1
|
Ai J, Tan G, Li W, Liu H, Li T, Zhang G, Zhou Z, Gan Y. Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced stemness and cisplatin resistance in nasopharyngeal carcinoma side population cells through the miR-579-3p/SIRT1/SSRP1 axis. Cell Biol Toxicol 2022:10.1007/s10565-022-09738-w. [PMID: 35844005 DOI: 10.1007/s10565-022-09738-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the effects of exosomes loaded with circular RNA PARD3 on EBV-miR-BART4-induced stemness and resistance of cisplatin in nasopharyngeal carcinoma side population (NPC-SP) cells through the miR-579-3p/SIRT1/SSRP1 axis. METHODS Sixty-five cancer tissues and 65 noncancerous tissues were collected from NPC patients or patients with rhinitis. The expressions of circPARD3, miR-579-3p, SIRT1, and SSRP1 were detected by qRT-PCR, western blot, or immunohistochemistry. In vivo tumor formation assay was performed in nude mice. Immunofluorescence and qRT-PCR were conducted for the determination of CD44 and CD133 expressions, and flow cytometry combined with Hoechst 33,342 dye efflux for identifying SP cells, CCK-8 and EdU assays for cell proliferation, and Transwell assay for migration and invasion. RESULTS CircPARD3, SIRT1, and SSRP1 were upregulated while miR-579-3p was downregulated in NPC tissues and cells. CircPARD3 was positively correlated with the expressions of SIRT1 and SSRP1, and miR-579-3p was negatively correlated with circPARD3, SIRT1, and SSRP1. Exosomes loaded with circPARD3 promoted EBV-miR-BART4-induced stemness and cisplatin resistance in NPC-SP cells, while miR-579-3p reversed the effect of exosomal circPARD3 on EBV-miR-BART4-induced stemness and cisplatin resistance in NPC-SP cells. Additionally, miR-579-3p suppressed EBV-miR-BART4-induced stemness and cisplatin resistance in NPC-SP cells by regulating SIRT1. SIRT1 upregulated SSRP1 expression by catalyzing H3K4 methylation and down-regulation of SSRP1 reversed the effect of SIRT1 on EBV-miR-BART4-induced stemness and cisplatin resistance in NPC-SP cells. CONCLUSION Exosomes loaded with circPARD3 promoted EBV-miR-BART4-induced stemness and cisplatin resistance in NPC-SP cells through the miR-579-3p/SIRT1/SSRP1 axis. Graphical Headlights • EBV-miR-BART4 induces the stemness and resistance of NPC-SP cells. • CircPARD3 regulates SIRT1 by miR-579-3p. • SIRT1 regulates SSRP1 expression by histone methylation. • Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced NPC-SP cell stemness and resistance by the miR-579-3p/SIRT1/SSRP1 axis.
Collapse
Affiliation(s)
- Jingang Ai
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Honghui Liu
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Tieqi Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Gehou Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zheng Zhou
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
2
|
Up-regulation of SIRT1 induced by 17beta-estradiol promotes autophagy and inhibits apoptosis in osteoblasts. Aging (Albany NY) 2021; 13:23652-23671. [PMID: 34711685 PMCID: PMC8580331 DOI: 10.18632/aging.203639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a common systemic skeletal metabolism disorder resulting in bone fragility and increased fracture risk. Silent information regulator factor 2 homolog 1 (SIRT1) is crucial in the regulation of several biological processes, including bone metabolism, autophagy, apoptosis, and aging. This study aimed to assess whether the up-regulation of SIRT1 induced by 17beta-estradiol (17β-E2) could promote autophagy and inhibit apoptosis in osteoblasts via the AMPK-mTOR and FOXO3a pathways, respectively. The study found that 17β-E2 (10-6 M) administration induced the up-regulation of SIRT1 in osteoblasts. Up-regulation of SIRT1 induced by 17β-E2 increased the expression level of LC3, Beclin-1, Bcl-2, p-AMPK, FOXO3a but decreased caspase-3 and p-mTOR expression, and then promoted autophagy and inhibited apoptosis. More autophagosomes were observed under a transmission electron microscope (TEM) in 17β-E2 and SRT1720 (a selective SIRT1 activator) co-treated group. When Ex527 (a SIRT1-specific inhibitor) was pretreated, the reversed changes were observed. Taken together, our findings demonstrated that the up-regulation of SIRT1 induced by 17β-E2 could promote autophagy via the AMPK-mTOR pathway and inhibit apoptosis via the FOXO3a activation in osteoblasts, and SIRT1 might become a more significant target in osteoporosis treatment.
