1
|
Zhang L, Wei J, Liu X, Li D, Pang X, Chen F, Cao H, Lei P. Gut microbiota-astrocyte axis: new insights into age-related cognitive decline. Neural Regen Res 2025; 20:990-1008. [PMID: 38989933 PMCID: PMC11438350 DOI: 10.4103/nrr.nrr-d-23-01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 07/12/2024] Open
Abstract
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
Collapse
Affiliation(s)
- Lan Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institution, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
de Luca Silva B, Cendoroglo MS, Colleoni GWB. Gut Microbiota and Metabolic Biomarkers Associated With Longevity. Nutr Rev 2025:nuaf027. [PMID: 40036950 DOI: 10.1093/nutrit/nuaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
The dynamic balance between pro- and anti-inflammatory networks decreases as individuals age, and intestinal dysbiosis can initiate and maintain low-grade systemic inflammation. Interactions between the microbiota and humans occur from the beginning of life and, in general, the diversity of microbiota decreases with aging. The microbiome produces different metabolites with systemic effects, including immune system regulation. This understanding will be useful in controlling inflammation and preventing metabolic changes. Therefore, this review aims to identify the main metabolites synthesized by the intestinal microbiota to be used as biomarkers associated with longevity. This is a narrative review using scientific articles published in the last 10 years in the following databases: PubMed, Scielo, and Lilacs, using the Boolean operators "and" or "or." For this review, we identified 5 articles. The main metabolites described in the literature to date are organic acids, bile acids (BAs), short-chain fatty acids, branched-chain amino acids, trimethylamine N-oxide (TMAO), and derivatives of tryptophan and indole. Among these, the only ones not yet well characterized in studies on longevity were BAs and TMAO. Glutamate and p-cresol were also highlighted in the literature, with a negative association with longevity. The others showed an association, mostly positive, and can be used as potential biomarkers correlated with healthy aging and, if better studied, as targets for intervention to promote health and well-being.
Collapse
Affiliation(s)
- Beatriz de Luca Silva
- Geriatrics and Gerontology Discipline, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP 04025-002, Brazil
| | - Maysa Seabra Cendoroglo
- Geriatrics and Gerontology Discipline, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP 04025-002, Brazil
| | - Gisele W B Colleoni
- Geriatrics and Gerontology Discipline, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP 04025-002, Brazil
| |
Collapse
|
3
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 PMCID: PMC11785574 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Simbirtseva KY, O'Toole PW. Healthy and Unhealthy Aging and the Human Microbiome. Annu Rev Med 2025; 76:115-127. [PMID: 39531852 DOI: 10.1146/annurev-med-042423-042542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An altered gut microbiome is a feature of many multifactorial diseases, and microbiome effects on host metabolism, immune function, and possibly neurological function are implicated. Increased biological age is accompanied by a change in the gut microbiome. However, age-related health loss does not occur uniformly across all subjects but rather depends on differential loss of gut commensals and gain of pathobionts. In this article, we summarize the known and possible effects of the gut microbiome on the hallmarks of aging and describe the most plausible mechanisms. Understanding and targeting these factors could lead to prolonging health span by rationally maintaining the gut microbiome.
Collapse
Affiliation(s)
- Kseniya Y Simbirtseva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
5
|
Lee CZ, Worsley SF, Davies CS, Silan E, Burke T, Komdeur J, Hildebrand F, Dugdale HL, Richardson DS. Metagenomic analyses of gut microbiome composition and function with age in a wild bird; little change, except increased transposase gene abundance. ISME COMMUNICATIONS 2025; 5:ycaf008. [PMID: 39968350 PMCID: PMC11833318 DOI: 10.1093/ismeco/ycaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/20/2025]
Abstract
Studies on wild animals, mostly undertaken using 16S metabarcoding, have yielded ambiguous evidence regarding changes in the gut microbiome (GM) with age and senescence. Furthermore, variation in GM function has rarely been studied in such wild populations, despite GM metabolic characteristics potentially being associated with host senescent declines. Here, we used 7 years of repeated sampling of individuals and shotgun metagenomic sequencing to investigate taxonomic and functional changes in the GM of Seychelles warblers (Acrocephalus sechellensis) with age. Our results suggest that taxonomic GM species richness declines with age and in the terminal year, with this terminal decline occurring consistently across all ages. Taxonomic and functional GM composition also shifted with host age. However, the changes we identified occurred linearly with age (or even mainly during early years prior to the onset of senescence in this species) with little evidence of accelerated change in later life or during their terminal year. Therefore, the results suggest that changes in the GM with age are not linked to senescence. Interestingly, we found a significant increase in the abundance of a group of transposase genes with age, which may accumulate passively or due to increased transposition induced as a result of stressors that arise with age. These findings reveal taxonomic and functional GM changes with age, but not senescence, in a wild vertebrate and provide a blueprint for future wild functional GM studies linked to age and senescence.
Collapse
Affiliation(s)
- Chuen Zhang Lee
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR47TJ, United Kingdom
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR47TJ, United Kingdom
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR47TJ, United Kingdom
| | - Ece Silan
- Quadram Institute, Norwich Research Park, Norwich, Norfolk, NR47UQ, United Kingdom
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S102TN, United Kingdom
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9718 BG, Groningen, The Netherlands
| | - Falk Hildebrand
- Quadram Institute, Norwich Research Park, Norwich, Norfolk, NR47UQ, United Kingdom
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9718 BG, Groningen, The Netherlands
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR47TJ, United Kingdom
- Nature Seychelles, Roche Caiman, Mahé, 1310, Republic of Seychelles, Seychelles
| |
Collapse
|
6
|
Yoshida K, Kokubo E, Morita S, Sonoki H, Miyaji K. Combination of Inulin and Resistant Dextrin Has Superior Prebiotic Effects and Reduces Gas Production During In Vitro Fermentation of Fecal Samples from Older People. Nutrients 2024; 16:4262. [PMID: 39770884 PMCID: PMC11678394 DOI: 10.3390/nu16244262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Older people are more susceptible to deterioration of the gut microbiota. Prebiotics help improve the gut microbiota. Inulin, a major prebiotic, stimulates the growth of Bifidobacterium; however, it produces a large amount of gas, which leads to abdominal symptoms. METHODS In this study, in vitro fecal fermentation was performed using fecal samples from seven older people (mean subject age, 73.4 years; five men and two women) to examine whether combining inulin with another prebiotic material, resistant dextrin, could lead to decreased gas production and show prebiotic effects. RESULTS The Bifidobacterium counts and short-chain fatty acid production did not differ significantly between the inulin 0.5% group and the inulin 0.25% plus resistant dextrin 0.25% combination group. However, the inulin 0.25% plus resistant dextrin 0.25% combination group had lower gas production than the inulin 0.5% group (p < 0.10). Furthermore, compared with the inulin 0.5% group, the 0.25% combination group showed significantly greater gut microbiota diversity and tended toward a lower pH in the fermentation medium at the end of fermentation (p = 0.09). These effects are believed to be due to the combination of inulin, which is highly selective for Bifidobacterium and rapidly utilized by the gut microbiota, and resistant dextrin, which is slowly utilized by various bacterial genera. CONCLUSIONS These findings suggest that the inulin plus resistant dextrin combination has superior prebiotic effects in older people and causes less gas production than inulin alone.
Collapse
Affiliation(s)
- Kazuma Yoshida
- Health Care & Nutritional Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Kanagawa, Japan; (E.K.); (S.M.); (H.S.); (K.M.)
| | | | | | | | | |
Collapse
|
7
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
8
|
Mani AK, Parvathi VD, Ravindran S. The Anti-Elixir Triad: Non-Synced Circadian Rhythm, Gut Dysbiosis, and Telomeric Damage. Med Princ Pract 2024:1-14. [PMID: 39536739 DOI: 10.1159/000542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is an inevitable life process which is accelerated by lifestyle and environmental factors. It is an irreversible accretion of molecular and cellular damage associated with changes in the body composition and deterioration in physiological functions. Each cell (other than stem cells) reaches the limit of its ability to replicate, known as cellular or replicative senescence, and consequently, the organs lose their physiological functions, resulting in overall impairment. Other factors that promote aging include smoking, alcohol, UV rays, sleep habits, food, stress, sedentary lifestyle, and genetic abnormalities. These stress factors can alter our endogenous clock (the circadian rhythm) and the microbial commensals. As a result of the effect of these stressors, the microorganisms that generally support human physiological processes become baleful. The disturbance of natural physiology instigates many age-related pathologies, such as cardiovascular diseases, chronic obstructive pulmonary disorder, cerebrovascular diseases, opportunistic infections, high blood pressure, cancer, diabetes, kidney diseases, dementia, and Alzheimer's disease. The present review covers the three most essential processes of the circadian clock; the circadian gene mechanism and regulation, the mitotic clock (which plays a vital role in the telomere's attrition) and the gut microbiota and their metabolome that drive aging and lead to age-related pathologies. In conclusion, maintaining a synchronized circadian rhythm, a healthy gut microbiome, and telomere integrity is essential for mitigating the effects of aging and promoting longevity. The interplay among these factors underscores the importance of lifestyle choices in enhancing overall health and lifespan.
