1
|
Carrasquer-Alvarez E, Hoffmann UA, Geissler AS, Knave A, Gorodkin J, Seemann SE, Hudson EP, Frigaard NU. Photosynthesis in Synechocystis sp. PCC 6803 is not optimally regulated under very high CO 2. Appl Microbiol Biotechnol 2025; 109:33. [PMID: 39883173 PMCID: PMC11782454 DOI: 10.1007/s00253-025-13416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
One strategy for CO2 mitigation is using photosynthetic microorganisms to sequester CO2 under high concentrations, such as in flue gases. While elevated CO2 levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp. PCC 6803 under very high CO2 concentrations and yet stable pH around 7.5. The growth rate of the wild type (WT) at 200 µmol photons m-2 s-1 and a gas phase containing 30% CO2 was 2.7-fold lower compared to 4% CO2. Using a CRISPR interference mutant library, we identified genes that, when repressed, either enhanced or impaired growth under 30% or 4% CO2. Repression of genes involved in light harvesting (cpc and apc), photochemical electron transfer (cytM, psbJ, and petE), and several genes with little or unknown functions promoted growth under 30% CO2, while repression of key regulators of photosynthesis (pmgA) and CO2 capture and fixation (ccmR, cp12, and yfr1) increased growth inhibition under 30% CO2. Experiments confirmed that WT cells were more susceptible to light inhibition under 30% than under 4% CO2 and that a light-harvesting-impaired ΔcpcG mutant showed improved growth under 30% CO2 compared to the WT. These findings suggest that enhanced fitness under very high CO2 involves modifications in light harvesting, electron transfer, and carbon metabolism, and that the native regulatory machinery is insufficient, and in some cases obstructive, for optimal growth under 30% CO2. This genetic profiling provides potential targets for engineering cyanobacteria with improved photosynthetic efficiency and stress resilience for biotechnological applications. KEY POINTS: • Synechocystis growth was inhibited under very high CO2. • Inhibition of growth under very high CO2 was light dependent. • Repression of photosynthesis genes improved growth under very high CO2.
Collapse
Affiliation(s)
| | - Ute Angelika Hoffmann
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Adrian Sven Geissler
- Center for Non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Axel Knave
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stefan Ernst Seemann
- Center for Non-Coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Niels-Ulrik Frigaard
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
| |
Collapse
|
2
|
Ulrich NJ, Miller SR. Integration of horizontally acquired light-harvesting genes into an ancestral regulatory network in the cyanobacterium Acaryochloris marina MBIC11017. mBio 2024; 15:e0242324. [PMID: 39555914 PMCID: PMC11633204 DOI: 10.1128/mbio.02423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The acquisition of new capabilities by horizontal gene transfer (HGT) shapes the distribution of traits during microbial diversification. In the Chlorophyll (Chl) d-producing cyanobacterium Acaryochloris marina, the genes involved in the production and disassembly of the light-harvesting phycobiliprotein phycocyanin (PC) were lost in the A. marina common ancestor but then subsequently regained via HGT in A. marina strain MBIC11017. However, it remains unknown how the HGT-acquired PC genes in MBIC11017 have been reintegrated into its existing regulatory network after tens of millions of years since their loss. Here, we investigated potential mechanisms of regulatory assimilation of PC genes by comparing the transcriptomes of A. marina strain MBIC11017 and a PC-lacking close relative under both low irradiance far-red light and high irradiance white light. We found that PC assembly and degradation processes have been re-assimilated into a conserved ancestral response to high light. Further, we identified putative regulatory elements that were likely co-transferred with PC genes and could be recognized by A. marina's pre-existing light response machinery. This study offers insights into how HGT-acquired genes can be reintegrated into an existing transcriptional regulatory network that has evolved in their absence.IMPORTANCEHorizontal gene transfer, the asymmetric movement of genetic information between donor and recipient organisms, is an important mechanism for acquiring new traits. In order for newly acquired gene content to be retained, it must be integrated into the genetic repertoire and regulatory networks of the recipient cell. In a strain of the Chlorophyll d-producing cyanobacterium Acaryochloris marina, the recent reacquisition of the genes required to produce the light-harvesting pigment phycocyanin offers a rare opportunity to understand the mechanisms underlying the regulatory assimilation of an acquired complex trait in bacteria. The significance in our research is in characterizing how an ancestrally lost, complex trait can be reintegrated into a conserved regulatory network, even after millions of years.
Collapse
Affiliation(s)
- Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Scott R. Miller
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
3
|
Sengupta A, Bandyopadhyay A, Schubert MG, Church GM, Pakrasi HB. Antenna Modification in a Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973 Leads to Improved Efficiency and Carbon-Neutral Productivity. Microbiol Spectr 2023; 11:e0050023. [PMID: 37318337 PMCID: PMC10433846 DOI: 10.1128/spectrum.00500-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Our planet is sustained by sunlight, the primary energy source made accessible to all life forms by photoautotrophs. Photoautotrophs are equipped with light-harvesting complexes (LHCs) that enable efficient capture of solar energy, particularly when light is limiting. However, under high light, LHCs can harvest photons in excess of the utilization capacity of cells, causing photodamage. This damaging effect is most evident when there is a disparity between the amount of light harvested and carbon available. Cells strive to circumvent this problem by dynamically adjusting the antenna structure in response to the changing light signals, a process known to be energetically expensive. Much emphasis has been laid on elucidating the relationship between antenna size and photosynthetic efficiency and identifying strategies to synthetically modify antennae for optimal light capture. Our study is an effort in this direction and investigates the possibility of modifying phycobilisomes, the LHCs present in cyanobacteria, the simplest of photoautotrophs. We systematically truncate the phycobilisomes of Synechococcus elongatus UTEX 2973, a widely studied, fast-growing model cyanobacterium and demonstrate that partial truncation of its antenna can lead to a growth advantage of up to 36% compared to the wild type and an increase in sucrose titer of up to 22%. In contrast, targeted deletion of the linker protein which connects the first phycocyanin rod to the core proved detrimental, indicating that the core alone is not enough, and it is essential to maintain a minimal rod-core structure for efficient light harvest and strain fitness. IMPORTANCE Light energy is essential for the existence of life on this planet, and only photosynthetic organisms, equipped with light-harvesting antenna protein complexes, can capture this energy, making it readily accessible to all other life forms. However, these light-harvesting antennae are not designed to function optimally under extreme high light, a condition which can cause photodamage and significantly reduce photosynthetic productivity. In this study, we attempt to assess the optimal antenna structure for a fast-growing, high-light tolerant photosynthetic microbe with the goal of improving its productivity. Our findings provide concrete evidence that although the antenna complex is essential, antenna modification is a viable strategy to maximize strain performance under controlled growth conditions. This understanding can also be translated into identifying avenues to improve light harvesting efficiency in higher photoautotrophs.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Patel SN, Sonani RR, Roy D, Singh NK, Subudhi S, Pabbi S, Madamwar D. Exploring the structural aspects and therapeutic perspectives of cyanobacterial phycobiliproteins. 3 Biotech 2022; 12:224. [PMID: 35975025 PMCID: PMC9375810 DOI: 10.1007/s13205-022-03284-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed. Besides their role in light-harvesting, PBPs possess antioxidant, anti-aging, neuroprotective, hepatoprotective and anti-inflammatory properties, which can be used in therapeutics. Recent developments in therapeutic applications of PBPs are reviewed with special focus on 'route of PBPs administration' and 'therapeutic potential of PBP-derived peptide and chromophores'.