Collapse
|
3
|
Roberti A, Fernández AF, Fraga MF. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation. Mol Metab 2021; 45:101165. [PMID: 33453420 PMCID: PMC7868988 DOI: 10.1016/j.molmet.2021.101165] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background The abundance of energy metabolites is intimately interconnected with the activity of chromatin-modifying enzymes in order to guarantee the finely tuned modulation of gene expression in response to cellular energetic status. Metabolism-induced epigenetic gene regulation is a key molecular axis for the maintenance of cellular homeostasis, and its deregulation is associated with several pathological conditions. Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that catalyzes the methylation of nicotinamide (NAM) using the universal methyl donor S-adenosyl methionine (SAM), directly linking one-carbon metabolism with a cell's methylation balance and nicotinamide adenine dinucleotide (NAD+) levels. NNMT expression and activity are regulated in a tissue-specific-manner, and the protein can act either physiologically or pathologically depending on its distribution. While NNMT exerts a beneficial effect by regulating lipid parameters in the liver, its expression in adipose tissue correlates with obesity and insulin resistance. NNMT upregulation has been observed in a variety of cancers, and increased NNMT expression has been associated with tumor progression, metastasis and worse clinical outcomes. Accordingly, NNMT represents an appealing druggable target for metabolic disorders as well as oncological and other diseases in which the protein is improperly activated. Scope of review This review examines emerging findings concerning the complex NNMT regulatory network and the role of NNMT in both NAD metabolism and cell methylation balance. We extensively describe recent findings concerning the physiological and pathological regulation of NNMT with a specific focus on the function of NNMT in obesity, insulin resistance and other associated metabolic disorders along with its well-accepted role as a cancer-associated metabolic enzyme. Advances in strategies targeting NNMT pathways are also reported, together with current limitations of NNMT inhibitor drugs in clinical use. Major conclusions NNMT is emerging as a key point of intersection between cellular metabolism and epigenetic gene regulation, and growing evidence supports its central role in several pathologies. The use of molecules that target NNMT represents a current pharmaceutical challenge for the treatment of several metabolic-related disease as well as in cancer.
Collapse
Affiliation(s)
- Annalisa Roberti
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Health Research Institute of Asturias (ISPA), Oviedo, Spain; Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain; Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Oviedo, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Health Research Institute of Asturias (ISPA), Oviedo, Spain; Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain; Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Oviedo, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Health Research Institute of Asturias (ISPA), Oviedo, Spain; Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain; Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Oviedo, Spain.
| |
Collapse
|
4
|
Duda P, Akula SM, Abrams SL, Steelman LS, Gizak A, Rakus D, McCubrey JA. GSK-3 and miRs: Master regulators of therapeutic sensitivity of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118770. [PMID: 32524999 DOI: 10.1016/j.bbamcr.2020.118770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
Glycogen synthetase kinase-3 (GSK-3) and microRNAs (miRs) affect many critical signaling pathways important in cell growth. GSK-3 is a serine/threonine (S/T) protein kinase. Often when GSK-3 phosphorylates other proteins, they are inactivated and the signaling pathway is shut down. The PI3K/PTEN/AKT/GSK3/mTORC1 pathway plays key roles in regulation of cell growth, apoptosis, drug resistance, malignant transformation and metastasis and is often deregulated in cancer. When GSK-3 is phosphorylated by AKT it is inactivated and this often leads to growth promotion. When GSK-3 is not phosphorylated by AKT or other kinases at specific negative-regulatory residues, it can modify the activity of many proteins by phosphorylation, some of these proteins promote while others inhibit cell proliferation. This is part of the conundrum regarding GSK-3. The central theme of this review is the ability of GSK-3 to serve as either a tumor suppressor or a tumor promoter in cancer which is likely due to its diverse protein substrates. The effects of multiple miRs which bind mRNAs encoding GSK-3 and other signaling molecules and how they affect cell growth and sensitivity to various therapeutics will be discussed as they serve to regulate GSK-3 and other proteins important in controlling proliferation.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA.