Collapse
Affiliation(s)
- Anup Kumar Mani
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumitha Ravindran
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
9
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Li S, Fan S, Ma Y, Xia C, Yan Q. Influence of gender, age, and body mass index on the gut microbiota of individuals from South China. Front Cell Infect Microbiol 2024; 14:1419884. [PMID: 39544283 PMCID: PMC11560914 DOI: 10.3389/fcimb.2024.1419884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Background The symbiotic gut microbiota is pivotal for human health, with its composition linked to various diseases and metabolic disorders. Despite its significance, there remains a gap in systematically evaluating how host phenotypes, such as gender, age, and body mass index (BMI), influence gut microbiota. Methodology/principal findings We conducted an analysis of the gut microbiota of 185 Chinese adults based on whole-metagenome shotgun sequencing of fecal samples. Our investigation focused on assessing the effects of gender, age, and BMI on gut microbiota across three levels: diversity, gene/phylogenetic composition, and functional composition. Our findings suggest that these phenotypes have a minor impact on shaping the gut microbiome compared to enterotypes, they do not correlate significantly within- or between-sample diversity. We identified a substantial number of phenotype-associated genes and metagenomic linkage groups (MLGs), indicating variations in gut microflora composition. Specifically, we observed a decline in beneficial Firmicutes microbes, such as Eubacterium, Roseburia, Faecalibacterium and Ruminococcus spp., in both older individuals and those with higher BMI, while potentially harmful microbes like Erysipelotrichaceae, Subdoligranulum and Streptococcus spp. increased with age. Additionally, Blautia and Dorea spp. were found to increase with BMI, aligning with prior research. Surprisingly, individuals who were older or overweight exhibited a lack of Bacteroidetes, a dominant phylum in the human gut microbiota that includes opportunistic pathogens, while certain species of the well-known probiotics Bifidobacterium were enriched in these groups, suggesting a complex interplay of these bacteria warranting further investigation. Regarding gender, several gender-associated MLGs from Bacteroides, Parabacteroides, Clostridium and Akkermansia were enriched in females. Functional analysis revealed a multitude of phenotype-associated KEGG orthologs (KOs). Conclusions/significance Our study underscores the influence of gender, age, and BMI on gut metagenomes, affecting both phylogenetic and functional composition. However, further investigation is needed to elucidate the precise roles of these bacteria, including both pathogens and probiotics.
Collapse
Affiliation(s)
- Shenghui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shao Fan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Gu X, Fan M, Zhou Y, Zhang Y, Wang L, Gao W, Li T, Wang H, Si N, Wei X, Bian B, Zhao H. Intestinal endogenous metabolites affect neuroinflammation in 5×FAD mice by mediating "gut-brain" axis and the intervention with Chinese Medicine. Alzheimers Res Ther 2024; 16:222. [PMID: 39396997 PMCID: PMC11472645 DOI: 10.1186/s13195-024-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Emerging evidence suggested the association between gut dysbiosis and Alzheimer's disease (AD) progression. However, it remained unclear how the gut microbiome and neuroinflammation in the brain mutually interact or how these interactions affect brain functioning and cognition. Here we hypothesized that "gut-brain" axis mediated by microbial derived metabolites was expected to novel breakthroughs in the fields of AD research and development. METHODS Multiple technologies, such as immunofluorescence, 16s rDNA sequencing, mass spectrometry-based metabolomics (LC-QQQ-MS and GC-MS), were used to reveal potential link between gut microbiota and the metabolism and cognition of the host. RESULTS Microbial depletion induced by the antibiotics mix (ABX) verified that "gut-brain" can transmit information bidirectionally. Short-chain fatty acid-producing (SCFAs-producing) bacteria and amino acid-producing bacteria fluctuated greatly in 5×FAD mice, especially the reduction sharply of the Bifidobacteriaceae and the increase of the Lachnospiraceae family. Concentrations of several Tryptophan-kynurenine intermediates, lactic acid, CD4+ cell, and CD8+ cells were higher in serum of 5×FAD mice, whilst TCA cycle intermediates and Th1/Th2 were lower. In addition, the levels of iso-butyric acid (IBA) in feces, serum, and brain of 5×FAD mice were increased compared with WT-M mice, especially in serum. And IBA in the brain was positively correlated with Aβ and proinflammatory factors. CONCLUSION Together, our finding highlighted that the alternation in gut microbiota affected the effective communication between the "gut-brain" axis in 5×FAD mice by regulating the immune system, carbohydrate, and energy metabolism.
Collapse
Affiliation(s)
- Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- The Neurology Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Miaoxuan Fan
- Beijing Drug Package Test Institute, Beijing, 100700, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linna Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Hu Y, Wang S, Wang R, Zhang Y, Yuan Q, Yuan C. Total saponins from Panax japonicus regulated the intestinal microbiota to alleviate lipid metabolism disorders in aging mice. Arch Gerontol Geriatr 2024; 125:105500. [PMID: 38851092 DOI: 10.1016/j.archger.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Total saponins from Panax japonicus (TSPJ) have many beneficial physiological activities, particularly in alleviating the damages of aging and abnormal lipid metabolism. This work used mice models to investigate if TSPJ reduced obesity and regulated metabolic functions via the intestinal microbiota, the disturbance of which has been shown to cause aging-related diseases. The results showed that TSPJ significantly reduced the weight and blood lipid level of aging mice. Further analyses showed that TSPJ significantly inhibited adipogenesis, changed the composition of the intestinal flora, and protected the integrity of the intestinal barrier. It was inferred from the accumulated experimental data that TSPJ helped to combat obesity in aging mice by regulating the intestinal microbiota and promoting microbial metabolism.
Collapse
Affiliation(s)
- Yaqi Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Shuwen Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Rui Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yifan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
13
|
Baidoo N, Sanger GJ. Age-related decline in goblet cell numbers and mucin content of the human colon: Implications for lower bowel functions in the elderly. Exp Mol Pathol 2024; 139:104923. [PMID: 39154390 DOI: 10.1016/j.yexmp.2024.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND & AIMS Older people experience a greater incidence of lower bowel disorders, including constipation. Causes can include factors associated with growing older, such as use of medications or disease, but compounded by degenerative changes within the bowel wall. It has been suggested that the latter is exacerbated by loss of an effective mucosal barrier to luminal contents. In human colon, little is known about the impact of ageing on key components of this barrier, namely the goblet cells and mucin content. METHODS Changes in the number of goblet cells and density of mucin content were investigated in macroscopically normal human ascending (AC; n = 13) and descending (DC; n = 14) colon from elderly (≥ 67 years) and younger adults (60 years and below). Samples were serially sectioned and stained for haematoxylin and eosin to assess tissue morphology, and alcian blue periodic acid Schiff (ABPAS) and MUC-2 antibody to identify goblet cells producing mucins. New procedures in visualization and identification of goblet cells and mucin contents were employed to ensure unbiased counting and densitometric analysis. RESULTS Compared with the younger adults, the numbers of goblet cells per crypt were significantly lower in the elderly AC (72 ± 1.2 vs 51 ± 0.5) and DC (75 ± 2.6 vs. 54 ± 1.9), although this reduction did not reach statistical significance when assessed per mucosal area (AC: P = 0.068; DC: P = 0.096). In both regions from the elderly, numerous empty vesicles (normally containing mucins) were observed, and some areas of epithelium were devoid of goblet cells. Thus, the density of mucin content per unit mucosal area were significantly reduced with age. CONCLUSIONS Ageing could result in a reduced number of goblet cells and development of degenerative changes in mucin production. Together, these have implications for the mucus barrier function in the colon of elderly individuals.