Collapse
Affiliation(s)
- Stuti N. Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ravi R. Sonani
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Diya Roy
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
- Present Address: Gujarat Biotechnology Research Centre (GBRC), Deaprtment of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat 382011 India
| | - Sanjukta Subudhi
- The Energy and Resources Institute Darbari Seth Block, India Habitat Centre, Lodi Road, New Delhi, 110003 India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
| |
Collapse
|
5
|
Assunção J, Pagels F, Tavares T, Malcata FX, Guedes AC. Light Modulation for Bioactive Pigment Production in Synechocystis salina. Bioengineering (Basel) 2022; 9:bioengineering9070331. [PMID: 35877382 PMCID: PMC9312138 DOI: 10.3390/bioengineering9070331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are microorganisms that are well-adapted to sudden changes in their environment, namely to light conditions. This has allowed them to develop mechanisms for photoprotection, which encompass alteration in pigment composition. Therefore, light modulation appears to be a suitable strategy to enhance the synthesis of specific pigments (e.g., phycocyanin) with commercial interest, in addition to conveying a more fundamental perspective on the mechanisms of acclimatization of cyanobacterium species. In this study, Synechocystis salina was accordingly cultivated in two light phase stages: (i) white LED, and (ii) shift to distinct light treatments, including white, green, and red LEDs. The type of LED lighting was combined with two intensities (50 and 150 µmolphotons·m−2·s−1). The effects on biomass production, photosynthetic efficiency, chlorophyll a (chl a) content, total carotenoids (and profile thereof), and phycobiliproteins (including phycocyanin, allophycocyanin, and phycoerythrin) were assessed. White light (under high intensity) led to higher biomass production, growth, and productivity; this is consistent with higher photosynthetic efficiency. However, chl a underwent a deeper impact under green light (high intensity); total carotenoids were influenced by white light (high intensity); whilst red treatment had a higher effect upon total and individual phycobiliproteins. Enhanced PC productivities were found under modulation with red light (low intensities), and could be achieved 7 days earlier than in white LED (over 22 days); this finding is quite interesting from a sustainability and economic point of view. Light modulation accordingly appears to be a useful tool for supplementary studies pertaining to optimization of pigment production with biotechnological interest.
Collapse
Affiliation(s)
- Joana Assunção
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Fernando Pagels
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - F. Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- FEUP—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Correspondence:
| | - A. Catarina Guedes
- CIIMAR /CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (J.A.); (F.P.); (A.C.G.)
| |
Collapse
|
6
|
Adaptation of Cyanobacteria to the Endolithic Light Spectrum in Hyper-Arid Deserts. Microorganisms 2022; 10:microorganisms10061198. [PMID: 35744716 PMCID: PMC9228357 DOI: 10.3390/microorganisms10061198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
In hyper-arid deserts, endolithic microbial communities survive in the pore spaces and cracks of rocks, an environment that enhances water retention and filters UV radiation. The rock colonization zone is enriched in far-red light (FRL) and depleted in visible light. This poses a challenge to cyanobacteria, which are the primary producers of endolithic communities. Many species of cyanobacteria are capable of Far-Red-Light Photoacclimation (FaRLiP), a process in which FRL induces the synthesis of specialized chlorophylls and remodeling of the photosynthetic apparatus, providing the ability to grow in FRL. While FaRLiP has been reported in cyanobacteria from various low-light environments, our understanding of light adaptations for endolithic cyanobacteria remains limited. Here, we demonstrated that endolithic Chroococcidiopsis isolates from deserts around the world synthesize chlorophyll f, an FRL-specialized chlorophyll when FRL is the sole light source. The metagenome-assembled genomes of these isolates encoded chlorophyll f synthase and all the genes required to implement the FaRLiP response. We also present evidence of FRL-induced changes to the major light-harvesting complexes of a Chroococcidiopsis isolate. These findings indicate that endolithic cyanobacteria from hyper-arid deserts use FRL photoacclimation as an adaptation to the unique light transmission spectrum of their rocky habitat.
Collapse
|
7
|
Paper M, Glemser M, Haack M, Lorenzen J, Mehlmer N, Fuchs T, Schenk G, Garbe D, Weuster-Botz D, Eisenreich W, Lakatos M, Brück TB. Efficient Green Light Acclimation of the Green Algae Picochlorum sp. Triggering Geranylgeranylated Chlorophylls. Front Bioeng Biotechnol 2022; 10:885977. [PMID: 35573232 PMCID: PMC9095919 DOI: 10.3389/fbioe.2022.885977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
In analogy to higher plants, eukaryotic microalgae are thought to be incapable of utilizing green light for growth, due to the “green gap” in the absorbance profiles of their photosynthetic pigments. This study demonstrates, that the marine chlorophyte Picochlorum sp. is able to grow efficiently under green light emitting diode (LED) illumination. Picochlorum sp. growth and pigment profiles under blue, red, green and white LED illumination (light intensity: 50–200 μmol m−2 s−1) in bottom-lightened shake flask cultures were evaluated. Green light-treated cultures showed a prolonged initial growth lag phase of one to 2 days, which was subsequently compensated to obtain comparable biomass yields to red and white light controls (approx. 0.8 gDW L−1). Interestingly, growth and final biomass yields of the green light-treated sample were higher than under blue light with equivalent illumination energies. Further, pigment analysis indicated, that during green light illumination, Picochlorum sp. formed unknown pigments (X1-X4). Pigment concentrations increased with illumination intensity and were most abundant during the exponential growth phase. Mass spectrometry and nuclear magnetic resonance data indicated, that pigments X1-X2 and X3-X4 are derivatives of chlorophyll b and a, which harbor C=C bonds in the phytol side chain similar to geranylgeranylated chlorophylls. Thus, for the first time, the natural accumulation of large pools (approx. 12 mg gDW−1) of chlorophyll intermediates with incomplete hydrogenation of their phytyl chains is demonstrated for algae under monochromatic green light (Peak λ 510 nm, full width at half maximum 91 nm). The ability to utilize green light offers competitive advantages for enhancing biomass production, particularly under conditions of dense cultures, long light pathways and high light intensity. Green light acclimation for an eukaryotic microalgae in conjunction with the formation of new aberrant geranylgeranylated chlorophylls and high efficiency of growth rates are novel for eukaryotic microalgae. Illumination with green light could enhance productivity in industrial processes and trigger the formation of new metabolites–thus, underlying mechanisms require further investigation.