| |
Collapse
|
5
|
Ribatti D, Tamma R. Epigenetic control of tumor angiogenesis. Microcirculation 2020; 27:e12602. [PMID: 31863494 DOI: 10.1111/micc.12602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
The term "epigenetic" is used to refer to heritable alterations in chromatin that are not due to changes in DNA sequence. Different growth factors and vascular genes mediate the angiogenic process, which is regulated by epigenetic states of genes. The aim of this article is to analyze the role of epigenetic mechanisms in the control and regulation of tumor angiogenetic processes. The reversibility of epigenetic events in contrast to genetic aberrations makes them potentially suitable for therapeutic intervention. In this context, DNA methyltransferase (DNMT) and HDAC inhibitors indirectly-via the tumor cells-exhibit angiostatic effects in vivo, and inhibition of miRNAs can contribute to the development of novel anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
6
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
7
|
Yao H, Yao Z, Zhang S, Zhang W, Zhou W. Upregulation of SIRT1 inhibits H2O2‑induced osteoblast apoptosis via FoxO1/β‑catenin pathway. Mol Med Rep 2018; 17:6681-6690. [PMID: 29512706 DOI: 10.3892/mmr.2018.8657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a disease that significantly influences life expectancy and quality in humans. Oxidative stress may stimulate bone marrow osteoclast differentiation and inhibit osteoblast (OB) differentiation. OB proliferation and differentiation are affected by the forkhead box O (FoxO)1/β‑catenin signaling pathway. The osteogenic differentiation of mesenchymal stem cells (MSCs) may be promoted by silent information regulator type‑1 [sirtuin (SIRT)1]. However, the molecular mechanism of SIRT1 regulation of osteogenic differentiation of MSCs remains unclear, and further elucidation is needed. The present study investigated the role of SIRT1 in the FoxO1/β‑catenin signaling pathway in oxidative stress and its mechanism in the osteoblastic progenitor cell line (MC3T3‑E1). The results demonstrated that OB apoptosis and elevated oxidative stress in cells were simulated by H2O2, which was inhibited by moderate SIRT1 overexpression through reducing the oxidative stress. Further studies revealed that FOXO1 and β‑catenin pathway activity was downregulated by SIRT1 and eventually resulted in inhibition of target genes, including the proapoptotic gene B cell lymphoma‑2 interacting mediator of cell death, DNA repair gene growth arrest and DNA damage inducible protein 45 and the OB differentiation suppressor gene peroxisome proliferator activated receptor (PPAR)‑γ. Furthermore, β‑catenin and PPAR‑γ were inhibited by SIRT1. Overall, the results of the present study suggest that moderate overexpression of SIRT1 (~3‑fold of normal level) may directly or indirectly inhibit apoptosis of OBs via the FOXO1 and β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Hanlin Yao
- Department of Orthopaedic, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Zhen Yao
- Department of Orthopaedic, Xinchang Hospital Affiliated to Wenzhou Medical University, Hangzhou, Zhejiang 312500, P.R. China
| | - Shaocheng Zhang
- Department of Orthopaedic, Changhai Hospital Affiliated to Second Military Medical University, Shanghai 200433, P.R. China
| | - Wenjun Zhang
- Department of Orthopaedic, Qingpu People's Hospital of Zhujiajue, Shanghai 201713, P.R. China
| | - Wen Zhou
- Department of Sports Science, Shanghai University of Sports, Shanghai 200433, P.R. China
| |
Collapse
|
8
|
A potent and selective small molecule inhibitor of sirtuin 1 promotes differentiation of pluripotent P19 cells into functional neurons. Sci Rep 2016; 6:34324. [PMID: 27680533 PMCID: PMC5041152 DOI: 10.1038/srep34324] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 1 (SIRT1) is known to suppress differentiation of pluripotent/multipotent cells and neural progenitor cells into neurons by blocking activation of transcription factors critical for neurogenesis. EX-527 is a highly selective and potent inhibitor against SIRT1 and has been used as a chemical probe that modulates SIRT1-associated biological processes. However, the effect of EX-527 on neuronal differentiation in pluripotent cells has not been well elucidated. Here, we report an examination of EX-527 effects on neurogenesis of pluripotent P19 cells. The results showed that EX-527 greatly accelerated differentiation of P19 cells into neurons without generation of cardiac cells and astrocytes. Importantly, neurons derived from P19 cells treated with EX-527 generated voltage-dependent sodium currents and depolarization-induced action potentials. The findings indicate that the differentiated cells have electrophysiological properties. The present study suggests that the selective SIRT1 inhibitor could have the potential of being employed as a chemical inducer to generate functionally active neurons.
Collapse
|
9
|
Abstract
Benzo[a]pyrene (B[a]P) is a carcinogen in cigarette smoke. We found that B[a]P induced SIRT1 in human bronchial epithelial BEAS-2B cell. SIRT1 was overexpressed in the lung of B[a]P-exposed mice and in human lung cancer biopsies. SIRT1 up-regulated TNF-α and β-catenin and down-regulated the membrane fraction of E-cadherin. In addition, SIRT1 promoted invasion, migration and tumorigenesis of BEAS-2B cells in nude mice upon B[a]P exposure. Thus, SIRT1 is involved in B[a]P-induced transformation associated with activation of the TNF-α/β-catenin axis and is as a potential therapeutic target for lung cancer.