Collapse
Affiliation(s)
- Nicholas Baidoo
- University of Westminster, School of Life Sciences. New Cavendish Street, UK; Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Ravikrishnan A, Wijaya I, Png E, Chng KR, Ho EXP, Ng AHQ, Mohamed Naim AN, Gounot JS, Guan SP, Hanqing JL, Guan L, Li C, Koh JY, de Sessions PF, Koh WP, Feng L, Ng TP, Larbi A, Maier AB, Kennedy BK, Nagarajan N. Gut metagenomes of Asian octogenarians reveal metabolic potential expansion and distinct microbial species associated with aging phenotypes. Nat Commun 2024; 15:7751. [PMID: 39237540 PMCID: PMC11377447 DOI: 10.1038/s41467-024-52097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
While rapid demographic changes in Asia are driving the incidence of chronic aging-related diseases, the limited availability of high-quality in vivo data hampers our ability to understand complex multi-factorial contributions, including gut microbial, to healthy aging. Leveraging a well-phenotyped cohort of community-living octogenarians in Singapore, we used deep shotgun-metagenomic sequencing for high-resolution taxonomic and functional characterization of their gut microbiomes (n = 234). Joint species-level analysis with other Asian cohorts identified distinct age-associated shifts characterized by reduction in microbial richness, and specific Alistipes and Bacteroides species enrichment (e.g., Alistipes shahii and Bacteroides xylanisolvens). Functional analysis confirmed these changes correspond to metabolic potential expansion in aging towards alternate pathways synthesizing and utilizing amino-acid precursors, vis-à-vis dominant microbial guilds producing butyrate in gut from pyruvate (e.g., Faecalibacterium prausnitzii, Roseburia inulinivorans). Extending these observations to key clinical markers helped identify >10 robust microbial associations to inflammation, cardiometabolic and liver health, including potential probiotic species (e.g., Parabacteroides goldsteinii) and pathobionts (e.g., Klebsiella pneumoniae), highlighting the microbiome's role as biomarkers and potential targets for promoting healthy aging.
Collapse
Affiliation(s)
- Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Indrik Wijaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eileen Png
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Kern Rei Chng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eliza Xin Pei Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Amanda Hui Qi Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jean-Sebastien Gounot
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Shou Ping Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jasinda Lee Hanqing
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Lihuan Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Chenhao Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jia Yu Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Woon-Puay Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Brenner Centre for Molecular Medicine, Singapore, 117609, Republic of Singapore
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Tze Pin Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Anis Larbi
- Singapore Immunology Network (SigN), Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Andrea B Maier
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
15
|
Araújo JR, Marques C, Rodrigues C, Calhau C, Faria A. The metabolic and endocrine impact of diet-derived gut microbiota metabolites on ageing and longevity. Ageing Res Rev 2024; 100:102451. [PMID: 39127442 DOI: 10.1016/j.arr.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Gut dysbiosis has been recently recognized as a hallmark of ageing. At this stage of life, gut microbiota becomes depleted from bacteria involved in the production of short-chain fatty acids (SCFA), indole and its derivative indole-3-propionic acid (IPA), metabolites shown to improve host glycemic control as well as insulin sensitivity and secretion. Moreover, gut microbiota becomes enriched in pathobiont bacteria involved in the production of imidazole propionate, phenols and trimethylamine, metabolites that promote host insulin resistance and atherosclerosis. The magnitude of these changes is much more pronounced in unhealthy than in healthy ageing. On the other hand, a distinct gut microbiota signature is displayed during longevity, the most prominent being an enrichment in both SCFA and IPA bacterial producers. This short Review discusses, in an innovative and integrative way, cutting-edge research on the composition of gut microorganisms and profile of metabolites secreted by them, that are associated with a healthy and unhealthy ageing pattern and with longevity. A detailed description of the positive or detrimental metabolic effects, in the ageing host, of diet-derived gut microbial metabolites is provided. Finally, microbiota-targeted interventions that counteract gut dysbiosis associated with ageing, are briefly outlined.
Collapse
Affiliation(s)
- João R Araújo
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Cláudia Marques
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Catarina Rodrigues
- Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Conceição Calhau
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal; Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| | - Ana Faria
- Nutrition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal; Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal.
| |
Collapse
|
16
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
17
|
Li M, Xu X, Jia Y, Yuan Y, Na G, Zhu L, Xiao X, Zhang Y, Ye H. Transformation of mulberry polyphenols by Lactobacillus plantarum SC-5: Increasing phenolic acids and enhancement of anti-aging effect. Food Res Int 2024; 192:114778. [PMID: 39147466 DOI: 10.1016/j.foodres.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Fermentation can transform bioactive compounds in food and improve their biological activity. This study aims to explore the transformation of polyphenols in mulberry juice and the improvement of its anti-aging effect. The results demonstrated that Lactobacillus plantarum SC-5 transformed anthocyanin in mulberry juice into more phenolic acids, especially improved 2-hydroxy-3-(4-hydroxyphenyl) propanoic acid from 4.16 ± 0.06 to 10.07 ± 0.03. In the D-gal-induced mouse model, fermented mulberry juice significantly raised the abundance of Bifidobacteriaceae (303.7 %) and Lactobacillaceae (237.2 %) and Short-chain fatty acids (SCFAs) in intestine, further reducing the level of oxidative stress (12.3 %). Meanwhile, the expression of Sirtuin 1 (SIRT1) and Brain-derived neurotrophic factor (BDNF) increased, which protected the integrity of hippocampal tissue. Morris water maze results approved that fermented mulberry juice improved cognitive ability in aging mice (30.3 %). This study provides theoretical support for the view that fermentation is an effective means of developing functional foods.
Collapse
Affiliation(s)
- Mengyao Li
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiangxiu Xu
- Changchun City Market Supervision Comprehensive Administrative Law Enforcement Detachment, 1150a-1 Wanfu Road, Changchun 130062, China
| | - Yifan Jia
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guo Na
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Ling Zhu
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiaowei Xiao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yamin Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
18
|
Longtine AG, Greenberg NT, Gonzalez A, Lindquist A, VanDongen NS, Mahoney SA, Rahman G, Clayton ZS, Ziemba BP, Ludwig KR, Widlansky ME, Knight R, Seals DR, Brunt VE. Oral Supplementation with the Short-Chain Fatty Acid Acetate Ameliorates Age-Related Arterial Dysfunction in Mice. AGING BIOLOGY 2024; 2:20240033. [PMID: 39897133 PMCID: PMC11785404 DOI: 10.59368/agingbio.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Adverse changes in the gut microbiome with aging are an emerging mediator of arterial dysfunction, which contributes to cardiovascular disease (CVD) development. We investigated the therapeutic potential of enhancing the bioavailability of gut-derived short-chain fatty acids (SCFAs; produced from dietary fiber) for improving age-related arterial dysfunction. We performed gut microbial whole-genome sequencing in young (3 months) versus old (24 months) male C57BL/6N mice to explore changes in bacterial taxonomic abundance and functional pathways with aging and relations to arterial function. We then supplemented young and old mice with the SCFA acetate in drinking water versus controls and versus a high-fiber diet for 8-10 weeks to test the effects of these interventions on vascular function and explore potential mechanisms. Of the various differences in the gut microbiomes of old mice, lower SCFA-producing capacity (taxonomic abundance and functional pathways) stood out as a key feature related to worse arterial function after adjusting for age. Acetate supplementation and a high-fiber diet reversed ~30% of the age-related increase in aortic pulse wave velocity (stiffness) and fully restored carotid artery endothelium-dependent dilation (endothelial function) to young levels. Acetate and a high-fiber diet reduced age-related increases in systemic inflammation. We also found that improvements in endothelial function were likely mediated by suppressed early growth response-1 signaling using innovative siRNA-based knockdown in isolated arteries. There were no effects of the interventions in young mice. Acetate supplementation was comparably effective for ameliorating arterial dysfunction with aging as a high-fiber diet and thus shows promise for reducing CVD risk in older adults.