Collapse
Affiliation(s)
- Michael Paper
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Matthias Glemser
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
- TUM AlgaeTec Center, Ludwig Bölkow Campus, Department of Aerospace and Geodesy, Taufkirchen, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Jan Lorenzen
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Tobias Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
- TUM AlgaeTec Center, Ludwig Bölkow Campus, Department of Aerospace and Geodesy, Taufkirchen, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Garbe
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
- TUM AlgaeTec Center, Ludwig Bölkow Campus, Department of Aerospace and Geodesy, Taufkirchen, Germany
| | - Dirk Weuster-Botz
- TUM AlgaeTec Center, Ludwig Bölkow Campus, Department of Aerospace and Geodesy, Taufkirchen, Germany
- Institute of Biochemical Engineering, Faculty of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Michael Lakatos
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Thomas B. Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
- TUM AlgaeTec Center, Ludwig Bölkow Campus, Department of Aerospace and Geodesy, Taufkirchen, Germany
- *Correspondence: Thomas B. Brück,
| |
Collapse
|
8
|
Li Y, Chen M. The specificity of the bilin lyase CpcS for chromophore attachment to allophycocyanin in the chlorophyll f-containing cyanobacterium Halomicronima hongdechloris. PHOTOSYNTHESIS RESEARCH 2022; 151:213-223. [PMID: 34564824 DOI: 10.1007/s11120-021-00878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Phycobilisomes are light-harvesting antenna complexes of cyanobacteria and red algae that are comprised of chromoproteins called phycobiliproteins. PBS core structures are made up of allophycocyanin subunits. Halomicronema hongdechloris (H. hongdechloris) is one of the cyanobacteria that produce chlorophyll f (Chl f) under far-red light and is regulated by the Far-Red Light Photoacclimation gene cluster. There are five genes encoding APC in this specific gene cluster, and they are responsible for assembling the red-shifted PBS in H. hongdechloris grown under far-red light. In this study, the five apc genes located in the FaRLiP gene cluster were heterologously expressed in an Escherichia coli reconstitution system. The canonical APC-encoding genes were also constructed in the same system for comparison. Additionally, five annotated phycobiliprotein lyase-encoding genes (cpcS) from the H. hongdechloris genome were phylogenetically classified and experimentally tested for their catalytic properties including their contribution to the shifted absorption of PBS. Through analysis of recombinant proteins, we determined that the heterodimer of CpcS-I and CpcU are able to ligate a chromophore to the APC-α/APC-β subunits. We discuss some hypotheses towards understanding the roles of the specialised APC and contributions of PBP lyases.
Collapse
Affiliation(s)
- Yaqiong Li
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Min Chen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA. Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112358. [PMID: 34834721 PMCID: PMC8622606 DOI: 10.3390/plants10112358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
Collapse
Affiliation(s)
- Hui Teng Tan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Fatimah Md. Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yam Sim Khaw
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| |
Collapse
|
10
|
Assessment of Phycocyanin Extraction from Cyanidium caldarium by Spark Discharges, Compared to Freeze-Thaw Cycles, Sonication, and Pulsed Electric Fields. Microorganisms 2021; 9:microorganisms9071452. [PMID: 34361888 PMCID: PMC8303284 DOI: 10.3390/microorganisms9071452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/04/2022] Open
Abstract
Phycocyanin is a blue colored pigment, synthesized by several species of cyanobacteria and red algae. Besides the application as a food-colorant, the pigmented protein is of high interest as a pharmaceutically and nutritionally valuable compound. Since cyanobacteria-derived phycocyanin is thermolabile, red algae that are adapted to high temperatures are an interesting source for phycocyanin extraction. Still, the extraction of high quality phycocyanin from red algae is challenging due to the strong and rigid cell wall. Since standard techniques show low yields, alternative methods are needed. Recently, spark discharges have been shown to gently disintegrate microalgae and thereby enable the efficient extraction of susceptible proteins. In this study, the applicability of spark discharges for phycocyanin extraction from the red alga Cyanidium caldarium was investigated. The efficiency of 30 min spark discharges was compared with standard treatment protocols, such as three times repeated freeze-thaw cycles, sonication, and pulsed electric fields. Input energy for all physical methods were kept constant at 11,880 J to ensure comparability. The obtained extracts were evaluated by photometric and fluorescent spectroscopy. Highest extraction yields were achieved with sonication (53 mg/g dry weight (dw)) and disintegration by spark discharges (4 mg/g dw) while neither freeze-thawing nor pulsed electric field disintegration proved effective. The protein analysis via LC-MS of the former two extracts revealed a comparable composition of phycobiliproteins. Despite the lower total concentration of phycocyanin after application of spark discharges, the purity in the raw extract was higher in comparison to the extract attained by sonication.
Collapse
|
11
|
Fasnacht M, Polacek N. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Front Mol Biosci 2021; 8:671037. [PMID: 34041267 PMCID: PMC8141631 DOI: 10.3389/fmolb.2021.671037] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Ever since the "great oxidation event," Earth's cellular life forms had to cope with the danger of reactive oxygen species (ROS) affecting the integrity of biomolecules and hampering cellular metabolism circuits. Consequently, increasing ROS levels in the biosphere represented growing stress levels and thus shaped the evolution of species. Whether the ROS were produced endogenously or exogenously, different systems evolved to remove the ROS and repair the damage they inflicted. If ROS outweigh the cell's capacity to remove the threat, we speak of oxidative stress. The injuries through oxidative stress in cells are diverse. This article reviews the damage oxidative stress imposes on the different steps of the central dogma of molecular biology in bacteria, focusing in particular on the RNA machines involved in transcription and translation.