Collapse
|
10
|
Ma W, Xiao GG, Mao J, Lu Y, Song B, Wang L, Fan S, Fan P, Hou Z, Li J, Yu X, Wang B, Wang H, Wang H, Xu F, Li Y, Liu Q, Li L. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget 2016; 6:10432-44. [PMID: 25826085 PMCID: PMC4496365 DOI: 10.18632/oncotarget.3394] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/16/2015] [Indexed: 12/18/2022] Open
Abstract
Enforced expression of miR-34a eliminates cancer stem cells in some malignant tumors. Sirtuin-1 (SIRT1) is a direct target of miR-34a. Here we found low levels of miR-34a and high levels of SIRT1 in CD44+/CD24− breast cancer stem cells (BCSCs). MiR-34a overexpression and knockdown of SIRT1 decreased proportion of BSCSs and mammosphere formation. Expression of CSC markers, ALDH1, BMI1 and Nanog was decreased. In nude mice xenografts, stable expression of miR-34a and silencing of SIRT1 reduced tumor burden. Taken together, our results demonstrated that miR-34a inhibits proliferative potential of BCSCs in vitro and in vivo, at least partially by downregulating SIRT1. The miR-34a-SIRT1 axis may play role in self-renewal of BCSCs.
Collapse
Affiliation(s)
- Wei Ma
- Department of Pathology, Dalian Medical University, Dalian 116044, China.,Department of Human Anatomy, Dalian Medical University, Dalian 116044, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Sciences, Dalian University of Technology, Dalian 116024, China.,Genomics and Functional Proteomics Laboratories, Departments of Medicine and Medical Microbiology and Immunology, Creighton University Medical Center, NE 68131, USA
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Dalian 116044, China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Bo Song
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Lihui Wang
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Shujun Fan
- The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Panhong Fan
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Zhenhuan Hou
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Jiazhi Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Xiaotang Yu
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Bo Wang
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Huan Wang
- The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Fei Xu
- Department of Human Anatomy, Dalian Medical University, Dalian 116044, China
| | - Yan Li
- Department of Human Anatomy, Dalian Medical University, Dalian 116044, China
| | - Qiang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
11
|
Qu W, Wang Y, Wu Q, Liu J, Hao D. Emodin inhibits HMGB1-induced tumor angiogenesis in human osteosarcoma by regulating SIRT1. Int J Clin Exp Med 2015; 8:15054-15064. [PMID: 26628989 PMCID: PMC4658878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED The anti-cancer effects of emodin, including inhibition of proliferation, invasion, metastasis and angiogenesis, were confirmed by various previous studies. However, the specific mechanisms were not clear. In this study, we investigated emodin's anti-angiogenesis effect and focused on the mechanisms in human osteosarcoma (OS). OS cells were implanted to nude mice to form OS xenografts. Immunofluorescence assay was used to assess vWF expression in tumor tissue. MTT assay was employed to screen proper emodin concentrations unrelated with proliferation inhibition. siRNA technique was utilized to silence SIRT1 expression in OS cells. Expression levels of SIRT1 and VEGF were investigated by real-time PCR and western blotting. H4-k16Ac expression which indicated the deacetylation activity of SIRT1 was also detected by western blotting. As in results, HMGB1 treatment exacerbated OS angiogenesis both in vivo and in vitro. Emodin administration attenuated angiogenesis in both OS and HMGB1 treated OS in vivo and in vitro. After emodin treatment, the expression level and deacetylation activity of SIRT1 were dramatically enhanced. HMGB1-induced angiogenesis was more striking in SIRT1 silenced OS cells. SIRT1 silencing also impaired the anti-angiogenesis effect of emodin in OS cells. IN CONCLUSION SIRT expression and deacetylation activity elevation are involved in emodin's anti-angiogenesis effect in human OS.
Collapse
Affiliation(s)
- Wei Qu
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine No 555, Friendship Rd, Xi'an 710054, China
| | - Yufei Wang
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine No 555, Friendship Rd, Xi'an 710054, China
| | - Qining Wu
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine No 555, Friendship Rd, Xi'an 710054, China
| | - Jijun Liu
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine No 555, Friendship Rd, Xi'an 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine No 555, Friendship Rd, Xi'an 710054, China
| |
Collapse
|
12
|
Stem cell treatment for Alzheimer's disease. Int J Mol Sci 2014; 15:19226-38. [PMID: 25342318 PMCID: PMC4227270 DOI: 10.3390/ijms151019226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.
Collapse
|
13
|
Rando TA, Wyss-Coray T. Stem cells as vehicles for youthful regeneration of aged tissues. J Gerontol A Biol Sci Med Sci 2014; 69 Suppl 1:S39-42. [PMID: 24833585 DOI: 10.1093/gerona/glu043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cells hold great promise for regenerative therapies for a wide spectrum of diseases and disorders of aging by virtue of their ability to regenerate tissues and contribute to their homeostasis. Aging is associated with a marked decline in these functionalities of adult stem cells. As such, regeneration of aged tissues is both less efficient and less effective than that of young tissues. Recent studies have revealed the remarkably dynamic responses of stem cells to systemic signals, including the ability of "youthful" factors in the blood of young animals to enhance the functionality of aged stem cells. Thus, there is much hope that even aged stem cells retain a remarkable regenerative potential if provided with the correct cues and environment to engage in tissue repair. The overall focus of the presentations of this session is to address the determinants of changes in stem cell functionality with age, the key characteristics of stem cells in aged tissues, the extent to which those characteristics are capable of being rejuvenated and by what signals, and the potential for stem cell therapeutics for chronic diseases and acute injuries in aged individuals.
