also modulated by stress. It has been shown previously that mRNA, protein levels and activity of the type 1 NCX (NCX1) in the left ventricle of the rat heart are increased by stressors, such as immobilization or hypoxia. In this study we investigated whether exposure to a subsequent different stressor can affect gene expression, protein level and activity of the NCX1 in rat kidney compared to exposure to only one type of stressor. In these experiments, we used immobilization and cold as the model stressors.We found that cold exposure at 4 degrees C for 24 h, when applied after immobilization repeated seven times, completely abolished the immobilization-induced increase in NCX mRNA level and after 7 days cold exposure the increases in NCX1 protein and activity in rat kidney were also abolished. Permanently increased NCX1 expression can result in imbalance of cellular calcium homeostasis and thus contribute to kidney dysfunction. Based on our results, we conclude that exposure to a cold stressor can have a protective effect on the kidney in rats exposed previously to repeated immobilization stress. This might be explained by differential stimulation of sympathetic neural and adrenal medullary responses by these different stressors.
Collapse
Affiliation(s)
- S Hudecova
- Institute ofMolecular Physiology and Genetics, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|