Collapse
Affiliation(s)
- Michel Fasnacht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Soulier N, Bryant DA. The structural basis of far-red light absorbance by allophycocyanins. PHOTOSYNTHESIS RESEARCH 2021; 147:11-26. [PMID: 33058014 DOI: 10.1007/s11120-020-00787-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Phycobilisomes (PBS), the major light-harvesting antenna in cyanobacteria, are supramolecular complexes of colorless linkers and heterodimeric, pigment-binding phycobiliproteins. Phycocyanin and phycoerythrin commonly comprise peripheral rods, and a multi-cylindrical core is principally assembled from allophycocyanin (AP). Each AP subunit binds one phycocyanobilin (PCB) chromophore, a linear tetrapyrrole that predominantly absorbs in the orange-red region of the visible spectrum (600-700 nm). AP facilitates excitation energy transfer from PBS peripheral rods or from directly absorbed red light to accessory chlorophylls in the photosystems. Paralogous forms of AP that bind PCB and are capable of absorbing far-red light (FRL; 700-800 nm) have recently been identified in organisms performing two types of photoacclimation: FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP). The FRL-absorbing AP (FRL-AP) from the thermophilic LoLiP strain Synechococcus sp. A1463 was chosen as a platform for site-specific mutagenesis to probe the structural differences between APs that absorb in the visible region and FRL-APs and to identify residues essential for the FRL absorbance phenotype. Conversely, red light-absorbing allophycocyanin-B (AP-B; ~ 670 nm) from the same organism was used as a platform for creating a FRL-AP. We demonstrate that the protein environment immediately surrounding pyrrole ring A of PCB on the alpha subunit is mostly responsible for the FRL absorbance of FRL-APs. We also show that interactions between PCBs bound to alpha and beta subunits of adjacent protomers in trimeric AP complexes are responsible for a large bathochromic shift of about ~ 20 nm and notable sharpening of the long-wavelength absorbance band.
Collapse
Affiliation(s)
- Nathan Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
- S-002 Frear Laboratory, Dept. of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Soulier N, Laremore TN, Bryant DA. Characterization of cyanobacterial allophycocyanins absorbing far-red light. PHOTOSYNTHESIS RESEARCH 2020; 145:189-207. [PMID: 32710194 DOI: 10.1007/s11120-020-00775-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Phycobiliproteins (PBPs) are pigment proteins that comprise phycobilisomes (PBS), major light-harvesting antenna complexes of cyanobacteria and red algae. PBS core substructures are made up of allophycocyanins (APs), a subfamily of PBPs. Five paralogous AP subunits are encoded by the Far-Red Light Photoacclimation (FaRLiP) gene cluster, which is transcriptionally activated in cells grown in far-red light (FRL; λ = 700 to 800 nm). FaRLiP gene expression enables some terrestrial cyanobacteria to remodel their PBS and photosystems and perform oxygenic photosynthesis in far-red light (FRL). Paralogous AP genes encoding a putative, FRL-absorbing AP (FRL-AP) are also found in an operon associated with improved low-light growth (LL; < 50 μmol photons m-2 s-1) in some thermophilic Synechococcus spp., a phenomenon termed low-light photoacclimation (LoLiP). In this study, apc genes from FaRLiP and LoLiP gene clusters were heterologously expressed individually and in combinations in Escherichia coli. The resulting novel FRL-APs were characterized and identified as major contributors to the FRL absorbance observed in whole cells after FaRLiP and potentially LoLiP. Post-translational modifications of native FRL-APs from FaRLiP cyanobacterium, Leptolyngbya sp. strain JSC-1, were analyzed by mass spectrometry. The PBP complexes made in two FaRLiP organisms were compared, revealing strain-specific diversity in the FaRLiP responses of cyanobacteria. Through analyses of native and recombinant proteins, we improved our understanding of how different cyanobacterial strains utilize specialized APs to acclimate to FRL and LL. We discuss some insights into structural changes that may allow these APs to absorb longer light wavelengths than their visible-light-absorbing paralogs.
Collapse
Affiliation(s)
- Nathan Soulier
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- S-002 Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
14
|
Chaubey MG, Patel SN, Rastogi RP, Madamwar D, Singh NK. Cyanobacterial pigment protein allophycocyanin exhibits longevity and reduces Aβ-mediated paralysis in C. elegans: complicity of FOXO and NRF2 ortholog DAF-16 and SKN-1. 3 Biotech 2020; 10:332. [PMID: 32656065 DOI: 10.1007/s13205-020-02314-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The allophycocyanin (APC) protein purified from Phormidium sp. A09DM was investigated for its in vivo antioxidant and anti-aging potential in Caenorhabditis elegans. An increased mean lifespan of APC-treated (100 μg/ml) worms (wild type) were observed from 16 ± 0.2 days (control) to 20 ± 0.1 days (treated). APC-treated worms also showed improved physiological marker of aging such as the rate of pharyngeal pumping and higher rate of survival against oxidative and thermal stress. Furthermore, APC was found to moderate the expression of human amyloid beta (Aβ1-42) as well as associated Aβ-induced paralysis in the transgenic C. elegans CL4176 upon increase in temperature. Furthermore, RNA interference (RNAi)-mediated studies revealed the dependence of downstream regulator daf-16, independent of stress-induced resistance gene skn-1 in the APC treated C. elegans. In the present study, we tried to demonstrate the anti-aging activity, longevity and protective effects of APC against cellular stress in C. elegans, which can lead to the use of this biomolecule in drug development for age-related disorders.
Collapse
Affiliation(s)
- Mukesh Ghanshyam Chaubey
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
| | - Stuti Nareshkumar Patel
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
| | - Rajesh Prasad Rastogi
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
- Present Address: Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, New Delhi, 110003 India
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
| |
Collapse
|
15
|
Investigations of the Energy Transfer in the Phycobilisome Antenna of Arthrospira platensis Using Femtosecond Spectroscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10114045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the energy transfer in phycobilisomes extracted from cyanobacteria can be used for building biomimetic hybrid systems for optimized solar energy collection and photocurrent amplification. In this paper, we applied time-resolved absorption and fluorescence spectroscopy to investigate the ultrafast dynamics in a hemidiscoidal phycobilisome obtained from Arthrospira platensis. We obtained the steady-state and time-resolved optical properties and identified the possible pathways of the excitation energy transfer in the phycobilisome and its components, phycocyanin and allophycocyanin. The transient absorption data were studied using global analysis and revealed the existence of ultrafast kinetics down to 850 fs in the phycobilisome. The fluorescence lifetimes in the nanosecond time-scale assigned to the final emitters in each sample were obtained from the time-correlated single photon counting fluorescence experiments.