Collapse
Affiliation(s)
- Abigail G. Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nathan T. Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Alexandra Lindquist
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nicholas S. VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia A. Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gibraan Rahman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Katelyn R. Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael E. Widlansky
- Departments of Medicine and Pharmacology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, Department of Computer Science and Engineering, and Halıcıoğlu Data Science Institute, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
19
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
20
|
Baidoo N, Sanger GJ. The human colon: Evidence for degenerative changes during aging and the physiological consequences. Neurogastroenterol Motil 2024:e14848. [PMID: 38887160 DOI: 10.1111/nmo.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The incidence of constipation increases among the elderly (>65 years), while abdominal pain decreases. Causes include changes in lifestyle (e.g., diet and reduced exercise), disease and medications affecting gastrointestinal functions. Degenerative changes may also occur within the colo-rectum. However, most evidence is from rodents, animals with relatively high rates of metabolism and accelerated aging, with considerable variation in time course. In humans, cellular and non-cellular changes in the aging intestine are poorly investigated. PURPOSE To examine all available studies which reported the effects of aging on cellular and tissue functions of human isolated colon, noting the region studied, sex and age of tissue donors and study size. The focus on human colon reflects the ability to access full-thickness tissue over a wide age range, compared with other gastrointestinal regions. Details are important because of natural human variability. We found age-related changes within the muscle, in the enteric and nociceptor innervation, and in the submucosa. Some involve all regions of colon, but the ascending colon appears more vulnerable. Changes can be cell- and sublayer-dependent. Mechanisms are unclear but may include development of "senescent-like" and associated inflammaging, perhaps associated with increased mucosal permeability to harmful luminal contents. In summary, reduced nociceptor innervation can explain diminished abdominal pain among the elderly. Degenerative changes within the colon wall may have little impact on symptoms and colonic functions, because of high "functional reserve," but are likely to facilitate the development of constipation during age-related challenges (e.g., lifestyle, disease, and medications), now operating against a reduced functional reserve.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life Sciences, University of Westminster, London, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth J Sanger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
21
|
Chandel N, Maile A, Shrivastava S, Verma AK, Thakur V. Establishment and perturbation of human gut microbiome: common trends and variations between Indian and global populations. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e8. [PMID: 39776539 PMCID: PMC11704572 DOI: 10.1017/gmb.2024.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025]
Abstract
Human gut microbial species are crucial for dietary metabolism and biosynthesis of micronutrients. Digested products are utilised by the host as well as several gut bacterial species. These species are influenced by various factors such as diet, age, geographical location, and ethnicity. India is home to the largest human population in the world. It is spread across diverse ecological and geographical locations. With variable dietary habits and lifestyles, Indians have unique gut microbial composition. This review captures contrasting and common trends of gut bacterial community establishment in infants (born through different modes of delivery), and how that bacterial community manifests itself along infancy, through old age between Indian and global populations. Because dysbiosis of the gut community structure is associated with various diseases, this review also highlights the common and unique bacterial species associated with various communicable as well as noncommunicable diseases such as diarrhoea, amoebiasis, malnutrition, type 2 diabetes, obesity, colorectal cancer, inflammatory bowel disease, and gut inflammation and damage to the brain in the global and Indian population.
Collapse
Affiliation(s)
- Nisha Chandel
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| | - Anwesh Maile
- DBT-Centre for Microbial Informatics, University of Hyderabad, Hyderabad, India
| | - Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Anil Kumar Verma
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
22
|
Boyajian JL, Islam P, Abosalha A, Schaly S, Thareja R, Kassab A, Arora K, Santos M, Shum-Tim C, Prakash S. Probiotics, prebiotics, synbiotics and other microbiome-based innovative therapeutics to mitigate obesity and enhance longevity via the gut-brain axis. MICROBIOME RESEARCH REPORTS 2024; 3:29. [PMID: 39421246 PMCID: PMC11480732 DOI: 10.20517/mrr.2024.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024]
Abstract
The global prevalence of obesity currently exceeds 1 billion people and is accompanied by an increase in the aging population. Obesity and aging share many hallmarks and are leading risk factors for cardiometabolic disease and premature death. Current anti-obesity and pro-longevity pharmacotherapies are limited by side effects, warranting the development of novel therapies. The gut microbiota plays a major role in human health and disease, with a dysbiotic composition evident in obese and aged individuals. The bidirectional communication system between the gut and the central nervous system, known as the gut-brain axis, may link obesity to unhealthy aging. Modulating the gut with microbiome-targeted therapies, such as biotics, is a novel strategy to treat and/or manage obesity and promote longevity. Biotics represent material derived from living or once-living organisms, many of which have therapeutic effects. Pre-, pro-, syn- and post-biotics may beneficially modulate gut microbial composition and function to improve obesity and the aging process. However, the investigation of biotics as next-generation therapeutics has only just begun. Further research is needed to identify therapeutic biotics and understand their mechanisms of action. Investigating the function of the gut-brain axis in obesity and aging may lead to novel therapeutic strategies for obese, aged and comorbid (e.g., sarcopenic obese) patient populations. This review discusses the interrelationship between obesity and aging, with a particular emphasis on the gut microbiome, and presents biotics as novel therapeutic agents for obesity, aging and related disease states.
Collapse
Affiliation(s)
- Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
23
|
Wang Z, Han S, Xiao Y, Zhang Y, Ge Y, Liu X, Gao J. Genetically supported causality between gut microbiota and frailty: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1324209. [PMID: 38741737 PMCID: PMC11089315 DOI: 10.3389/fmicb.2024.1324209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Background A mounting body of evidence suggests a strong connection between gut microbiota and the risk of frailty. However, the question of causality remains unanswered. In this study, we employed a Mendelian randomization (MR) approach to assess potential causal relationships between gut microbiota and the risk of frailty. Materials and methods Summary statistics for the gut microbiome were obtained from a genome wide association study (GWAS) meta-analysis of the MiBioGen consortium (N = 18,340). Summary statistics for frailty were obtained from a GWAS meta-analysis, including the UK Biobank and TwinGene (N = 175,226). Our primary analysis utilized the inverse variance weighted (IVW) method. To enhance the robustness of our results, we also applied weighted median methods, MR Egger regression, and MR pleiotropy residual sum and outlier test. Finally, we conducted reverse MR analysis to investigate the potential for reverse causality. Results IVW method identified 7 bacterial taxa nominally associated with the risk of FI. Class Bacteroidia (p = 0.033) and genus Eubacterium ruminantium group (p = 0.028) were protective against FI. In addition, class Betaproteobacteria (p = 0.042), genus Allisonella (p = 0.012), genus Bifidobacterium (p = 0.013), genus Clostridium innocuum group (p = 0.036) and genus Eubacterium coprostanoligenes group (p = 0.003) were associated with a higher risk of FI. No pleiotropy or heterogeneity were found. Conclusion The MR analysis indicates a causal relationship between specific gut microbiota and FI, offering new insights into the mechanisms underlying FI mediated by gut microbiota.
Collapse
Affiliation(s)
- Zi Wang
- Yangzhou University Medical College, Yangzhou, China
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Shuai Han
- Yangzhou University Medical College, Yangzhou, China
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yinggang Xiao
- Yangzhou University Medical College, Yangzhou, China
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yali Ge
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Xin Liu
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
24
|
Barker-Tejeda TC, Zubeldia-Varela E, Macías-Camero A, Alonso L, Martín-Antoniano IA, Rey-Stolle MF, Mera-Berriatua L, Bazire R, Cabrera-Freitag P, Shanmuganathan M, Britz-McKibbin P, Ubeda C, Francino MP, Barber D, Ibáñez-Sandín MD, Barbas C, Pérez-Gordo M, Villaseñor A. Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach. Nat Commun 2024; 15:3004. [PMID: 38589361 PMCID: PMC11001937 DOI: 10.1038/s41467-024-47182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Elisa Zubeldia-Varela
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Andrea Macías-Camero
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Adoración Martín-Antoniano
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Estudios de las Adicciones IEA-CEU, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Leticia Mera-Berriatua
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Raphaëlle Bazire
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Paula Cabrera-Freitag
- Pedriatic Allergy Unit, Allergy Service, Hospital General Universitario Gregorio Marañón, and Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Carles Ubeda
- Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - M Pilar Francino
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
- Joint Research Unit in Genomics and Health, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO) and Institut de Biologia Integrativa de Sistemes (Universitat de València / Consejo Superior de Investigaciones Científicas), València, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| |
Collapse
|
25
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
26
|
Aronica TS, Carella M, Balistreri CR. Different Levels of Therapeutic Strategies to Recover the Microbiome to Prevent/Delay Acute Lymphoblastic Leukemia (ALL) or Arrest Its Progression in Children. Int J Mol Sci 2024; 25:3928. [PMID: 38612738 PMCID: PMC11012256 DOI: 10.3390/ijms25073928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Changes in the components, variety, metabolism, and products of microbiomes, particularly of the gut microbiome (GM), have been revealed to be closely associated with the onset and progression of numerous human illnesses, including hematological neoplasms. Among the latter pathologies, there is acute lymphoblastic leukemia (ALL), the most widespread malignant neoplasm in pediatric subjects. Accordingly, ALL cases present a typical dysfunctional GM during all its clinical stages and resulting inflammation, which contributes to its progression, altered response to therapy, and possible relapses. Children with ALL have GM with characteristic variations in composition, variety, and functions, and such alterations may influence and predict the complications and prognosis of ALL after chemotherapy treatment or stem cell hematopoietic transplants. In addition, growing evidence also reports the ability of GM to influence the formation, growth, and roles of the newborn's hematopoietic system through the process of developmental programming during fetal life as well as its susceptibility to the onset of onco-hematological pathologies, namely ALL. Here, we suggest some therapeutic strategies that can be applied at two levels of intervention to recover the microbiome and consequently prevent/delay ALL or arrest its progression.