Collapse
Affiliation(s)
- Thomas A Rando
- Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, California. Rehabilitation R&D Program, REAP, VA Palo Alto Health Care System, Palo Alto, California.
| | - Tony Wyss-Coray
- Rehabilitation R&D Program, REAP, VA Palo Alto Health Care System, Palo Alto, California. Department of Neurology and Neurological Sciences, Stanford University, California
| |
Collapse
|
14
|
Son MJ, Son MY, Seol B, Kim MJ, Yoo CH, Han MK, Cho YS. Nicotinamide overcomes pluripotency deficits and reprogramming barriers. Stem Cells 2014; 31:1121-35. [PMID: 23526681 DOI: 10.1002/stem.1368] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/05/2013] [Indexed: 12/27/2022]
Abstract
Crosstalk between intracellular signaling pathways has been extensively studied to understand the pluripotency of human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs); however, the contribution of NAD(+) -dependent pathways remains largely unknown. Here, we show that NAD(+) depletion by FK866 (a potent inhibitor of NAD(+) biosynthesis) was fatal in hPSCs, particularly when deriving pluripotent cells from somatic cells and maintaining pluripotency. NAD and its precursors (nicotinamide [NAM] and nicotinic acid) fully replenished the NAD(+) depletion by FK866 in hPSCs. However, only NAM effectively enhanced the reprogramming efficiency and kinetics of hiPSC generation and was also significantly advantageous for the maintenance of undifferentiated hPSCs. Our molecular and functional studies reveal that NAM lowers the barriers to reprogramming by accelerating cell proliferation and protecting cells from apoptosis and senescence by alleviating oxidative stress, reactive oxygen species accumulation, and subsequent mitochondrial membrane potential collapse. We provide evidence that the positive effects of NAM (occurring at concentrations well above the physiological range) on pluripotency control are molecularly associated with the repression of p53, p21, and p16. Our findings establish that adequate intracellular NAD(+) content is crucial for pluripotency; the distinct effects of NAM on pluripotency may be dependent not only on its metabolic advantage as a NAD(+) precursor but also on the ability of NAM to enhance resistance to cellular stress.
Collapse
Affiliation(s)
- Myung Jin Son
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Salahshoor MR, Dastjerdi MN, Jalili C, Mardani M, Khazaei M, Darehdor AS, Valiani A, Roshankhah S. Combination of Salermide and Cholera Toxin B Induce Apoptosis in MCF-7 but Not in MRC-5 Cell Lines. Int J Prev Med 2013; 4:1402-13. [PMID: 24498496 PMCID: PMC3898446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sirtuin1 is an enzyme that deacetylates histones and several non-histone proteins including P53 during the stress. P300 is a member of the histone acetyl transferase family and enzyme that acetylates histones. Hereby, this study describes the potency combination of Salermide as a Sirtuin1 inhibitor and cholera toxin B (CTB) as a P300 activator to induce apoptosis Michigan Cancer Foundation-7 (MCF-7) and MRC-5. METHODS Cells were cultured and treated with a combination of Salermide and CTB respectively at concentrations of 80.56 and 85.43 μmol/L based on inhibitory concentration 50 indexes at different times. The percentage of apoptotic cells were measured by flow cytometry. Real-time polymerase chain reaction was performed to estimate the messenger ribonucleic acid expression of Sirtuin1 and P300 in cells. Enzyme linked immunosorbent assay and Bradford protein techniques were used to detect the endogenous levels of total and acetylated P53 protein generated in both cell lines. RESULTS Our findings indicated that the combination of two drugs could effectively induced apoptosis in MCF-7 significantly higher than MRC-5. We showed that expression of Sirtuin1 and P300 was dramatically down-regulated with increasing time by the combination of Salermide and CTB treatment in MCF-7, but not MRC-5. The acetylated and total P53 protein levels were increased more in MCF-7 than MRC-5 with incubated combination of drugs at different times. Combination of CTB and Salermide in 72 h through decreasing expression of Sirtuin1 and P300 genes induced acetylation of P53 protein and consequently showed the most apoptosis in MCF-7 cells, but it could be well-tolerated in MRC-5. CONCLUSION Therefore, combination of drugs could be used as an anticancer agent.