Collapse
|
16
|
Sonani RR, Roszak AW, Liu H, Gross ML, Blankenship RE, Madamwar D, Cogdell RJ. Revisiting high-resolution crystal structure of Phormidium rubidum phycocyanin. PHOTOSYNTHESIS RESEARCH 2020; 144:349-360. [PMID: 32303893 PMCID: PMC7491960 DOI: 10.1007/s11120-020-00746-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The crystal structure of phycocyanin (pr-PC) isolated from Phormidium rubidum A09DM (P. rubidum) is described at a resolution of 1.17 Å. Electron density maps derived from crystallographic data showed many clear differences in amino acid sequences when compared with the previously obtained gene-derived sequences. The differences were found in 57 positions (30 in α-subunit and 27 in β-subunit of pr-PC), in which all residues except one (β145Arg) are not interacting with the three phycocyanobilin chromophores. Highly purified pr-PC was then sequenced by mass spectrometry (MS) using LC-MS/MS. The MS data were analyzed using two independent proteomic search engines. As a result of this analysis, complete agreement between the polypeptide sequences and the electron density maps was obtained. We attribute the difference to multiple genes in the bacterium encoding the phycocyanin apoproteins and that the gene sequencing sequenced the wrong ones. We are not implying that protein sequencing by mass spectrometry is more accurate than that of gene sequencing. The final 1.17 Å structure of pr-PC allows the chromophore interactions with the protein to be described with high accuracy.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388 315, India
- Małopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Aleksander W Roszak
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388 315, India.
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
17
|
Vicente A, Sohm B, Flayac J, Rousselle P, Bauda P, Pagnout C. Toxicity mechanisms of ZnO UV-filters used in sunscreens toward the model cyanobacteria Synechococcus elongatus PCC 7942. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22450-22463. [PMID: 31161548 DOI: 10.1007/s11356-019-05057-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Zinc oxide (ZnO) nanoparticles are commonly used in sunscreens for their UV-filtering properties. Their growing use can lead to their release into ecosystems, raising question about their toxicity. Effects of these engineered nanomaterials (ENMs) on cyanobacteria, which are important primary producers involved in many biogeochemical cycles, are unknown. In this study, we investigated by several complementary approaches the toxicological effects of two marketed ZnO-ENMs (coated and uncoated) on the model cyanobacteria Synechococcus elongatus PCC 7942. It was shown that despite the rapid adsorption of ENMs on cell surface, toxicity is mainly due to labile Zn released by ENMs. Zn dissipates cell membrane potential necessary for both photosynthesis and respiration, and induces oxidative stress leading to lipid peroxidation and DNA damages. It leads to global downregulation of photosystems, oxidative phosphorylation, and transcription/translation machineries. This also translates into significant decrease of intracellular ATP content and cell growth inhibition. However, there is no major loss of pigments and even rather an increase in exposed cells compared to controls. A proposed way to reduce the environmental impact of Zn would be the improvement of the coating stability to prevent solubility of ZnO-ENMs.
Collapse
Affiliation(s)
- Anne Vicente
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR CNRS 7360, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Bénédicte Sohm
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR CNRS 7360, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Justine Flayac
- CNRS, LIEC, UMR7360, Campus Bridoux, 57070, Metz, France
| | - Philippe Rousselle
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR CNRS 7360, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Pascale Bauda
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR CNRS 7360, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
- CNRS, LIEC, UMR7360, Campus Bridoux, 57070, Metz, France
| | - Christophe Pagnout
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR CNRS 7360, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France.
- CNRS, LIEC, UMR7360, Campus Bridoux, 57070, Metz, France.
| |
Collapse
|
18
|
Patel HM, Rastogi RP, Trivedi U, Madamwar D. Cyanobacterial diversity in mat sample obtained from hypersaline desert, Rann of Kachchh. 3 Biotech 2019; 9:304. [PMID: 31355113 DOI: 10.1007/s13205-019-1837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023] Open
Abstract
Rann of Kachchh (RoK) is a unique geoformation, which is exposed to dynamic environmental changes such as salinity, temperature, and nutrients throughout the year. In this study, the pooled mat sample was examined for the cyanobacterial community structure using culture-dependent and culture-independent approaches. Taxonomic profiling was studied using amplicon sequencing that revealed the enrichment of Pseudanabaenales and Oscillatoriales by QIIME and MG-RAST, respectively. Other abundant orders were represented by Chroococcales, Nostocales, and unclassified cyanobacteria by both approaches. Nine cyanobacterial cultures were isolated from mat samples showing 90-98% similarities with available sequences in GenBank. The culture-dependent study suggested that mat was dominated by cyanobacterial orders such as Oscillatoriales-filamentous and Chroococcales-unicellular. Our results from the culture-dependent approach also indicated that despite high similarities in gene sequences, six cyanobacteria fall into the separate clade in the phylogenetic analysis that could be signs of evolution due to an extreme environment. Cultured isolates are correlated well with abundant taxa from amplicon sequencing. Further, protein profiling was done specifically for phycobiliproteins which will be helpful to elucidate their roles in light harvesting and energy transfer mechanism in the unique environment of RoK.
Collapse
|
19
|
Sonani RR, Rastogi RP, Patel SN, Chaubey MG, Singh NK, Gupta GD, Kumar V, Madamwar D. Phylogenetic and crystallographic analysis of Nostoc phycocyanin having blue-shifted spectral properties. Sci Rep 2019; 9:9863. [PMID: 31285455 PMCID: PMC6614406 DOI: 10.1038/s41598-019-46288-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023] Open
Abstract
The distinct sequence feature and spectral blue-shift (~10 nm) of phycocyanin, isolated from Nostoc sp. R76DM (N-PC), were investigated by phylogenetic and crystallographic analyses. Twelve conserved substitutions in N-PC sequence were found distributed unequally among α- and β-subunit (3 in α- and 9 in β-subunit). The phylogenetic analysis suggested that molecular evolution of α- and β-subunit of Nostoc-phycocyanin is faster than evolution of Nostoc-species. The divergence events seem to have occurred more frequently in β-subunit, compared to α-subunit (relative divergence, 7.38 for α-subunit and 9.66 for β-subunit). Crystal structure of N-PC was solved at 2.35 Å resolution to reasonable R-factors (Rwork/RFree = 0.199/0.248). Substitutions congregate near interface of two αβ-monomer in N-PC trimer and are of compensatory nature. Six of the substitutions in β-subunit may be involved in maintaining topology of β-subunit, one in inter-monomer interaction and one in interaction with linker-protein. The β153Cys-attached chromophore adopts high-energy conformational state resulting due to reduced coplanarity of B- and C-pyrrole rings. Distortion in chromophore conformation can result in blue-shift in N-PC spectral properties. N-PC showed significant in-vitro and in-vivo antioxidant activity comparable with other phycocyanin. Since Nostoc-species constitute a distinct phylogenetic clade, the present structure would provide a better template to build a model for phycocyanins of these species.
