1
|
Liu X, Feng J, Guo M, Chen C, Zhao T, Sun X, Zhang Y. Resetting the aging clock through epigenetic reprogramming: Insights from natural products. Pharmacol Ther 2025; 270:108850. [PMID: 40221101 DOI: 10.1016/j.pharmthera.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Madi Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
2
|
Zhou J, Han Y, Ji F, Zhang R, Liang Y, Zhao X, Hou R. Unveiling the potential impact of RNA m5C methyltransferases NSUN2 and NSUN6 on cellular aging. Front Genet 2025; 16:1477542. [PMID: 40309035 PMCID: PMC12040966 DOI: 10.3389/fgene.2025.1477542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/19/2025] [Indexed: 05/02/2025] Open
Abstract
NSUN2 and NSUN6, two family members of NOL1/NSUN protein, are mainly responsible for catalyzing the formation of 5-methylcytosine (m5C) in RNA and highly involved in the physiological and pathological processes of many diseases. To investigate the biological functions of NSUN2 and NSUN6, NSUN2-/- and NSUN6-/- HEK293T cell lines were separately constructed by CRISPR/Cas9. We found no significant interaction between the protein expression of NSUN2 and NSUN6. Notably, the ablation of NSUN2 or NSUN6 reduced cell proliferation and increased expression of the senescence-associated marker P27, whereas more β-galactosidase-positive cells were observed in response to H2O2-induced oxidative stress. Moreover, the expression of NSUN2 and NSUN6 was significantly reduced in the HGPS premature aging cell lines by the LMNAG609G mutation. Taken together, we demonstrated that NSUN2 and NSUN6 may be inextricably linked to cellular aging and thus provide potential novel strategies for the clinical therapeutics of aging and age-associated disease in the future.
Collapse
Affiliation(s)
- Jiale Zhou
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Han
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Fuxi Ji
- Department of Critical Care, The Second Hospital of Jilin University, Changchun, China
| | - Renquan Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yuru Liang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xudong Zhao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ruizhe Hou
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Lubaba F, George M, Ahmed M, John L, Goplakrishnan AP, Shivamurthy PB, Varghese S, Pahal P, Nisar M, Ramesh P, Madar IH, Raju R. Theranostic Target NSUN2, a C(5)-Methyltransferase, Phospho-Regulatory Network Uncovered with Systematic Assembly of 805 Datasets. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:164-177. [PMID: 40126188 DOI: 10.1089/omi.2025.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The RNA cytosine C(5)-methyltransferase NSUN2 is involved in RNA modification and regulates gene expression and genomic stability. Beyond multiple sequence/copy number variations, NSUN2 displays altered phosphoprotein expression in various cancers and developmental disorders, thereby making it a prime molecular target of relevance to both therapeutics and diagnostics, that is, theranostics. Despite its key role in kinase-regulated pathways and broader biological processes, the phospho-regulatory network of NSUN2 remains largely unexplored. We report here a systematic assembly of 805 phosphoproteomics datasets from the literature, among which 239 datasets showed differential regulation of NSUN2 phosphopeptides and 40 ensembled phosphosites in NSUN2. Significantly, the phosphorylation sites Ser456, Ser743, and Ser751 represented NSUN2 in ∼50% of these datasets. This is notable given that the functional roles of these phosphosites have been previously underappreciated and underrepresented in the scientific literature. Therefore, we implemented a codetection/coregulation approach based on the phosphosites in other proteins that are codifferentially regulated with phosphopeptides of NSUN2. This approach led to our identification of 55 interactors, 4 potential kinases, and 7 other methylases whose phosphopeptides were codifferentially regulated with NSUN2 phosphopeptides. To the best of our knowledge, this study provides the first phosphosite-centric regulatory network model of NSUN2 to employ theranostic strategies for targeting NSUN2 in cancers and other disorders.
Collapse
Affiliation(s)
- Fathimathul Lubaba
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Mejo George
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Susmi Varghese
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Priyanka Pahal
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Poornima Ramesh
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Inamul Hasan Madar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
4
|
Betlej G, Bator E, Koziorowska A, Koziorowski M, Rzeszutek I. The In Vitro Enhancement of Retinal Cell Viability via m 6A and m 5C RNA Methylation-Mediated Changes in the Levels of Heme Oxygenase (HO-1) and DNA Damage Repair Molecules Using a 50 Hz Sinusoidal Electromagnetic Field (EMF). Int J Mol Sci 2024; 25:13606. [PMID: 39769368 PMCID: PMC11677922 DOI: 10.3390/ijms252413606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed. The present study aimed to assess the effect of sinusoidal electromagnetic field (EMF) (50 Hz, 1.3 mT) treatment for 15 and 30 min on spontaneously arising retinal pigment epithelial cells (ARPE-19) and retinal ganglion cells (RGC-5) and its short-term post-treatment significance. Our study indicated the beneficial impact of EMF treatment on the proliferative and migratory capacity of the tested cells. ARPE-19 and RGC-5 cells exposed to an EMF exhibited elevated levels of HO-1, increased N6-methyladenosine (m6A) and N5-methylcytosine (m5C) status mediated by METTL3 and NSUN2, respectively, and changes in levels of DNA damage repair factors, which may contribute to the regenerative properties of ARPE-19 and RGC-5 cells. Overall, this analysis showed that EMF (sinusoidal, 50 Hz, 1.3 mT) treatment may serve as a potential therapeutic strategy for retinal diseases.