Collapse
Affiliation(s)
- Mohammad Reza Salahshoor
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence to: Dr. Mehdi Nikbakht Dastjerdi, Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Cyrus Jalili
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Shabanizadeh Darehdor
- Department of Anatomical Sciences and Molecular Biology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Valiani
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Berman AE, Leontieva OV, Natarajan V, McCubrey JA, Demidenko ZN, Nikiforov MA. Recent progress in genetics of aging, senescence and longevity: focusing on cancer-related genes. Oncotarget 2013; 3:1522-32. [PMID: 23455653 PMCID: PMC3681491 DOI: 10.18632/oncotarget.889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is widely believed that aging results from the accumulation of molecular damage, including damage of DNA and mitochondria and accumulation of molecular garbage both inside and outside of the cell. Recently, this paradigm is being replaced by the “hyperfunction theory”, which postulates that aging is caused by activation of signal transduction pathways such as TOR (Target of Rapamycin). These pathways consist of different enzymes, mostly kinases, but also phosphatases, deacetylases, GTPases, and some other molecules that cause overactivation of normal cellular functions. Overactivation of these sensory signal transduction pathways can cause cellular senescence, age-related diseases, including cancer, and shorten life span. Here we review some of the numerous very recent publications on the role of signal transduction molecules in aging and age-related diseases. As was emphasized by the author of the “hyperfunction model”, many (or actually all) of them also play roles in cancer. So these “participants” in pro-aging signaling pathways are actually very well acquainted to cancer researchers. A cancer-related journal such as Oncotarget is the perfect place for publication of such experimental studies, reviews and perspectives, as it can bridge the gap between cancer and aging researchers.
Collapse
Affiliation(s)
- Albert E Berman
- V.N. Orekhovich Institute of Biomedical Chemistry RAMS, 10 Pogodinskaya Str., Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
17
|
Radak Z, Koltai E, Taylor AW, Higuchi M, Kumagai S, Ohno H, Goto S, Boldogh I. Redox-regulating sirtuins in aging, caloric restriction, and exercise. Free Radic Biol Med 2013; 58:87-97. [PMID: 23339850 DOI: 10.1016/j.freeradbiomed.2013.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
The consequence of decreased nicotinamide adenine dinucleotide (NAD(+)) levels as a result of oxidative challenge is altered activity of sirtuins, which, in turn, brings about a wide range of modifications in mammalian cellular metabolism. Sirtuins, especially SIRT1, deacetylate important transcription factors such as p53, forkhead homeobox type O proteins, nuclear factor κB, or peroxisome proliferator-activated receptor γ coactivator 1α (which controls the transcription of pro- and antioxidant enzymes, by which the cellular redox state is affected). The role of SIRT1 in DNA repair is enigmatic, because it activates Ku70 to cope with double-strand breaks, but deacetylation of apurinic/apyrimidinic endonuclease 1 and probably of 8-oxoguanine-DNA glycosylase 1 decreases the activity of these DNA repair enzymes. The protein-stabilizing effects of the NAD+-dependent lysine deacetylases are readily related to housekeeping and redox regulation. The role of sirtuins in caloric restriction (CR)-related longevity in yeast is currently under debate. However, in mammals, it seems certain that sirtuins are involved in many cellular processes that mediate longevity and disease prevention via the effects of CR through the vascular, neuronal, and muscular systems. Regular physical exercise-mediated health promotion also involves sirtuin-regulated pathways including the antioxidant-, macromolecular damage repair-, energy-, mitochondrial function-, and neuronal plasticity-associated pathways. This review critically evaluates these findings and points out the age-associated role of sirtuins.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, H-1085 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dastjerdi MN, Salahshoor MR, Mardani M, Rabbani M, Hashemibeni B, Gharagozloo M, Kazemi M, Esmaeil N, Roshankhah S, Golmohammadi R, Mobarakian M. The apoptotic effects of sirtuin1 inhibitor on the MCF-7 and MRC-5 cell lines. Res Pharm Sci 2013; 8:79-89. [PMID: 24019817 PMCID: PMC3764679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sirtuin1 (SIRT1) is an enzyme that deacetylates histones and several nonhistone proteins including p53 during stress and plays an important role in the survival of tumor cells. Hereby, this study describes the potency of salermide as a SIRT1 inhibitor to induce apoptosis in the MCF-7 and MRC-5 cell lines. MCF7 and MRC-5 cell lines were cultured in RPMI-1640 and treated with or without salermide at concentration of 80.56 μmol/L, based on the half-maximal inhibitory concentration (IC50) index at different times (24, 48 and72 h). The IC50 value was established for the salermide in MCF-7. The percentage of apoptotic cells was measured by flow cytometry. Real-time quantitative RT-PCR was performed to estimate the mRNA expression of sirtuin1 in MCF-7 and MRC-5 with salermide at different times. ELISA and Bradford protein techniques were used to detect endogenous levels of total and acetylated p53 protein generated in MCF-7 and MRC-5 cells. Our findings indicated that salermide can induce apoptosis in MCF-7 significantly more effective than MRC-5 cells. We showed that the expression of SIRT1 was dramatically down-regulated by increasing the time of salermide treatment in MCF-7 but not MRC-5 and that the acetylated and total p53 protein levels were increased more in MCF-7 than MRC-5. Salermide, by decreasing the expression of sirtuin1 gene, can induce acetylation of P53 protein and consequently induce significant cell death in MCF-7 that was well tolerated in MRC-5.