Collapse
Affiliation(s)
- Ravi R Sonani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rajesh Prasad Rastogi
- Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, New Delhi, 110003, India
| | - Stuti Nareshkumar Patel
- Post-Graduate Department of Biosciences, Satellite Campus, Sardar Patel University, Bakrol, Anand, 388 315, Gujarat, India
| | - Mukesh Ghanshyam Chaubey
- Shri A. N. Patel P. G. Institute of Science and Research, Sardar Patel University, Anand, Gujarat, 388001, India
| | - Niraj Kumar Singh
- Shri A. N. Patel P. G. Institute of Science and Research, Sardar Patel University, Anand, Gujarat, 388001, India
| | - Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Satellite Campus, Sardar Patel University, Bakrol, Anand, 388 315, Gujarat, India.
| |
Collapse
|
20
|
Purohit A, Kumar V, Chownk M, Yadav SK. Processing-Independent Extracellular Production of High Purity C-Phycocyanin from Spirulina platensis. ACS Biomater Sci Eng 2019; 5:3237-3245. [DOI: 10.1021/acsbiomaterials.9b00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anjali Purohit
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| | - Varun Kumar
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| | - Manisha Chownk
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| |
Collapse
|
21
|
Oh S, Montgomery BL. Roles of CpcF and CpcG1 in Peroxiredoxin-Mediated Oxidative Stress Responses and Cellular Fitness in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2019; 10:1059. [PMID: 31143173 PMCID: PMC6521580 DOI: 10.3389/fmicb.2019.01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
As a component of the photosynthetic apparatus in cyanobacteria, the phycobilisome (PBS) plays an important role in harvesting and transferring light energy to the core photosynthetic reaction centers. The size, composition (phycobiliprotein and chromophore), and assembly of PBSs can be dynamic to cope with tuning photosynthesis and associated cellular fitness in variable light environments. Here, we explore the role of PBS-related stress responses by analyzing deletion mutants of cpcF or cpcG1 genes in Synechocystis sp. PCC 6803. The cpcF gene encodes a lyase that links the phycocyanobilin (PCB) chromophore to the alpha subunit of phycocyanin (PC), a central phycobiliprotein (PBP) in PBSs. Deletion of cpcF (i.e., ΔcpcF strain) resulted in slow growth, reduced greening, elevated reactive oxygen species (ROS) levels, together with an elevated accumulation of a stress-related Peroxiredoxin protein (Sll1621). Additionally, ΔcpcF exhibited reduced sensitivity to a photosynthesis-related stress inducer, methyl viologen (MV), which disrupts electron transfer. The cpcG1 gene encodes a linker protein that serves to connect PC to the core PBP allophycocyanin. A deletion mutant of cpcG1 (i.e.,ΔcpcG1) exhibited delayed growth, a defect in pigmentation, reduced accumulation of ROS, and insensitivity to MV treatment. By comparison, ΔcpcF and ΔcpcG1 exhibited similarity in growth, pigmentation, and stress responses; yet, these strains showed distinct phenotypes for ROS accumulation, sensitivity to MV and Sll1621 accumulation. Our data emphasize an importance of the regulation of PBS structure in ROS-mediated stress responses that impact successful growth and development in cyanobacteria.
Collapse
Affiliation(s)
- Sookyung Oh
- MSU-DOE Plant Research Laboratory, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Laboratory, College of Natural Science, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Fujiwara T, Hirooka S, Mukai M, Ohbayashi R, kanesaki Y, Watanabe S, Miyagishima S. Integration of a Galdieria plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga Cynanidioschyzon merolae. PLANT DIRECT 2019; 3:e00134. [PMID: 31245772 PMCID: PMC6589524 DOI: 10.1002/pld3.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/11/2019] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
The unicellular thermoacidophilic red alga Cyanidioschyzon merolae is an emerging model organism of photosynthetic eukaryotes. Its relatively simple genome (16.5 Mbp) with very low-genetic redundancy and its cellular structure possessing one chloroplast, mitochondrion, peroxisome, and other organelles have facilitated studies. In addition, this alga is genetically tractable, and the nuclear and chloroplast genomes can be modified by integration of transgenes via homologous recombination. Recent studies have attempted to clarify the structure and function of the photosystems of this alga. However, it is difficult to obtain photosynthesis-defective mutants for molecular genetic studies because this organism is an obligate autotroph. To overcome this issue in C. merolae, we expressed a plasma membrane sugar transporter, GsSPT1, from Galdieria sulphuraria, which is an evolutionary relative of C. merolae and capable of heterotrophic growth. The heterologously expressed GsSPT1 localized at the plasma membrane. GsSPT1 enabled C. merolae to grow mixotrophically and heterotrophically, in which cells grew in the dark with glucose or in the light with a photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and glucose. When the GsSPT1 transgene multiplied on the C. merolae chromosome via the URA Cm-Gs selection marker, which can multiply itself and its flanking transgene, GsSPT1 protein level increased and the heterotrophic and mixotrophic growth of the transformant accelerated. We also found that GsSPT1 overexpressing C. merolae efficiently formed colonies on solidified medium under light with glucose and DCMU. Thus, GsSPT1 overexpresser will facilitate single colony isolation and analyses of photosynthesis-deficient mutants produced either by random or site-directed mutagenesis. In addition, our results yielded evidence supporting that the presence or absence of plasma membrane sugar transporters is a major cause of difference in trophic properties between C. merolae and G. sulphuraria.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
- JST‐Mirai ProgramJapan Science and Technology AgencyKawaguchiSaitamaJapan
- Department of GeneticsGraduate University for Advanced Studies (SOKENDAI)MishimaShizuokaJapan
| | - Shunsuke Hirooka
- Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
- JST‐Mirai ProgramJapan Science and Technology AgencyKawaguchiSaitamaJapan
| | - Mizuna Mukai
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Ryudo Ohbayashi
- Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
| | - Yu kanesaki
- NODAI Genome Research CenterTokyoJapan
- Research Institute of Green Science and TechnologyShizuoka UniversityShizuokaJapan
| | - Satoru Watanabe
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Shin‐ya Miyagishima
- Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
- JST‐Mirai ProgramJapan Science and Technology AgencyKawaguchiSaitamaJapan
- Department of GeneticsGraduate University for Advanced Studies (SOKENDAI)MishimaShizuokaJapan
| |
Collapse
|
23
|
Sonani RR, Gardiner A, Rastogi RP, Cogdell R, Robert B, Madamwar D. Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates. PHOTOSYNTHESIS RESEARCH 2018; 137:171-180. [PMID: 29574660 DOI: 10.1007/s11120-018-0498-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria exhibit a novel form of non-photochemical quenching (NPQ) at the level of the phycobilisome. NPQ is a process that protects photosystem II (PSII) from possible highlight-induced photo-damage. Although significant advancement has been made in understanding the NPQ, there are still some missing details. This critical review focuses on how the orange carotenoid protein (OCP) and its partner fluorescence recovery protein (FRP) control the extent of quenching. What is and what is not known about the NPQ is discussed under four subtitles; where does exactly the site of quenching lie? (site), how is the quenching being triggered? (trigger), molecular mechanism of quenching (quenching) and recovery from quenching. Finally, a recent working model of NPQ, consistent with recent findings, is been described.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
- School of Sciences, P. P. Savani University, Dhamdod, Kosamba, Surat, Gujarat, 394125, India.