Collapse
Affiliation(s)
- Gabriela Betlej
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| | - Ewelina Bator
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| | - Anna Koziorowska
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
- Institute of Material Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Marek Koziorowski
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Iwona Rzeszutek
- Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland
| |
Collapse
|
5
|
Zhang X, Zhang Y, Li R, Li Y, Wang Q, Wang Y, Chen X, Wang W, Pang E, Li Y, Wang J, Zheng J, Zhang J. STUB1-mediated ubiquitination and degradation of NSUN2 promotes hepatocyte ferroptosis by decreasing m 5C methylation of Gpx4 mRNA. Cell Rep 2024; 43:114885. [PMID: 39453812 DOI: 10.1016/j.celrep.2024.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 10/27/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death that occurs due to the peroxidation of phospholipids in the cell membrane. In this study, we find that the protein level of NSUN2 is significantly decreased in hepatocyte ferroptosis. This is attributed to STUB1-mediated ubiquitination of NSUN2 at lysines 457 and 654, promoting NSUN2 degradation in ferroptosis. Selenoprotein glutathione peroxidase 4 (GPX4) is a prominent suppressor of ferroptosis. We find that downregulation of NSUN2 diminishes m5C methylation of Gpx4 mRNA 3' UTR. The reduction of NSUN2-mediated Gpx4 mRNA m5C methylation abrogates the interaction between SBP2 and the selenocysteine insertion sequence (SECIS) and leads to inhibition of GPX4 protein expression. Lower GPX4 expression promotes hepatocyte ferroptosis in vivo and in vitro, which is reversed by restoration of NSUN2. These findings shed light on the mechanism of NSUN2 degradation and also indicate that the STUB1-NSUN2-GPX4 axis plays a regulatory role in hepatocyte ferroptosis.
Collapse
Affiliation(s)
- Xiaotian Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yihua Zhang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Rongrong Li
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yibo Li
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Qi Wang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinying Chen
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Weihua Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanyan Li
- Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi 046000, China
| | - Jinping Zheng
- Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China
| | - Junjie Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Wang R, Ding L, Lin Y, Luo W, Xu Z, Li W, Lu Y, Zhu Z, Lu Z, Li F, Mao X, Xia L, Li G. The Quiet Giant: Identification, Effectors, Molecular Mechanism, Physiological and Pathological Function in mRNA 5-methylcytosine Modification. Int J Biol Sci 2024; 20:6241-6254. [PMID: 39664561 PMCID: PMC11628344 DOI: 10.7150/ijbs.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024] Open
Abstract
5-Methylcytosine (m5C) is a prevalent nucleotide alteration observed in transfer RNA (tRNA) and ribosomal RNA (rRNA), and it is also widely distributed in the transcriptome, serving as one of the internal modifications of messenger RNA (mRNA) in higher eukaryotes. Increasing evidence has substantiated the presence of m5C in mRNA. As research on m5C progresses, there is an initial comprehension of its molecular mechanisms and biological significance in mRNA. This work aims to provide a comprehensive summary of the most recent advancements in the identification and screening, distribution, molecular functions, and biological effects of m5C in mRNA. We outline the current status of research and provide prospects for potential future applications.
Collapse
Affiliation(s)
- Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weilin Li
- Department of Urology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziwei Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Fan Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xudong Mao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
7
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. LINC00618 facilitates growth and metastasis of hepatocellular carcinoma via elevating cholesterol synthesis by promoting NSUN2-mediated SREBP2 m5C modification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117064. [PMID: 39299205 DOI: 10.1016/j.ecoenv.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Dysregulation of cholesterol metabolism is an important feature of cancer development. There are limited reports on the involvement of lncRNAs in hepatocellular carcinoma (HCC) progression via the cholesterol metabolism pathway. The present study explored the effect of LINC00618 on HCC growth and metastasis, and elucidated the underlying mechanisms involved in cholesterol metabolism. Here, we found that LINC00618 expression was upregulated in cancerous tissues from 30 patients with HCC compared to that in adjacent normal tissues. High expression of LINC00618 was detected in metastatic HCC tissues. LINC00618 is predominantly localized in the nucleus and overexpression of LINC00618 facilitated HCC cell proliferation, migration and EMT progression by promoting cholesterol biosynthesis. Mechanistically, the 1-101nt region of LINC00618 bound to NSUN2. LINC00618 inhibited ubiquitin-proteasome pathway-induced NSUN2 degradation. NSUN2 stabilized by LINC00618 increased m5C modification of SREBP2 and promoted SREBP2 mRNA stability in a YBX1-dependent manner, thereby promoting cholesterol biosynthesis in HCC cells. Moreover, mouse HCC xenograft and lung metastasis models were established by subcutaneous and tail vein injections of MHCC97 cells transfected with or without sh-LINC00618. Silencing LINC00618 impeded HCC growth and metastasis. In conclusion, LINC00618 promoted HCC growth and metastasis by elevating cholesterol synthesis by stabilizing NSUN2 to enhance SREBP2 mRNA stability in an m5C-dependent manner.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| |
Collapse
|
8
|