Collapse
Affiliation(s)
- Tommaso Silvano Aronica
- Complex Operative Unit of Clinical Pathology, ARNAS Civico Di Cristina e Benfratelli Hospitals, 90127 Palermo, Italy; (T.S.A.); (M.C.)
| | - Miriam Carella
- Complex Operative Unit of Clinical Pathology, ARNAS Civico Di Cristina e Benfratelli Hospitals, 90127 Palermo, Italy; (T.S.A.); (M.C.)
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
27
|
Wang Y, Qu Z, Chu J, Han S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis 2024; 16:980-1002. [PMID: 38607737 PMCID: PMC11964416 DOI: 10.14336/ad.2024.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The characteristics of human aging manifest in tissue and organ function decline, heightening susceptibility to age-related ailments, thereby presenting novel challenges to fostering and sustaining healthy longevity. In recent years, an abundance of research on human aging has surfaced. Intriguingly, evidence suggests a pervasive correlation among gut microbiota, bodily functions, and chronic diseases. From infancy to later stages of adulthood, healthy individuals witness dynamic shifts in gut microbiota composition. This microbial community is associated with tissue and organ function deterioration (e.g., brain, bones, muscles, immune system, vascular system) and heightened risk of age-related diseases. Thus, we present a narrative review of the aging gut microbiome in both healthy and unhealthy aging contexts. Additionally, we explore the potential for adjustments to physical health based on gut microbiome analysis and how targeting the gut microbiome can potentially slow down the aging process.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| |
Collapse
|
28
|
Le Cosquer G, Vergnolle N, Motta JP. Gut microb-aging and its relevance to frailty aging. Microbes Infect 2024; 26:105309. [PMID: 38316374 DOI: 10.1016/j.micinf.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
This review explores 'microb-aging' in the gut and its potential link to frailty aging. We explore this connection through alterations in microbiota's taxonomy and metabolism, as well as with concepts of ecological resilience, pathobionts emergence, and biogeography. We examine microb-aging in interconnected body organs, emphasizing the bidirectional relationship with 'inflammaging'. Finally, we discuss how targeting microb-aging could improve screening, diagnostic, and therapeutic approaches in geriatrics.
Collapse
Affiliation(s)
- Guillaume Le Cosquer
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Gastroenterology and Pancreatology, Toulouse University Hospital, Toulouse Paul Sabatier University, 31059 Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France.
| |
Collapse
|
29
|
Chulenbayeva L, Ganzhula Y, Kozhakhmetov S, Jarmukhanov Z, Nurgaziyev M, Nurgozhina A, Muhanbetzhanov N, Sergazy S, Zhetkenev S, Borykbay Z, Tkachev V, Urazova S, Vinogradova E, Kushugulova A. The Trajectory of Successful Aging: Insights from Metagenome and Cytokine Profiling. Gerontology 2024; 70:390-407. [PMID: 38246133 PMCID: PMC11008724 DOI: 10.1159/000536082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION The longevity is influenced by genetic, environmental, and lifestyle factors. The specific changes that occur in the gut microbiome during the aging process, and their relationship to longevity and immune function, have not yet been fully understood. The ongoing research of other microbiome based on longevity cohort in Kazakhstan provides preliminary information on longevity-related aging, where cytokine expression is associated with specific microbial communities and microbial functions. METHODS Metagenomic shotgun sequencing study of 40 long-lived individuals aged 90 years and over was carried out, who were conditionally healthy and active, able to serve themselves, without a history of serious infection and cancer, who had not taken any antimicrobials, including probiotics. Blood serum was analyzed for clinical and laboratory characteristics. The cytokine and chemokine profile in serum and stool samples was assessed using multiplex analysis. RESULTS We found a significant increase in the expression of pro-inflammatory cytokines IL-1a, IL-6, 12p70, IP-10, IFNα2, IL-15, TNFa, as well as chemokines MIP-1a/CCL3 and MIP-1b/CCL4, chemokine motif ligands MCP-3/CCL7 and MDC/CCL22(1c). Nonagenerians and centenarians demonstrated a greater diversity of core microbiota genera and showed an elevated prevalence of the genera Bacteroides, Clostridium, Escherichia, and Alistipes. Conversely, there was a decrease in the abundance of the genera Ruminococcus, Fusicatenibacter, Dorea, as well as the species Fusicatenibacter saccharivorans. Furthermore, functional analysis revealed that the microbiome in long-lived group has a high capacity for lipid metabolism, amino acid degradation, and potential signs of chronic inflammatory status. CONCLUSION Long-lived individuals exhibit an immune system imbalance and observed changes in the composition of the gut microbiota at the genus level between to the two age-groups. Age-related changes in the gut microbiome, metabolic functions of the microbial community, and chronic inflammation all contribute to immunosenescence. In turn, the inflammatory state and microbial composition of the gut is related to nutritional status.
Collapse
Affiliation(s)
- Laura Chulenbayeva
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Yuliya Ganzhula
- Faculty of Medicine, Astana Medical University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Zharkyn Jarmukhanov
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Madiyar Nurgaziyev
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Ayaulym Nurgozhina
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Nurislam Muhanbetzhanov
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Shynggys Sergazy
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Sanzhar Zhetkenev
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| | - Zhanar Borykbay
- Faculty of Medicine, Astana Medical University, Astana, Kazakhstan
| | - Viktor Tkachev
- Faculty of Medicine, Astana Medical University, Astana, Kazakhstan
| | - Saltanat Urazova
- Faculty of Medicine, Astana Medical University, Astana, Kazakhstan
| | - Elizaveta Vinogradova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Almagul Kushugulova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Kazakhstan Society of Human Microbiome Researchers, Astana, Kazakhstan
| |
Collapse
|
30
|
Bradley E, Haran J. The human gut microbiome and aging. Gut Microbes 2024; 16:2359677. [PMID: 38831607 PMCID: PMC11152108 DOI: 10.1080/19490976.2024.2359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.
Collapse
Affiliation(s)
- Evan Bradley
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| | - John Haran
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| |
Collapse
|
31
|
Kim N. Colorectal Diseases and Gut Microbiome. SEX/GENDER-SPECIFIC MEDICINE IN CLINICAL AREAS 2024:137-208. [DOI: 10.1007/978-981-97-0130-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Roberts JL, Chiedo B, Drissi H. Systemic inflammatory and gut microbiota responses to fracture in young and middle-aged mice. GeroScience 2023; 45:3115-3129. [PMID: 37821753 PMCID: PMC10643610 DOI: 10.1007/s11357-023-00963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Age is a patient-specific factor that can significantly delay fracture healing and exacerbate systemic sequelae during convalescence. The basis for this difference in healing rates is not well-understood, but heightened inflammation has been suggested to be a significant contributor. In this study, we investigated the systemic cytokine and intestinal microbiome response to closed femur fracture in 3-month-old (young adult) and 15-month-old (middle-aged) female wild-type mice. Middle-aged mice had a serum cytokine profile that was distinct from young mice at days 10, 14, and 18 post-fracture. This was characterized by increased concentrations of IL-17a, IL-10, IL-6, MCP-1, EPO, and TNFα. We also observed changes in the community structure of the gut microbiota in both young and middle-aged mice that was evident as early as day 3 post-fracture. This included an Enterobacteriaceae bloom at day 3 post-fracture in middle-aged mice and an increase in the relative abundance of the Muribaculum genus. Moreover, we observed an increase in the relative abundance of the health-promoting Bifidobacterium genus in young mice after fracture that did not occur in middle-aged mice. There were significant correlations between serum cytokines and specific genera, including a negative correlation between Bifidobacterium and the highly induced cytokine IL-17a. Our study demonstrates that aging exacerbates the inflammatory response to fracture leading to high levels of pro-inflammatory cytokines and disruption of the intestinal microbiota.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
- College of Health Solutions, Arizona State University, 850 N 5th St, Office 360J, Phoenix, AZ, 85004, USA.
| | - Brandon Chiedo
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA, 30329, USA.