Collapse
Affiliation(s)
- M Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M R Salahshoor
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Mardani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Rabbani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - B Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Gharagozloo
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Kazemi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - N Esmaeil
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Sh Roshankhah
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - R Golmohammadi
- Department of Basic Medical Sciences, Faculty of Medicine, Sabzevar University of Medical Sciences, I.R. Iran
| | - M Mobarakian
- Department of plant protection, Faculty of Agriculture, Razi University, Kermanshah, I.R. Iran
| |
Collapse
|
19
|
Dastjerdi MN, Salahshoor MR, Mardani M, Hashemibeni B, Roshankhah S. The effect of CTB on P53 protein acetylation and consequence apoptosis on MCF-7 and MRC-5 cell lines. Adv Biomed Res 2013; 2:24. [PMID: 23977652 PMCID: PMC3748634 DOI: 10.4103/2277-9175.108005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 08/01/2012] [Indexed: 12/31/2022] Open
Abstract
Background: P300 is a member of the mammalian histone acetyl transferase (HAT) family, an enzyme that acetylates histones and several non-histone proteins including P53 (the most important tumor suppressor gene) during stress, which plays an important role in the apoptosis of tumor cells. Hereby, this study describes the potency of CTB (Cholera Toxin B subunit) as a P300 activator to induce apoptosis in a breast cancer cell line (MCF-7) and a lung fibroblast cell line (MRC-5) as a non-tumorigenic control sample. Materials and Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with or without CTB at a concentration of 85.43 μmol/L, based on half-maximal inhibitory concentration (IC50) index at different times (24, 48 and 72 h). The percentage of apoptotic cells were measured by flow cytometry. Real-time quantitative RT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with CTB at different times. ELISA and Bradford protein techniques were used to detect levels of total and acetylated P53 protein generated in MCF-7 and MRC-5. Results: Our findings indicated that CTB could effectively induce apoptosis in MCF-7 significantly higher than MRC-5. We showed that expression of P300 was up-regulated by increasing time of CTB treatment in MCF-7 but not in MRC-5 and the acetylated and total P53 protein levels were increased more in MCF-7 cells than MRC-5. Conclusion: CTB could induce acetylation of P53 protein through increasing expression of P300 and consequently induce the significant cell death in MCF-7 but it could be well tolerated in MRC-5. Therefore, CTB could be used as an anti-cancer agent.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | |
Collapse
|
20
|
Li M, Shi M, Abraham NG, Ikehara S. Improved expression of Sirt1 on thymic epithelial cells of SAMP10 after Intrabone marrow-bone marrow transplantation. Cell Transplant 2013; 23:1019-29. [PMID: 23452762 DOI: 10.3727/096368913x664568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging is accompanied by various forms of immune dysfunction, leading to an increase in frequency of infections and the development of malignant tumors in mice and humans. Sirt1 has been implicated in processes as varied as metabolism, differentiation, cancer, and the stress response and aging. Senescence-accelerated mice prone 10 (SAMP10) show not only spontaneously occurring brain atrophy, with deficits in learning and memory, but also emotional disorders. We attempted in this study to clarify the deficits and found that the percentage of CD4/TNF-α T-cells in the spleen of 24-week-old (but not 6-week-old) SAMP10 to be significantly reduced. The thymus was significantly lighter, and the percentage of CD4⁺CD8⁺ cells was significantly lower in the 24-week-old SAMP10 than 6-week-old SAMP10. Microarray analyses indicated that genes related to transcription coactivator activity, growth factor activity, hormone activity, cytokine activity, receptor activity, and regulation of the immune system were downregulated in the thymus of 24-week-old SAMP10. Real-time PCR analysis showed that the expression of KGF, Aire, and Sirt1 was decreased on the thymic epithelial cells (TECs) of 24-week-old SAMP10. However, these parameters improved after the mice were treated with intrabone marrow-bone marrow transplantation. This is the first report of age-related changes in immune system dysfunction in 24-week-old SAMP10 and the first to show that dysfunction on the TECs of 24-week-old SAMP10 was modulated by allogeneic bone marrow cells.