Zhang RK, Li Y, Sun FL, Zhou ZH, Xie YX, Liu WJ, Wang W, Qiu JG, Jiang BH, Wang L. RNA methyltransferase NSUN2-mediated m5C methylation promotes Cr(VI)-induced malignant transformation and lung cancer by accelerating metabolism reprogramming. ENVIRONMENT INTERNATIONAL 2024; 192:109055. [PMID: 39395236 DOI: 10.1016/j.envint.2024.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with lung cancer, but roles and mechanisms of Cr(VI)-induced epigenetic dysregulations in carcinogenesis remain to be investigated. In this study, we identified that RNA m5C methyltransferase NSUN2 was significantly upregulated in Cr(VI)-transformed cells and lung tissues of Cr(VI)-exposed mice. Inhibition of NSUN2 reduced cell proliferation, migration, colony formation and tube formation abilities. We found NSUN2-mediated m5C modification induced metabolic reprogramming and cell cycle by promoting the mRNA stabilities of ME1, GLUT3 and CDK2. In addition, knockdown of NSUN2 attenuated tumorigenesis and angiogenesis in vivo. RNA m5C reader ALYREF was identified to be involved in NSUN2-mediated m5C modification in Cr (VI)-induced carcinogenesis. Further study showed that EP300 induced NSUN2 upregulation through transcriptional activation by inducing histone modification at H3K27ac site for regulating Cr(VI) carcinogenesis. Our findings demonstrated novel role and mechanism of NSUN2 and epigenetic changes by increasing the RNA m5C modification that are important for Cr (VI)-induced carcinogenesis through NSUN2/ALYREF pathway. NSUN2, ALYREF, ME1, GLUT3 or/and CDK2 may be used as potential new biomarkers or/and therapeutic target(s) in the future.
Collapse
Affiliation(s)
- Rui-Ke Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yan Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Fan-Li Sun
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Zhi-Hao Zhou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yun-Xia Xie
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wei Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jian-Ge Qiu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Bing-Hua Jiang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China.
| | - Lin Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
9
|
Yang W, Zhao Y, Yang Y. Dynamic RNA methylation modifications and their regulatory role in mammalian development and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2084-2104. [PMID: 38833084 DOI: 10.1007/s11427-023-2526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 06/06/2024]
Abstract
Among over 170 different types of chemical modifications on RNA nucleobases identified so far, RNA methylation is the major type of epitranscriptomic modifications existing on almost all types of RNAs, and has been demonstrated to participate in the entire process of RNA metabolism, including transcription, pre-mRNA alternative splicing and maturation, mRNA nucleus export, mRNA degradation and stabilization, mRNA translation. Attributing to the development of high-throughput detection technologies and the identification of both dynamic regulators and recognition proteins, mechanisms of RNA methylation modification in regulating the normal development of the organism as well as various disease occurrence and developmental abnormalities upon RNA methylation dysregulation have become increasingly clear. Here, we particularly focus on three types of RNA methylations: N6-methylcytosine (m6A), 5-methylcytosine (m5C), and N7-methyladenosine (m7G). We summarize the elements related to their dynamic installment and removal, specific binding proteins, and the development of high-throughput detection technologies. Then, for a comprehensive understanding of their biological significance, we also overview the latest knowledge on the underlying mechanisms and key roles of these three mRNA methylation modifications in gametogenesis, embryonic development, immune system development, as well as disease and tumor progression.
Collapse
Affiliation(s)
- Wenlan Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yungui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
10
|
Wang L, Zhang Q, Wang J, Lu H, Zeng W, Zhang T. Vitamin D3 regulates NSUN2 expression and inhibits melanoma cell proliferation and migration. Mol Divers 2024; 28:2863-2874. [PMID: 37688740 DOI: 10.1007/s11030-023-10720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
The activated form of vitamin D3 [1,25-dihydroxyvitamin D3; 1,25(OH)2D3] is important for various physiological processes, such as bone mineralization and calcium metabolism, and plays an anticancer role in numerous cancers as well. Its role in melanoma cells has yet to be proven. NOP2/Sun RNA methyltransferase 2 (NSUN2) is a typical RNA methyltransferase and is highly expressed in a variety of cancer cells. However, the molecular mechanisms underlying the role of 1,25(OH)2D3 and NSUN2 in melanoma cells remain largely unknown. The current study showed that 1,25(OH)2D3 could significantly and specifically inhibit the proliferation and migration of melanoma B16 cells. 1,25(OH)2D3 enhances vitamin D receptor expression while simultaneously reducing NSUN2 expression in melanoma cells. Subsequently, knockdown of NSUN2 suppressed B16 cell proliferation and migration. RNA-Seq results illuminated that DNA replication, cell proliferation and cell cycle pathways were enriched, and genes promoting these pathways were reduced after knocking down Nsun2. Dual-luciferase reporter assays showed that 1,25(OH)2D3 downregulated reporter gene expression was controlled by the Nsun2 promoter. The results suggest that 1,25(OH)2D3 binds to the vitamin D response element located upstream of the Nsun2 promoter to downregulate Nsun2 transcription activity and then affects the gene expression pattern related to cell proliferation and the cell cycle, thereby restraining B16 cell proliferation and migration.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
| | - Qiang Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinping Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Dongguan Street South Campus, Hanzhong, 723001, Shaanxi Province, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, Hanzhong, 723001, China.