| | - Alastair Gardiner
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Rajesh P Rastogi
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India
| | - Richard Cogdell
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Bruno Robert
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
| |
Collapse
|
24
|
Amelioration of Ethanol-Induced Gastric Ulcers in Rats Pretreated with Phycobiliproteins of Arthrospira ( Spirulina) Maxima. Nutrients 2018; 10:nu10060763. [PMID: 29899291 PMCID: PMC6024796 DOI: 10.3390/nu10060763] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Phycobiliproteins of Arthrospira (Spirulina) maxima have attracted attention because of their potential therapeutic antioxidant properties. The aim of this study was to assess the possible antiulcerogenic activity of these phycobiliproteins (ExPhy) against ethanol-induced gastric ulcers in rats. To explore the possible mechanisms of action, we examined antioxidant defense enzymes (e.g., catalase, superoxide dismutase, and glutathione peroxidase), as well as the level of lipid peroxidation (MDA) and the histopathological changes in the gastric mucosa. Intragastric administration of ExPhy (100, 200, and 400 mg/kg body weight) significantly lowered the ulcer index value compared to the ulcer control group (p < 0.05). The greatest protection was provided by the concentration of 400 mg/kg. The histological study supported the observed gastroprotective activity of ExPhy, showing a reduced inflammatory response. Moreover, the alcohol-induced decrease in stomach antioxidant enzyme activity found in the ulcer control group was prevented by ExPhy pretreatment. Furthermore, ExPhy reversed the ethanol-induced increase in lipid peroxidation. In summary, the antiulcerogenic potential of ExPhy may be due, at least in part, to its anti-oxidant and anti-inflammatory effects.
Collapse
|
25
|
Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Sci Rep 2018; 8:8925. [PMID: 29895869 PMCID: PMC5997762 DOI: 10.1038/s41598-018-27276-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Phycoerythrin is the main phycobiliprotein that responsible for harvesting light for photosynthesis in cyanobacteria. In this research, phycoerythrin extracted from the cyanobacterium Nostoc carneum has been used to reduce silver nitrate for silver nanoparticles (AgNPs) biosynthesis. UV–visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 430 nm, which confirmed the presence of AgNPs. The face-centered central composite design was chosen to evaluate the interaction effects between four process variables and also to determine their optimal levels which influence the AgNPs biosynthesis using phycoerythrin. The maximum silver nanoparticles biosynthesis (1733.260 ± 21 µg/mL) was achieved in the central runs under the conditions of initial pH 10, incubation period of the 24 h, phycoerythrin concentration of the 0.8 mg/mL and 20 mM of AgNO3. The biosynthesized AgNPs were characterized using TEM which revealed the formation of spherical shape nanoparticles with size ranged between 7.1‒26.68 nm. EDX analysis confirmed silver as the major constituent element. FTIR spectrum indicates the presence of proteinaceous capping agent that prevents silver nanoparticles agglomeration. The IC50 of cell inhibition by AgNPs was observed at 13.07 ± 1.1 µg/mL. Treatment of mice bearing Ehrlich ascites carcinoma with 5 mg AgNPs/kg of mice body weight significantly decreased tumor volume, tumor cells count, white blood cells count and body weight. It was concluded that the phycoerythrin protein has the ability to synthesize AgNPs, which have antibacterial, antihemolytic, in vitro and in vivo cytotoxic activities.
Collapse
|
26
|
Zhang W, Zhong H, Lu H, Zhang Y, Deng X, Huang K, Duanmu D. Characterization of Ferredoxin-Dependent Biliverdin Reductase PCYA1 Reveals the Dual Function in Retrograde Bilin Biosynthesis and Interaction With Light-Dependent Protochlorophyllide Oxidoreductase LPOR in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:676. [PMID: 29875782 PMCID: PMC5974162 DOI: 10.3389/fpls.2018.00676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/03/2018] [Indexed: 05/27/2023]
Abstract
Bilins are linear tetrapyrroles commonly used as chromophores of phycobiliproteins and phytochromes for light-harvesting or light-sensing in photosynthetic organisms. Many eukaryotic algae lack both phycobiliproteins and phytochromes, but retain the bilin biosynthetic enzymes including heme oxygenase (HO/HMOX) and ferredoxin-dependent biliverdin reductase (FDBR). Previous studies on Chlamydomonas reinhardtii heme oxygenase mutant (hmox1) have shown that bilins are not only essential retrograde signals to mitigate oxidative stress during diurnal dark-to-light transitions, they are also required for chlorophyll accumulation and maintenance of a functional photosynthetic apparatus in the light. However, the underlying mechanism of bilin-mediated regulation of chlorophyll biosynthesis is unclear. In this study, Chlamydomonas phycocyanobilin:ferredoxin oxidoreductase PCYA1 FDBR domain was found to specifically interact with the rate-limiting chlorophyll biosynthetic enzyme LPOR (light-dependent protochlorophyllide oxidoreductase). PCYA1 is partially associated with chloroplast envelope membrane, consistent with the observed export of bilin from chloroplast to cytosol by cytosolic expression of a bilin-binding reporter protein in Chlamydomonas. Both the pcya1-1 mutant with the carboxyl-terminal extension of PCYA1 eliminated and efficient knockdown of PCYA1 expression by artificial microRNA exhibited no significant impact on algal phototrophic growth and photosynthetic proteins accumulation, indicating that the conserved FDBR domain is sufficient and minimally required for bilin biosynthesis and functioning. Taken together, these studies provide novel insights into the regulatory role of PCYA1 in chlorophyll biosynthesis via interaction with key Chl biosynthetic enzyme.