Collapse
Affiliation(s)
- Ming Li
- Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka, Japan
| | | | | | | |
Collapse
|
21
|
Abstract
Human sirtuin1 (SIRT1), the closest homolog of the yeast sir2 protein, functions as an NAD+-dependent histone and non-histone protein deacetylase in several cellular processes, like energy metabolism, stress responses, aging, etc. In our recent study, we have shown that lamin A (a major nuclear matrix protein) directly binds with and activates SIRT1. Resveratrol, a natural phenol, has long been known as an activator of SIRT1. However, resveratrol's direct activation of SIRT1 has been refuted several times. In our study, we have provided a mechanistic explanation to this question, and have shown that resveratrol activates SIRT1 by increasing its binding with lamin A, thus aiding in the nuclear matrix (NM) localization of SIRT1. We have also shown that rescue of adult stem cell (ASC) decline in laminopathy-based premature aging mice by resveratrol is SIRT1-dependent. Further, resveratrol's ameliorating effects on progeria and its capacity to extend lifespan in progeria mice has been established. Here we have summarized these findings and their probable implications on other aspects, like chromatin remodeling, stem cell therapy, DNA damage responses, etc.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
22
|
Menendez JA, Joven J, Aragonès G, Barrajón-Catalán E, Beltrán-Debón R, Borrás-Linares I, Camps J, Corominas-Faja B, Cufí S, Fernández-Arroyo S, Garcia-Heredia A, Hernández-Aguilera A, Herranz-López M, Jiménez-Sánchez C, López-Bonet E, Lozano-Sánchez J, Luciano-Mateo F, Martin-Castillo B, Martin-Paredero V, Pérez-Sánchez A, Oliveras-Ferraros C, Riera-Borrull M, Rodríguez-Gallego E, Quirantes-Piné R, Rull A, Tomás-Menor L, Vazquez-Martin A, Alonso-Villaverde C, Micol V, Segura-Carretero A. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 2013; 12:555-78. [PMID: 23370395 DOI: 10.4161/cc.23756] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Sirt1, the closest mammalian homolog of the Sir2 yeast longevity protein, has been extensively investigated in the last few years as an avenue to understand the connection linking nutrients and energy metabolism with aging and related diseases. From this research effort the picture has emerged of an enzyme at the hub of a complex array of molecular interactions whereby nutrient-triggered signals are translated into several levels of adaptive cell responses, the failure of which underlies diseases as diverse as diabetes, neurodegeneration and cancer. Sirt1 thus connects moderate calorie intake to “healthspan,” and a decline of Sirt-centered protective circuits over time may explain the “catastrophic” nature of aging.
Collapse
Affiliation(s)
- Salvatore Fusco
- Institute of General Pathology, Catholic University Medical School, Rome, Italy
| | | | | |
Collapse
|
24
|
Rice CM, Sun M, Kemp K, Gray E, Wilkins A, Scolding NJ. Mitochondrial sirtuins - a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci 2012; 35:1887-93. [DOI: 10.1111/j.1460-9568.2012.08150.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Abstract
Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
26
|
Han J, Hubbard BP, Lee J, Montagna C, Lee HW, Sinclair DA, Suh Y. Analysis of 41 cancer cell lines reveals excessive allelic loss and novel mutations in the SIRT1 gene. Cell Cycle 2012; 12:263-70. [PMID: 23255128 DOI: 10.4161/cc.23056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SIRT1 is an evolutionarily conserved protein deacetylase that modulates stress response, cellular metabolism and aging in model organisms. While SIRT1 exerts beneficial effects in protecting against age-related diseases, the role of SIRT1 in cancer has been controversial. SIRT1 promotes cell survival by deacetylating, and thereby negatively regulating the activity of important tumor suppressors such as p53. In this regard, SIRT1 has been considered to be a potential oncogene, and SIRT1 inhibitors have been studied for possible anticancer therapeutic effects. In contrast, it has been shown that SIRT1 deficiency leads to increased genomic instability and tumorigenesis, and that overexpression of SIRT1 attenuates cancer formation in mice, suggesting it may also act as a tumor suppressor. Based on this evidence, SIRT1-activating molecules could act as candidate chemotherapeutic drugs. In order to gain insight into the role of SIRT1 in cancer, we performed a comprehensive resequencing analysis of the SIRT1 gene in 41 tumor cell lines and found an unusually excessive homozygosity, which was confirmed to be allelic loss by microsatellite analysis. Furthermore, we found two novel SIRT1 mutations (D739Y and R65_A72del) in addition to the known, rare non-synonymous variation resulting in I731V. In vitro assays using purified SIRT1 protein showed that these mutations do not alter SIRT1 deacetylase activity or telomerase activity, which was shown to be regulated by SIRT1. We conclude that allelic loss or mutations in the SIRT1 gene occur prevalently during tumorigenesis, supporting the assertion that SIRT1 may serve as a tumor suppressor.
Collapse
Affiliation(s)
- Jeehae Han
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|