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|
11
|
Xiong J, Dong L, Lv Q, Yin Y, Zhao J, Ke Y, Wang S, Zhang W, Wu M. Targeting senescence-associated secretory phenotypes to remodel the tumour microenvironment and modulate tumour outcomes. Clin Transl Med 2024; 14:e1772. [PMID: 39270064 PMCID: PMC11398298 DOI: 10.1002/ctm2.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 09/15/2024] Open
Abstract
Tumour cell senescence can be induced by various factors, including DNA damage, inflammatory signals, genetic toxins, ionising radiation and nutrient metabolism. The senescence-associated secretory phenotype (SASP), secreted by senescent tumour cells, possesses the capacity to modulate various immune cells, including macrophages, T cells, natural killer cells and myeloid-derived suppressor cells, as well as vascular endothelial cells and fibroblasts within the tumour microenvironment (TME), and this modulation can result in either the promotion or suppression of tumorigenesis and progression. Exploring the impact of SASP on the TME could identify potential therapeutic targets, yet limited studies have dissected its functions. In this review, we delve into the causes and mechanisms of tumour cell senescence. We then concentrate on the influence of SASP on the tumour immune microenvironment, angiogenesis, extracellular matrix and the reprogramming of cancer stem cells, along with their associated tumour outcomes. Last, we present a comprehensive overview of the diverse array of senotherapeutics, highlighting their prospective advantages and challenge for the treatment of cancer patients. KEY POINTS: Senescence-associated secretory phenotype (SASP) secretion from senescent tumour cells significantly impacts cancer progression and biology. SASP is involved in regulating the remodelling of the tumour microenvironment, including immune microenvironment, vascular, extracellular matrix and cancer stem cells. Senotherapeutics, such as senolytic, senomorphic, nanotherapy and senolytic vaccines, hold promise for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Dong
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Qiongying Lv
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yutong Yin
- The First Clinical College of Wuhan University, Wuhan, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youning Ke
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Guarnacci M, Preiss T. The je ne sais quoi of 5-methylcytosine in messenger RNA. RNA (NEW YORK, N.Y.) 2024; 30:560-569. [PMID: 38531644 PMCID: PMC11019750 DOI: 10.1261/rna.079982.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
The potential presence of 5-methylcytosine as a sparse internal modification of mRNA was first raised in 1975, and a first map of the modification was also part of the epitranscriptomics "big bang" in 2012. Since then, the evidence for its presence in mRNA has firmed up, and initial insights have been gained into the molecular function and broader biological relevance of 5-methylcytosine when present in mRNA. Here, we summarize the status quo of the field, outline some of its current challenges, and suggest how to address them in future work.
Collapse
Affiliation(s)
- Marco Guarnacci
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| |
Collapse
|
13
|
Chen Y, Jiang Z, Zhang C, Zhang L, Chen H, Xiao N, Bai L, Liu H, Wan J. 5-Methylcytosine transferase NSUN2 drives NRF2-mediated ferroptosis resistance in non-small cell lung cancer. J Biol Chem 2024; 300:106793. [PMID: 38403250 PMCID: PMC11065752 DOI: 10.1016/j.jbc.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
RNA 5-methylcytosine (m5C) is an abundant chemical modification in mammalian RNAs and plays crucial roles in regulating vital physiological and pathological processes, especially in cancer. However, the dysregulation of m5C and its underlying mechanisms in non-small cell lung cancer (NSCLC) remain unclear. Here we identified that NSUN2, a key RNA m5C methyltransferase, is highly expressed in NSCLC tumor tissue. We found elevated NSUN2 expression levels strongly correlate with tumor grade and size, predicting poor outcomes for NSCLC patients. Furthermore, RNA-seq and subsequent confirmation studies revealed the antioxidant-promoting transcription factor NRF2 is a target of NSUN2, and depleting NSUN2 decreases the expression of NRF2 and increases the sensitivity of NSCLC cells to ferroptosis activators both in vitro and in vivo. Intriguingly, the methylated-RIP-qPCR assay results indicated that NRF2 mRNA has a higher m5C level when NSUN2 is overexpressed in NSCLC cells but shows no significant changes in the NSUN2 methyltransferase-deficient group. Mechanistically, we confirmed that NSUN2 upregulates the expression of NRF2 by enhancing the stability of NRF2 mRNA through the m5C modification within its 5'UTR region recognized by the specific m5C reader protein YBX1, rather than influencing its translation. In subsequent rescue experiments, we show knocking down NRF2 diminished the proliferation, migration, and ferroptosis tolerance mediated by NSUN2 overexpression. In conclusion, our study unveils a novel regulatory mechanism in which NSUN2 sustains NRF2 expression through an m5C-YBX1-axis, suggesting that targeting NSUN2 and its regulated ferroptosis pathway might offer promising therapeutic strategies for NSCLC patients.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lindong Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanxiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Bai