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
33
|
Liu S, He Y, Zhang Y, Zhang Z, Huang K, Deng L, Liao B, Zhong Y, Feng J. Targeting gut microbiota in aging-related cardiovascular dysfunction: focus on the mechanisms. Gut Microbes 2023; 15:2290331. [PMID: 38073096 PMCID: PMC10730151 DOI: 10.1080/19490976.2023.2290331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The global population is aging and age-related cardiovascular disease is increasing. Even after controlling for cardiovascular risk factors, readmission and mortality rates remain high. In recent years, more and more in-depth studies have found that the composition of the gut microbiota and its metabolites, such as trimethylamine N-oxide (TMAO), bile acids (BAs), and short-chain fatty acids (SCFAs), affect the occurrence and development of age-related cardiovascular diseases through a variety of molecular pathways, providing a new target for therapy. In this review, we discuss the relationship between the gut microbiota and age-related cardiovascular diseases, and propose that the gut microbiota could be a new therapeutic target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhaolun Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
34
|
Lee SY, Kim JH, Lee DY, Hur SJ. Characterization of gut microbiota in mouse models of aging and sarcopenia. Microbiol Res 2023; 275:127462. [PMID: 37473669 DOI: 10.1016/j.micres.2023.127462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Gut microbiota play vital roles in the maintenance of human health and in various diseases. We aimed to investigate the association of gut microbiota with aging and sarcopenia. This study contained two experimental designs using the ICR mouse model for 1) determining the association between aging and gut microbiota (by analyzing murine fecal samples) and 2) determining the association between sarcopenia and gut microbiota in mice treated with microorganisms or dexamethasone. The composition of the gut microbiota was determined by next-generation sequencing. Marginally significant differences were observed in taxon composition of the gut microbiota depending on age; particularly, the abundance of the genusAlistipes increased with increasing age. In addition, the abundance of the class Bacteroidia decreased with increasing age, whereas that of the genus Oscillibacter increased. The microbiome composition differed between young mice and aging mice with sarcopenia. Moreover, the gut microbiota in aging and sarcopenia showed altered abundances of Alistipes, Lachnospiraceae, and Bacteroides. Although the sample size was small, these results point to similarities in the gut microbiota between aging and sarcopenia and to differences between young and old individuals. The results on gut microbiota obtained in this study form a basis for studying the development of sarcopenia in geriatric animal models in the future.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
35
|
Bapteste E, Huneman P, Keller L, Teulière J, Lopez P, Teeling EC, Lindner AB, Baudisch A, Ludington WB, Franceschi C. Expanding evolutionary theories of ageing to better account for symbioses and interactions throughout the Web of Life. Ageing Res Rev 2023; 89:101982. [PMID: 37321383 PMCID: PMC10771319 DOI: 10.1016/j.arr.2023.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
How, when, and why organisms age are fascinating issues that can only be fully addressed by adopting an evolutionary perspective. Consistently, the main evolutionary theories of ageing, namely the Mutation Accumulation theory, the Antagonistic Pleiotropy theory, and the Disposable Soma theory, have formulated stimulating hypotheses that structure current debates on both the proximal and ultimate causes of organismal ageing. However, all these theories leave a common area of biology relatively under-explored. The Mutation Accumulation theory and the Antagonistic Pleiotropy theory were developed under the traditional framework of population genetics, and therefore are logically centred on the ageing of individuals within a population. The Disposable Soma theory, based on principles of optimising physiology, mainly explains ageing within a species. Consequently, current leading evolutionary theories of ageing do not explicitly model the countless interspecific and ecological interactions, such as symbioses and host-microbiomes associations, increasingly recognized to shape organismal evolution across the Web of Life. Moreover, the development of network modelling supporting a deeper understanding on the molecular interactions associated with ageing within and between organisms is also bringing forward new questions regarding how and why molecular pathways associated with ageing evolved. Here, we take an evolutionary perspective to examine the effects of organismal interactions on ageing across different levels of biological organisation, and consider the impact of surrounding and nested systems on organismal ageing. We also apply this perspective to suggest open issues with potential to expand the standard evolutionary theories of ageing.
Collapse
Affiliation(s)
- Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France.
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/ Université Paris I Sorbonne), Paris, France
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), Paris, France
| | - Annette Baudisch
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Medicine of Aging, Lobachevsky University, Nizhny Novgorod 603950, Russia
| |
Collapse
|
36
|
Gu F, Larsen N, Pascale N, Petersen SA, Khakimov B, Respondek F, Jespersen L. Age-related effects on the modulation of gut microbiota by pectins and their derivatives: an in vitro study. Front Microbiol 2023; 14:1207837. [PMID: 37476669 PMCID: PMC10354267 DOI: 10.3389/fmicb.2023.1207837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction The present study investigates whether supplementation with pectin-type polysaccharides has potential to improve aging-associated dysbiosis of the gut microbiota. The influence of different types of pectins on the gut microbiota composition and short-chain fatty acids (SCFAs) profiles of elderly was compared to younger adults. Methods Pectins studied included a pectin polysaccharide (PEC), a partially hydrolyzed pectin (PPH), and a pectin oligosaccharide (POS). Additionally, inulin was used as a reference prebiotic substrate. Individual fecal samples were collected from healthy elderly volunteers (70-75 years) and younger adults (30-35 years). In vitro fermentations were performed using the CoMiniGut model with controlled temperature and pH. Samples were withdrawn at baseline and after 24 h fermentation for measurement of SCFAs production and microbiota composition by 16S rRNA gene sequencing. Results and Discussion The results showed that fermentations with PEC and PPH resulted in a specific stimulation of Faecalibacterium prausnitzii regardless of the age groups. Collinsella aerofaciens became a dominating species in the young adult group with fermentations of all three pectins, which was not observed in the elderly group. No significant differences in SCFAs production were found among the pectins, indicating a high level of functional redundancy. Pectins boosted various bacterial groups differently from the reference prebiotic substrate (inulin). We also found inulin had reduced butyrogenic and bifidogenic effects in the elderly group compared to the younger adult group. In conclusion, the in vitro modulating effects of pectins on elderly gut microbiota showed potential of using pectins to improve age-related dysbiosis.
Collapse
Affiliation(s)
- Fangjie Gu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- CP Kelco ApS, Lille Skensved, Denmark
| | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Bekzod Khakimov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
37
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
38
|
Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023; 164:1069-1085. [PMID: 36841488 PMCID: PMC10205675 DOI: 10.1053/j.gastro.2023.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The human gut microbiome has been linked to numerous digestive disorders, but its metabolic products have been much less well characterized, in part due to the expense of untargeted metabolomics and lack of ability to process the data. In this review, we focused on the rapidly expanding information about the bile acid repertoire produced by the gut microbiome, including the impacts of bile acids on a wide range of host physiological processes and diseases, and discussed the role of short-chain fatty acids and other important gut microbiome-derived metabolites. Of particular note is the action of gut microbiome-derived metabolites throughout the body, which impact processes ranging from obesity to aging to disorders traditionally thought of as diseases of the nervous system, but that are now recognized as being strongly influenced by the gut microbiome and the metabolites it produces. We also highlighted the emerging role for modifying the gut microbiome to improve health or to treat disease, including the "engineered native bacteria'' approach that takes bacterial strains from a patient, modifies them to alter metabolism, and reintroduces them. Taken together, study of the metabolites derived from the gut microbiome provided insights into a wide range of physiological and pathophysiological processes, and has substantial potential for new approaches to diagnostics and therapeutics of disease of, or involving, the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Fogelson
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California.