Collapse
Affiliation(s)
- Weiqing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Hasegawa M, Fushimi K, Miyake K, Nakajima T, Oikawa Y, Enomoto G, Sato M, Ikeuchi M, Narikawa R. Molecular characterization of D XCF cyanobacteriochromes from the cyanobacterium Acaryochloris marina identifies a blue-light power sensor. J Biol Chem 2017; 293:1713-1727. [PMID: 29229775 DOI: 10.1074/jbc.m117.816553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors that sense a wide range of wavelengths from ultraviolet to far-red. The primary photoreaction in these reactions is a Z/E isomerization of the double bond between rings C and D. After this isomerization, various color-tuning events establish distinct spectral properties of the CBCRs. Among the various CBCRs, the DXCF CBCR lineage is widely distributed among cyanobacteria. Because the DXCF CBCRs from the cyanobacterium Acaryochloris marina vary widely in sequence, we focused on these CBCRs in this study. We identified seven DXCF CBCRs in A. marina and analyzed them after isolation from Escherichia coli that produces phycocyanobilin, a main chromophore for the CBCRs. We found that six of these CBCRs covalently bound a chromophore and exhibited variable properties, including blue/green, blue/teal, green/teal, and blue/orange reversible photoconversions. Notably, one CBCR, AM1_1870g4, displayed unidirectional photoconversion in response to blue-light illumination, with a rapid dark reversion that was temperature-dependent. Furthermore, the photoconversion took place without Z/E isomerization. This observation indicated that AM1_1870g4 likely functions as a blue-light power sensor, whereas typical CBCRs reversibly sense two light qualities. We also found that AM1_1870g4 possesses a GDCF motif in which the Asp residue is swapped with the next Gly residue within the DXCF motif. Site-directed mutagenesis revealed that this swap is essential for the light power-sensing function of AM1_1870g4. This is the first report of a blue-light power sensor from the CBCR superfamily and of photoperception without Z/E isomerization among the bilin-based photoreceptors.
Collapse
Affiliation(s)
- Masumi Hasegawa
- From the Department of Biological Science, Faculty of Science, and
| | - Keiji Fushimi
- From the Department of Biological Science, Faculty of Science, and.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Keita Miyake
- From the Department of Biological Science, Faculty of Science, and
| | - Takahiro Nakajima
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Yuki Oikawa
- From the Department of Biological Science, Faculty of Science, and
| | - Gen Enomoto
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Moritoshi Sato
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, and
| | - Rei Narikawa
- From the Department of Biological Science, Faculty of Science, and .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.,the Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya, Suruga-ku, Shizuoka 422-8529
| |
Collapse
|
28
|
El-Naggar NEA, Hussein MH, El-Sawah AA. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci Rep 2017; 7:10844. [PMID: 28883419 PMCID: PMC5589729 DOI: 10.1038/s41598-017-11121-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/18/2017] [Indexed: 01/26/2023] Open
Abstract
In recent decades, researchers were attracted towards cyanobacterial components which are potential low-cost biological reagents for silver nanoparticle biosynthesis. This article describes the biological synthesis of silver nanoparticles using a proteinaceous pigment phycocyanin extracted from Nostoc linckia as reducing agent. The synthesized silver nanoparticles have a surface plasmon resonance band centered at 425 nm. Face-centered central composite design used for optimization of silver nanoparticles (AgNPs) biosynthesis using phycocyanin. The maximum AgNPs biosynthesis obtained using the optimized four variables, initial pH level (10), AgNO3 concentration (5 mM), phycocyanin pigment concentration (1 mg/mL) and incubation period (24 h) was 1100.025 µg/mL. The TEM analysis of AgNPs showed spherical nanoparticles with mean size between 9.39 to 25.89 nm. FTIR spectra showed major peaks of proteins involved in AgNPs biosynthesis by identifying different functional groups involved in effective capping of AgNPs. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic Gram-positive (Staphylococcus aureus), Gram-negative bacteria (Pseudomonas aeruginosa, E. coli and Klebsiella pneumonia). The synthesized AgNPs exhibited effective cytotoxic activity against MCF-7 and the inhibitory concentration (IC50) was recorded at 27.79 ± 2.3 µg/mL. The in vivo studies clearly indicated that AgNPs has a capacity to inhibit the growth of tumor in Ehrlich ascites carcinoma bearing mice.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Mervat H Hussein
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
29
|
Chandrasekaran S, Pothula KR, Kleinekathöfer U. Protein Arrangement Effects on the Exciton Dynamics in the PE555 Complex. J Phys Chem B 2016; 121:3228-3236. [DOI: 10.1021/acs.jpcb.6b05803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Karunakar Reddy Pothula
- Department of Physics and
Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and
Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
30
|
Sonani RR, Rastogi RP, Patel R, Madamwar D. Recent advances in production, purification and applications of phycobiliproteins. World J Biol Chem 2016; 7:100-9. [PMID: 26981199 PMCID: PMC4768114 DOI: 10.4331/wjbc.v7.i1.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/07/2015] [Accepted: 12/16/2015] [Indexed: 02/05/2023] Open
Abstract
An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins.
Collapse
|
31
|
Singh SP, Montgomery BL. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon. Front Microbiol 2015; 6:1215. [PMID: 26594203 PMCID: PMC4633512 DOI: 10.3389/fmicb.2015.01215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
Filamentous cyanobacterium Fremyella diplosiphon is known to alter its pigmentation and morphology during complementary chromatic acclimation (CCA) to efficiently harvest available radiant energy for photosynthesis. F. diplosiphon cells are rectangular and filaments are longer under green light (GL), whereas smaller, spherical cells and short filaments are prevalent under red light (RL). Light regulation of bolA morphogene expression is correlated with photoregulation of cellular morphology in F. diplosiphon. Here, we investigate a role for quantitative regulation of cellular BolA protein levels in morphology determination. Overexpression of bolA in WT was associated with induction of RL-characteristic spherical morphology even when cultures were grown under GL. Overexpression of bolA in a ΔrcaE background, which lacks cyanobacteriochrome photosensor RcaE and accumulates lower levels of BolA than WT, partially reverted the cellular morphology of the strain to a WT-like state. Overexpression of BolA in WT and ΔrcaE backgrounds was associated with decreased cellular reactive oxygen species (ROS) levels and an increase in filament length under both GL and RL. Morphological defects and high ROS levels commonly observed in ΔrcaE could, thus, be in part due to low accumulation of BolA. Together, these findings support an emerging model for RcaE-dependent photoregulation of BolA in controlling the cellular morphology of F. diplosiphon during CCA.
Collapse
Affiliation(s)
- Shailendra P. Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
32
|
Sonani RR, Sharma M, Gupta GD, Kumar V, Madamwar D. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study. Acta Crystallogr F Struct Biol Commun 2015; 71:998-1004. [PMID: 26249689 PMCID: PMC4528931 DOI: 10.1107/s2053230x15010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/25/2015] [Indexed: 11/10/2022] Open
Abstract
The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly.
Collapse
Affiliation(s)
- Ravi Raghav Sonani
- BRD School of Biosciences, Sardar Patel University, Post Box No. 39, Satellite Campus, Vadtal Road, Vallabh Vidyanagar 388 120, India
| | - Mahima Sharma
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Gagan Deep Gupta
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinay Kumar
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel University, Post Box No. 39, Satellite Campus, Vadtal Road, Vallabh Vidyanagar 388 120, India
| |
Collapse
|