- Department of General Surgery, Zhecheng People's Hospital, Shangqiu, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Lin S, Kuang M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol 2024; 21:267-281. [PMID: 38243019 DOI: 10.1038/s41575-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Malignant liver cancer is characterized by rapid tumour progression and a high mortality rate, whereas the molecular mechanisms underlying liver cancer initiation and progression are still poorly understood. The dynamic and reversible RNA modifications have crucial functions in gene expression regulation by modulating RNA processing and mRNA translation. Emerging evidence has revealed that alterations in RNA modifications facilitate the selective translation of oncogenic transcripts and promote the diverse tumorigenic processes of liver cancer. In this Review, we first highlight the current progress on the functions and mechanisms underlying RNA modifications in the regulation of mRNA translation and then summarize the exciting discoveries on aberrant RNA modification-mediated mRNA translation in the regulation of tumour initiation, metastasis, metabolism, tumour microenvironment, and drug and radiotherapy resistance in liver cancer. Finally, we discuss the diagnostic and therapeutic potentials of targeting RNA modifications and mRNA translation for the clinical management of liver cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
15
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
16
|
Shen X, Sun H, Shu S, Tang W, Yuan Y, Su H, Li Y, Fan H. Suppression of NSUN2 enhances the sensitivity to chemosensitivity and inhibits proliferation by mediating cell apoptosis in gastric cancer. Pathol Res Pract 2024; 253:154986. [PMID: 38039743 DOI: 10.1016/j.prp.2023.154986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
NSUN2 is a critical methyltransferase for adding m5C to RNA. Its upregulation promotes the growth and metastasis of several tumors including gastric cancer (GC). However, it is unclear if NSUN2 can improve the chemosensitivity of GC to treatment with therapeutic agents such as cisplatin (CDDP) and 5-fluorouracil (5-FU). Flow cytometry was used to measure the effects of knocked-down NSUN2 expression on GC cell apoptosis and cell cycle progression. Western blot analysis examined specific signaling pathways through which NSUN2 mediates control of responses underlying the GC tumorous phenotype. NSUN2 expression was upregulated in GC tissues and its levels of rises were related to the extent of lymph node metastasis and increases in Ki67 proliferative marker expression. NSUN2 shRNA transfection suppressed rises in ERK1/2 phosphorylation status and downregulated anti-apoptosis protein Bcl-2 and upregulated pro-apoptosis protein Bax. Overall, the results reveal that NSUN2 downregulation promotes the GC chemosensitivity to inverse modulation by chemotherapeutic agents of Bcl-2 and Bax expression levels and declines in ERK1/2-induced proliferation. Our results indicate that inhibition of NSUN2 activation may be an effective procedure to enhance the efficacy of chemotherapeutic agents used to clinically treat GC.
Collapse
Affiliation(s)
- Xiaohui Shen
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Hui Sun
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Shihui Shu
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Wenqing Tang
- School of Life Science, Southeast University, Nanjing 210018, China
| | - Yujie Yuan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Hongmeng Su
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Yiping Li
- Department of Pathophysiology, Medical School of Southeast University, Nanjing 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China.
| |
Collapse
|
17
|
Tao Y, Felber JG, Zou Z, Njomen E, Remsberg J, Ogasawara D, Ye C, Melillo B, Schreiber SL, He C, Remillard D, Cravatt BF. Chemical Proteomic Discovery of Isotype-Selective Covalent Inhibitors of the RNA Methyltransferase NSUN2. Angew Chem Int Ed Engl 2023; 62:e202311924. [PMID: 37909922 PMCID: PMC10999112 DOI: 10.1002/anie.202311924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.
Collapse
Affiliation(s)
- Yongfeng Tao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| | - Jan G. Felber
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- LMU Munich, Department of Pharmacy, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
| | - Evert Njomen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| | - Jarrett Remsberg
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- Current address: Belharra Therapeutics, 3985 Sorrento Valley Blvd suite c, San Diego, CA 92121, USA
| | - Daisuke Ogasawara
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
| | - Bruno Melillo
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, 02142, Massachusetts, USA
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, 02142, Massachusetts, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
| | - David Remillard
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- Current address: Novartis, 10675 John Jay Hopkins Dr, San Diego, CA 92121, USA
| | - Benjamin F. Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| |
Collapse
|
18
|
Shao D, Liu C, Wang Y, Lin J, Cheng X, Han P, Li Z, Jian D, Nie J, Jiang M, Wei Y, Xing J, Guo Z, Wang W, Yi X, Tang H. DNMT1 determines osteosarcoma cell resistance to apoptosis by associatively modulating DNA and mRNA cytosine-5 methylation. FASEB J 2023; 37:e23284. [PMID: 37905981 DOI: 10.1096/fj.202301306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Cellular apoptosis is a central mechanism leveraged by chemotherapy to treat human cancers. 5-Methylcytosine (m5C) modifications installed on both DNA and mRNA are documented to regulate apoptosis independently. However, the interplay or crosstalk between them in cellular apoptosis has not yet been explored. Here, we reported that promoter methylation by DNMT1 coordinated with mRNA methylation by NSun2 to regulate osteosarcoma cell apoptosis. DNMT1 was induced during osteosarcoma cell apoptosis triggered by chemotherapeutic drugs, whereas NSun2 expression was suppressed. DNMT1 was found to repress NSun2 expression by methylating the NSun2 promoter. Moreover, DNMT1 and NSun2 regulate the anti-apoptotic genes AXL, NOTCH2, and YAP1 through DNA and mRNA methylation, respectively. Upon exposure to cisplatin or doxorubicin, DNMT1 elevation drastically reduced the expression of these anti-apoptotic genes via enhanced promoter methylation coupled with NSun2 ablation-mediated attenuation of mRNA methylation, thus rendering osteosarcoma cells to apoptosis. Collectively, our findings establish crosstalk of importance between DNA and RNA cytosine methylations in determining osteosarcoma resistance to apoptosis during chemotherapy, shedding new light on future treatment of osteosarcoma, and adding additional layers to the control of gene expression at different epigenetic levels.