| | - Amir Zarrinpar
- Center for Microbiome Innovation, University of California San Diego, San Diego, California; Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California San Diego, San Diego, California; Institute of Diabetes and Metabolic Health, University of California San Diego, San Diego, California.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Department of Bioengineering, University of California San Diego, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California.
| |
Collapse
|
39
|
Li RD, Zheng WX, Zhang QR, Song Y, Liao YT, Shi FC, Wei XH, Zhou F, Zheng XH, Tan KY, Li QY. Longevity-Associated Core Gut Microbiota Mining and Effect of Mediated Probiotic Combinations on Aging Mice: Case Study of a Long-Lived Population in Guangxi, China. Nutrients 2023; 15:1609. [PMID: 37049450 PMCID: PMC10097023 DOI: 10.3390/nu15071609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
With an ageing population, healthy longevity is becoming an important scientific concern. The longevity phenomenon is closely related to the intestinal microflora and is highly complicated; it is challenging to identify and define the core gut microbiota associated with longevity. Therefore, in this study, 16S rRNA sequencing data were obtained from a total of 135 faecal samples collected as part of the latest sampling and pre-collection initiative in the Guangxi longevity area, and weighted gene co-expression network analysis (WGCNA) was used to find a mediumpurple3 network module significantly associated with the Guangxi longevity phenomenon. Five core genera, namely, Alistipes, Bacteroides, Blautia, Lachnospiraceae NK4A136 group, and Lactobacillus, were identified via network analysis and random forest (RF) in this module. Two potential probiotic strains, Lactobacillus fermentum and Bacteroides fragilis, were further isolated and screened from the above five core genera, and then combined and used as an intervention in naturally ageing mice. The results show a change in the key longevity gut microbiota in mice toward a healthy longevity state after the intervention. In addition, the results show that the probiotic combination effectively ameliorated anxiety and necrosis of hippocampal neuronal cells in senescent mice, improving their antioxidant capacity and reducing their inflammation levels. In conclusion, this longer-term study provides a new approach to the search for longevity hub microbiota. These results may also provide an important theoretical reference for the healthification of the intestinal microflora in the general population, and even the remodelling of the structure of the longevity-state intestinal microflora.
Collapse
Affiliation(s)
- Rui-Ding Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wen-Xuan Zheng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qin-Ren Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yao Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yan-Ting Liao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Feng-Cui Shi
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao-Hui Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao-Hua Zheng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai-Yan Tan
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection, Nanning 530200, China
| | - Quan-Yang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
40
|
Raue KD, David BT, Fessler RG. Spinal Cord-Gut-Immune Axis and its Implications Regarding Therapeutic Development for Spinal Cord Injury. J Neurotrauma 2023; 40:793-806. [PMID: 36509451 DOI: 10.1089/neu.2022.0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) affects ∼1,300,000 people living in the United States. Most research efforts have been focused on reversing paralysis, as this is arguably the most defining feature of SCI. The damage caused by SCI, however, extends past paralysis and includes other debilitating outcomes including immune dysfunction and gut dysbiosis. Recent efforts are now investigating the pathophysiology of and developing therapies for these more distal manifestations of SCI. One exciting avenue is the spinal cord-gut-immune axis, which proposes that gut dysbiosis amplifies lesion inflammation and impairs SCI recovery. This review will highlight the most recent findings regarding gut and immune dysfunction following SCI, and discuss how the central nervous system (CNS), gut, and immune system all coalesce to form a bidirectional axis that can impact SCI recovery. Finally, important considerations regarding how the spinal cord-gut-immune axis fits within the larger framework of therapeutic development (i.e., probiotics, fecal transplants, dietary modifications) will be discussed, emphasizing the lack of interdepartmental investigation and the missed opportunity to maximize therapeutic benefit in SCI.
Collapse
Affiliation(s)
- Kristen D Raue
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
41
|
Wan Y, Wang S, Niu Y, Duo B, Liu Y, Lu Z, Zhu R. Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis. Front Cell Infect Microbiol 2023; 13:1139436. [PMID: 36968119 PMCID: PMC10034768 DOI: 10.3389/fcimb.2023.1139436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundRecent studies reported the association between the changes in gut microbiota and sepsis, but there is unclear for the gut microbes on aged sepsis is associated acute lung injury (SALI), and metformin treatment for the change in gut microbiota. This study aimed to investigate the effect of metformin on gut microbiota and SALI in aged rats with sepsis. It also explored the therapeutic mechanism and the effect of metformin on aged rats with SALI.MethodsAged 20-21 months SD rats were categorized into three groups: sham-operated rats (AgS group), rats with cecal ligation and puncture (CLP)-induced sepsis (AgCLP group), and rats treated with metformin (100 mg/kg) orally 1 h after CLP treatment (AgMET group). We collected feces from rats and analyzed them by 16S rRNA sequencing. Further, the lung samples were collected for histological analysis and quantitative real-time PCR (qPCR) assay and so on.ResultsThis study showed that some pathological changes occurring in the lungs of aged rats, such as hemorrhage, edema, and inflammation, improved after metformin treatment; the number of hepatocyte death increased in the AgCLP group, and decreased in the AgMET group. Moreover, metformin relieved SALI inflammation and damage. Importantly, the gut microbiota composition among the three groups in aged SALI rats was different. In particular, the proportion of E. coli and K. pneumoniae was higher in AgCLP group rats than AgS group rats and AgMET group rats; while metformin could increase the proportion of Firmicutes, Lactobacillus, Ruminococcus_1 and Lactobacillus_johnsonii in aged SALI rats. Moreover, Prevotella_9, Klebsiella and Escherichia_Shigella were correlated positively with the inflammatory factor IL-1 in the lung tissues; Firmicutes was correlated negatively with the inflammatory factor IL-1 and IL-6 in the lung tissues.ConclusionsOur findings suggested that metformin could improve SALI and gut microbiota in aged rats, which could provide a potential therapeutic treatment for SALI in aged sepsis.
Collapse
Affiliation(s)
- Youdong Wan
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuya Wang
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yifan Niu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Boyang Duo
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yinshuang Liu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Lu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhu
- Department of Health Management, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Ruixue Zhu,
| |
Collapse
|
42
|
D'Amico F, Barone M, Brigidi P, Turroni S. Gut microbiota in relation to frailty and clinical outcomes. Curr Opin Clin Nutr Metab Care 2023; 26:219-225. [PMID: 36942920 DOI: 10.1097/mco.0000000000000926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW The gut microbiota is involved in several aspects of host health and disease, but its role is far from fully understood. This review aims to unveil the role of our microbial community in relation to frailty and clinical outcomes. RECENT FINDINGS Ageing, that is the continuous process of physiological changes that begin in early adulthood, is mainly driven by interactions between biotic and environmental factors, also involving the gut microbiota. Indeed, our gut microbial counterpart undergoes considerable compositional and functional changes across the lifespan, and ageing-related processes may be responsible for - and due to - its alterations during elderhood. In particular, a dysbiotic gut microbiota in the elderly population has been associated with the development and progression of several age-related disorders. SUMMARY Here, we first provide an overview of the lifespan trajectory of the gut microbiota in both health and disease. Then, we specifically focus on the relationship between gut microbiota and frailty syndrome, that is one of the major age-related burdens. Finally, examples of microbiome-based precision interventions, mainly dietary, prebiotic and probiotic ones, are discussed as tools to ameliorate the symptoms of frailty and its overlapping conditions (e.g. sarcopenia), with the ultimate goal of actually contributing to healthy ageing and hopefully promoting longevity.