Collapse
Affiliation(s)
- Dongxing Shao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Cihang Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jing Lin
- Department of Laboratory Medicine, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Pei Han
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Dongdong Jian
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junwei Nie
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | | | - Yuanzhi Wei
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiping Guo
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Wang H, Feng J, Zeng C, Liu J, Fu Z, Wang D, Wang Y, Zhang L, Li J, Jiang A, He M, Cao Y, Yan K, Tang H, Guo D, Xu K, Zhou X, Zhou L, Lan K, Zhou Y, Chen Y. NSUN2-mediated M 5c methylation of IRF3 mRNA negatively regulates type I interferon responses during various viral infections. Emerg Microbes Infect 2023; 12:2178238. [PMID: 36748584 PMCID: PMC9946332 DOI: 10.1080/22221751.2023.2178238] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, negatively regulates type I interferon responses during various viral infections, including SARS-CoV-2. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-β production. Knockout or knockdown of NSUN2 enhanced type I interferon and downstream ISGs during various viral infection in vitro. And in vivo, the antiviral innate response is more dramatically enhanced in Nsun2+/- mice than in Nsun2+/+ mice. The highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation enhanced cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), or Zika virus (ZIKV) resulted in a reduction of endogenous NSUN2 levels. Especially, SARS-CoV-2 infection (WT strain and BA.1 omicron variant) also decreased endogenous levels of NSUN2 in COVID-19 patients and K18-hACE2 KI mice, further increasing type I interferon and downstream ISGs. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease during SARS-CoV-2 and various viral infections to boost antiviral responses for effective elimination of viruses.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Cong Zeng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Zhiying Fu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Dehe Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Lu Zhang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jiali Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Ao Jiang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Miao He
- School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuanyuan Cao
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Kun Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hao Tang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Deyin Guo
- School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan, People’s Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yu Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
20
|
Feng J, Xu T, He M, Li J, Yao P, Ma C, Yang S, Xu Z, Yan K, Chen X, Wang H, Liu J, Zeng C, Xia Y, Yan H, Zhou L, Chen Y. NSUN2-mediated m5C modification of HBV RNA positively regulates HBV replication. PLoS Pathog 2023; 19:e1011808. [PMID: 38048324 PMCID: PMC10721180 DOI: 10.1371/journal.ppat.1011808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and liver cancer, despite strong prevention and treatment efforts. The study of the epigenetic modification of HBV has become a research hotspot, including the N6-methyladenosine (m6A) modification of HBV RNA, which plays complex roles in the HBV life cycle. In addition to m6A modification, 5-methylcytosine (m5C) is another major modification of eukaryotic mRNA. In this study, we explored the roles of m5C methyltransferase and demethyltransferase in the HBV life cycle. The results showed that m5C methyltransferase NSUN2 deficiency could negatively regulate the expression of HBV while m5C demethyltransferase TET2 deficiency positively regulates the expression of HBV. Subsequently, we combined both in vitro bisulfite sequencing and high-throughput bisulfite sequencing methods to determine the distribution and stoichiometry of m5C modification in HBV RNA. Two sites: C2017 and C131 with the highest-ranking methylation rates were identified, and mutations at these two sites could lead to the decreased expression and replication of HBV, while the mutation of the "fake" m5C site had no effect. Mechanistically, NSUN2-mediated m5C modification promotes the stability of HBV RNA. In addition, compared with wild-type HepG2-NTCP cells and primary human hepatocytes, the replication level of HBV after NSUN2 knockdown decreased, and the ability of the mutant virus to infect and replicate in wild-type HepG2-NTCP cells and PHHs was substantially impaired. Similar results were found in the experiments using C57BL/6JGpt-Nsun2+/- mice. Interestingly, we also found that HBV expression and core protein promoted the endogenous expression of NSUN2, which implied a positive feedback loop. In summary, our study provides an accurate and high-resolution m5C profile of HBV RNA and reveals that NSUN2-mediated m5C modification of HBV RNA positively regulates HBV replication by maintaining RNA stability.
Collapse
Affiliation(s)
- Jiangpeng Feng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Tianmo Xu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| | - Miao He
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiali Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Peipei Yao
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Chengbao Ma
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zaichao Xu
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Kun Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xianying Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Cong Zeng
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuchen Xia
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
21
|
Chen T, Xu ZG, Luo J, Manne RK, Wang Z, Hsu CC, Pan BS, Cai Z, Tsai PJ, Tsai YS, Chen ZZ, Li HY, Lin HK. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab 2023; 35:1782-1798.e8. [PMID: 37586363 PMCID: PMC10726430 DOI: 10.1016/j.cmet.2023.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.
Collapse
Affiliation(s)
- Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Jie Luo
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhengyu Wang
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Kong Y, Yu J, Ge S, Fan X. Novel insight into RNA modifications in tumor immunity: Promising targets to prevent tumor immune escape. Innovation (N Y) 2023; 4:100452. [PMID: 37485079 PMCID: PMC10362524 DOI: 10.1016/j.xinn.2023.100452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
An immunosuppressive state is a typical feature of the tumor microenvironment. Despite the dramatic success of immune checkpoint inhibitor (ICI) therapy in preventing tumor cell escape from immune surveillance, primary and acquired resistance have limited its clinical use. Notably, recent clinical trials have shown that epigenetic drugs can significantly improve the outcome of ICI therapy in various cancers, indicating the importance of epigenetic modifications in immune regulation of tumors. Recently, RNA modifications (N6-methyladenosine [m6A], N1-methyladenosine [m1A], 5-methylcytosine [m5C], etc.), novel hotspot areas of epigenetic research, have been shown to play crucial roles in protumor and antitumor immunity. In this review, we provide a comprehensive understanding of how m6A, m1A, and m5C function in tumor immunity by directly regulating different immune cells as well as indirectly regulating tumor cells through different mechanisms, including modulating the expression of immune checkpoints, inducing metabolic reprogramming, and affecting the secretion of immune-related factors. Finally, we discuss the current status of strategies targeting RNA modifications to prevent tumor immune escape, highlighting their potential.
Collapse
Affiliation(s)
- Yuxin Kong
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
24
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
25
|
NSUN2 alleviates doxorubicin-induced myocardial injury through Nrf2-mediated antioxidant stress. Cell Death Dis 2023; 9:43. [PMID: 36739432 PMCID: PMC9899217 DOI: 10.1038/s41420-022-01294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) is a commonly used antitumor drug, but its application has been limited because of its strong cardiac damage. This study aims to explore the role of NSUN2 in DOX-induced heart injury. C57BL/6J mice were intraperitoneally injected with 20 mg/Kg DOX to induce heart injury. After 3 days, the cardiac function, cardiac histopathology, myocardial apoptosis, and the expression level of NSUN2 were detected. In vitro, H9C2 cells were transfected with NSUN2 siRNA or overexpressed lentivirus and then treated with 500 ng/ml DOX. After 24 h, the changes in reactive oxygen species (ROS), apoptosis, and NSUN2 expression were detected. After DOX treatment, both in vitro and in vivo experiments showed that the cardiac function decreased, the number of apoptotic cells increased, and the expression level of NSUN2 increased. Interfering the expression of NSUN2 by siRNA promoted DOX-induced heart injury, while overexpression of NSUN2 could inhibit DOX-induced heart injury. Further study showed that NSUN2 promoted antioxidative stress by upregulating the Nrf2 protein level. In addition, NSUN2 overexpression could increase the half-life of Nrf2 mRNA. m5C RNA methylation immunoprecipitation (MeRIP) also showed that the level of Nrf2 m5C mRNA was significantly increased in NSUN2 overexpressed group when compared to the GFP group. NSUN2 enhances the expression of Nrf2 by promoting Nrf2 mRNA m5C modification and enhances its antioxidative stress effect to alleviate DOX-induced myocardial injury.
Collapse
|
26
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
27
|
Wei X, Zhou S, Liao L, Liu M, Gao Y, Yin Y, Xu Q, Zhou R. Comprehensive analysis of transcriptomic profiling of 5-methylcytosin modification in placentas from preeclampsia and normotensive pregnancies. FASEB J 2023; 37:e22751. [PMID: 36692426 DOI: 10.1096/fj.202201248r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
Increasing evidence suggests that RNA m5C modification and its regulators have been confirmed to be associated with the pathogenesis of many diseases. However, the distribution and biological functions of m5C in mRNAs of placental tissues remain unknown. we collected placentae from normotensive pregnancies (CTR) and preeclampsia patients (PE) to analyze the transcriptomic profiling of m5C RNA methylation through m5C RNA immunoprecipitation (UMI-MeRIP-Seq). we discovered that overall m5C methylation peaks were decreased in placental tissues from PE patients. And, 2844 aberrant m5C peaks were identified, of which respectively 1304 m5C peaks were upregulated and 1540 peaks were downregulated. The distribution of m5C peaks were mainly located in CDS (coding sequences) regions in placental tissues of both groups, but compared with the CTR group, the m5C peak in PE group before the stop code of CDS was significantly increased and even higher than the peak value after start code in CDS. Differentially methylated genes were mainly enriched in MAPK/cAMP signaling pathway. Moreover, the up-regulated genes with hypermethylated modification were enriched in the processes of hypoxia, inflammation/immune response. Finally, through analyzing the mRNA expression levels of m5C RNA methylation regulators, we found only DNMT3B and TET3 were significantly upregulated in PE samples than in control group. And they are not only negatively correlated with each other, but also closely related to those differentially expressed genes modified by differential methylation.Our findings provide new insights regarding alterations of m5C RNA modification into the pathogenic mechanisms of PE.
Collapse
Affiliation(s)
- Xiaohong Wei
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Shengping Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yijie Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, NHC Key Laboratory of Chronobiology, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
28
|
Verdura E, Senger B, Raspall-Chaure M, Schlüter A, Launay N, Ruiz M, Casasnovas C, Rodriguez-Palmero A, Macaya A, Becker HD, Pujol A. Loss of seryl-tRNA synthetase ( SARS1) causes complex spastic paraplegia and cellular senescence. J Med Genet 2022; 59:1227-1233. [PMID: 36041817 PMCID: PMC9691831 DOI: 10.1136/jmg-2022-108529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.