Collapse
Affiliation(s)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences
| | | | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
43
|
Gut Enterobacteriaceae and uraemic toxins - Perpetrators for ageing. Exp Gerontol 2023; 173:112088. [PMID: 36646294 DOI: 10.1016/j.exger.2023.112088] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Ageing is a complex process that is associated with changes in the composition and functions of gut microbiota. Reduction of gut commensals is the hallmarks of ageing, which favours the expansion of pathogens even in healthy centenarians. Interestingly, gut Enterobacteriaceae have been found to be increased with age and also consistently observed in the patients with metabolic diseases. Thus, they are associated with all-cause mortality, regardless of genetic origin, lifestyle, and fatality rate. Moreover, Enterobacteriaceae are also implicated in accelerating the ageing process through telomere attrition, cellular senescence, inflammasome activation and impairing the functions of mitochondria. However, acceleration of ageing is likely to be determined by intrinsic interactions between Enterobacteriaceae and other associated gut bacteria. Several studies suggested that Enterobacteriaceae possess genes for the synthesis of uraemic toxins. In addition to intestine, Enterobacteriaceae and their toxic metabolites have also been found in other organs, such as adipose tissue and liver and that are implicated in multiorgan dysfunction and age-related diseases. Therefore, targeting Enterobacteriaceae is a nuance approach for reducing inflammaging and enhancing the longevity of older people. This review is intended to highlight the current knowledge of Enterobacteriaceae-mediated acceleration of ageing process.
Collapse
|
44
|
Brunker LB, Boncyk CS, Rengel KF, Hughes CG. Elderly Patients and Management in Intensive Care Units (ICU): Clinical Challenges. Clin Interv Aging 2023; 18:93-112. [PMID: 36714685 PMCID: PMC9879046 DOI: 10.2147/cia.s365968] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/23/2023] Open
Abstract
There is a growing population of older adults requiring admission to the intensive care unit (ICU). This population outpaces the ability of clinicians with geriatric training to assist in their management. Specific training and education for intensivists in the care of older patients is valuable to help understand and inform clinical care, as physiologic changes of aging affect each organ system. This review highlights some of these aging processes and discusses clinical implications in the vulnerable older population. Other considerations when caring for these older patients in the ICU include functional outcomes and morbidity, as opposed to merely a focus on mortality. An overall holistic approach incorporating physiology of aging, applying current evidence, and including the patient and their family in care should be used when caring for older adults in the ICU.
Collapse
Affiliation(s)
- Lucille B Brunker
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina S Boncyk
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly F Rengel
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher G Hughes
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Chaudhary P, Kathuria D, Suri S, Bahndral A, Kanthi Naveen A. Probiotics- its functions and influence on the ageing process: A comprehensive review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Wu L, Xie X, Li Y, Liang T, Zhong H, Yang L, Xi Y, Zhang J, Ding Y, Wu Q. Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident Lactobacillus. NPJ Biofilms Microbiomes 2022; 8:102. [PMID: 36564415 PMCID: PMC9789086 DOI: 10.1038/s41522-022-00366-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota plays an important role in human health and longevity, and the gut microbiota of centenarians shows unique characteristics. Nowadays, most microbial research on longevity is usually limited to the bioinformatics level, lacking validating information on culturing functional microorganisms. Here, we combined metagenomic sequencing and large-scale in vitro culture to reveal the unique gut microbial structure of the world's longevity town-Jiaoling, China, centenarians and people of different ages. Functional strains were isolated and screened in vitro, and the possible relationship between gut microbes and longevity was explored and validated in vivo. 247 healthy Cantonese natives of different ages participated in the study, including 18 centenarians. Compared with young adults, the gut microbiota of centenarians exhibits higher microbial diversity, xenobiotics biodegradation and metabolism, oxidoreductases, and multiple species (the potential probiotics Lactobacillus, Akkermansia, the methanogenic Methanobrevibacter, gut butyrate-producing members Roseburia, and SCFA-producing species uncl Clostridiales, uncl Ruminococcaceae) known to be beneficial to host metabolism. These species are constantly changing with age. We also isolated 2055 strains from these samples by large-scale in vitro culture, most of which were detected by metagenomics, with clear complementarity between the two approaches. We also screened an age-related gut-resident Lactobacillus with independent intellectual property rights, and its metabolite (L-ascorbic acid) and itself have good antioxidant effects. Our findings underscore the existence of age-related trajectories in the human gut microbiota, and that distinct gut microbiota and gut-resident as antioxidant systems may contribute to health and longevity.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Haojie Zhong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, Guangdong, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
47
|
Abstract
Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to 'rejuvenate' physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build 'ageing clocks' with demonstrated capacity to identify new biomarkers of biological ageing.
Collapse
Affiliation(s)
- Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
48
|
Almeida HM, Sardeli AV, Conway J, Duggal NA, Cavaglieri CR. Comparison between frail and non-frail older adults' gut microbiota: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101773. [PMID: 36349647 DOI: 10.1016/j.arr.2022.101773] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests that the intestinal microbiota (IM) undergoes remodelling as we age, and this impacts the ageing trajectory and mortality in older adults. The aim was to investigate IM diversity differences between frail and non-frail older adults by meta-analysing previous studies. METHODS The protocol of this systematic review with meta-analysis was registered on PROSPERO (CRD42021276733). We searched for studies comparing IM diversity of frail and non-frail older adults indexed on PubMed, Embase, Cochrane, and Web of Science in November 2021. RESULTS We included 11 studies with 1239 participants, of which 340 were meta-analysed. Frailty was defined by a variety of criteria (i.e. Fried Scale, European Consensus on Sarcopenia). There were no differences in the meta-analyses between the frail and non-frail groups for species richness index (SMD = -0.147; 95% CI = -0.394, 0.100; p = 0.243) and species diversity index (SMD = -0.033; 95% CI = -0.315, 0.250; p = 0.820). However, we identified almost 50 differences between frail and non-frail within the relative abundance of bacteria phyla, families, genera, and species in the primary studies. CONCLUSIONS The evidence to prove that there are differences between frail and non-frail IM diversity by meta-analysis is still lacking. The present results suggest that further investigation into the role of specific bacteria, their function, and their influence on the physiopathology of frailty is needed.
Collapse
Affiliation(s)
- Helena Maia Almeida
- Gerontology Program - Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil; Laboratory of Exercise Physiology (FISEX), University of Campinas, Campinas, Brazil
| | - Amanda V Sardeli
- Gerontology Program - Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil; Laboratory of Exercise Physiology (FISEX), University of Campinas, Campinas, Brazil; Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Cláudia Regina Cavaglieri
- Gerontology Program - Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil; Laboratory of Exercise Physiology (FISEX), University of Campinas, Campinas, Brazil
| |
Collapse
|
49
|
Liang H, Song H, Zhang X, Song G, Wang Y, Ding X, Duan X, Li L, Sun T, Kan Q. Metformin attenuated sepsis-related liver injury by modulating gut microbiota. Emerg Microbes Infect 2022; 11:815-828. [PMID: 35191819 PMCID: PMC8928825 DOI: 10.1080/22221751.2022.2045876] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Increased evidence shows that gut microbiota acts as the primary regulator of the liver; however, its role in sepsis-related liver injury (SLI) in the elderly is unclear. This study assessed whether metformin could attenuate SLI by modulating gut microbiota in septic-aged rats. Cecal ligation and puncture (CLP) was used to induce SLI in aged rats. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota in these pathologies. The composition of gut microbiota was analysed by 16S rRNA sequencing. Moreover, the liver and colon tissues were analysed by histopathology, immunofluorescence, immunohistochemistry, and reverse transcription polymerase chain reaction (RT-PCR). Metformin improved liver damage, colon barrier dysfunction in aged SLI rats. Moreover, metformin improved sepsis-induced liver inflammation and damage under gut microbiota. Importantly, FMT assay showed that rats gavaged with faeces from metformin-treated SLI rats displayed less severe liver damage and colon barrier dysfunctions than those gavaged with faeces from SLI rats. The gut microbiota composition among the sham-operated, CLP-operated and metformin-treated SLI rats was different. In particular, the proportion of Klebsiella and Escherichia_Shigella was higher in SLI rats than sham-operated and metformin-treated SLI rats; while metformin could increase the proportion of Bifidobacterium, Muribaculaceae, Parabacteroides_distasonis and Alloprevitella in aged SLI rats. Additionally, Klebsiella and Escherichia_Shigella correlated positively with the inflammatory factors in the liver. Our findings suggest that metformin may improve liver injury by regulating the gut microbiota and alleviating colon barrier dysfunction in septic-aged rats, which may be an effective therapy for SLI.
Collapse
Affiliation(s)
- Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Heng Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
| | - Gaofei Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yuze Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
| | - Xiaoguang Duan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
| | - Lifeng Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, People’s Republic of China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, People’s Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
50
|
The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochim Biophys Acta Rev Cancer 2022; 1877:188826. [DOI: 10.1016/j.bbcan.2022.188826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|