Collapse
Affiliation(s)
- Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miquel Raspall-Chaure
- Pediatric Neurology Research Group, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain,Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035, Barcelona, Catalonia, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Agustí Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Pediatrics, Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain,Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035, Barcelona, Catalonia, Spain,Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Catalonia, Spain
| | | | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
29
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
30
|
Fan ZX, Yang J. NSUN2/p53 signaling axis: A potential mechanism for treating aging-associated heart diseases. Int J Cardiol 2022; 359:114. [PMID: 35398236 DOI: 10.1016/j.ijcard.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Zhi-Xing Fan
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jian Yang
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China.
| |
Collapse
|
31
|
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [PMID: 35313212 PMCID: PMC9373004 DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.
Collapse
Affiliation(s)
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.
| |
Collapse
|
32
|
Yang L, Ren Z, Yan S, Zhao L, Liu J, Zhao L, Li Z, Ye S, Liu A, Li X, Guo J, Zhao W, Kuang W, Liu H, Chen D. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun Biol 2022; 5:495. [PMID: 35614315 PMCID: PMC9133052 DOI: 10.1038/s42003-022-03420-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
The chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) has been used in the treatment and repair of cartilage defects; however, the in-depth regulatory mechanisms by which RNA modifications are involved in this process are still poorly understood. Here, we found that Sox9, a critical transcription factor that mediates chondrogenic differentiation, exhibited enhanced translation by ribosome sequencing in chondrogenic pellets, which was accompanied by increased 5-methylcytosine (m5C) and N6-methyladenosine (m6A) levels. Nsun4-mediated m5C and Mettl3-mediated m6A modifications were required for Sox9-regulated chondrogenic differentiation. Interestingly, we showed that in the 3’UTR of Sox9 mRNA, Nsun4 catalyzed the m5C modification and Mettl3 catalyzed the m6A modification. Furthermore, we found that Nsun4 and Mettl3 co-regulated the translational reprogramming of Sox9 via the formation of a complex. Surface plasmon resonance (SPR) assays showed that this complex was assembled along with the recruitment of Ythdf2 and eEF1α-1. Moreover, BMSCs overexpressing Mettl3 and Nsun4 can promote the repair of cartilage defects in vivo. Taken together, our study demonstrates that m5C and m6A co-regulate the translation of Sox9 during the chondrogenic differentiation of BMSCs, which provides a therapeutic target for clinical implications. Nsun4-mediated m5C and Mettl3-mediated m6A are found to be required for Sox9-regulated chondrogenic differentiation, whereby Nsun4 and Mettl3 interact with each other and recruit Ythdf2 and eEF1a-1 to form a complex at the 3’UTR of Sox9.
Collapse
Affiliation(s)
- Lin Yang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Zhenxing Ren
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shenyu Yan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 61001-89999, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Zhen Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Shanyu Ye
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Aijun Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xichan Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China.
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022; 79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.
Collapse
|
34
|
Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z, Chen X. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med 2022; 20:214. [PMID: 35562754 PMCID: PMC9102922 DOI: 10.1186/s12967-022-03427-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, 5-methylcytosine (m5C) RNA modification has emerged as a key player in regulating RNA metabolism and function through coding as well as non-coding RNAs. Accumulating evidence has shown that m5C modulates the stability, translation, transcription, nuclear export, and cleavage of RNAs to mediate cell proliferation, differentiation, apoptosis, stress responses, and other biological functions. In humans, m5C RNA modification is catalyzed by the NOL1/NOP2/sun (NSUN) family and DNA methyltransferase 2 (DNMT2). These RNA modifiers regulate the expression of multiple oncogenes such as fizzy-related-1, forkhead box protein C2, Grb associated-binding protein 2, and TEA domain transcription factor 1, facilitating the pathogenesis and progression of cancers. Furthermore, the aberrant expression of methyltransferases have been identified in various cancers and used to predict the prognosis of patients. In this review, we present a comprehensive overview of m5C RNA methyltransferases. We specifically highlight the potential mechanism of action of m5C in cancer. Finally, we discuss the prospect of m5C-relative studies.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
35
|
Chen SY, Chen KL, Ding LY, Yu CH, Wu HY, Chou YY, Chang CJ, Chang CH, Wu YN, Wu SR, Hou YC, Lee CT, Chen PC, Shan YS, Huang PH. RNA bisulfite sequencing reveals NSUN2-mediated suppression of epithelial differentiation in pancreatic cancer. Oncogene 2022; 41:3162-3176. [PMID: 35501460 DOI: 10.1038/s41388-022-02325-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
Posttranscriptional modifications in RNA have been considered to contribute to disease pathogenesis and tumor progression. NOL1/NOP2/Sun domain family member 2 (NSUN2) is an RNA methyltransferase that promotes tumor progression in several cancers. Pancreatic cancer relapse inevitably occurs even in cases where primary tumors have been successfully treated. Associations of cancer progression due to reprogramming of the cancer methyl-metabolome and the cancer genome have been noted, but the effect of base modifications, namely 5-methylcytosine (m5C), in the transcriptome remains unclear. Aberrant regulation of 5-methylcytosine turnover in cancer may affect posttranscriptional modifications in coding and noncoding RNAs in disease pathogenesis. Mutations in NSUN2 have been reported as drivers of neurodevelopmental disorders in mice, and upregulated expression of NSUN2 in tumors of the breast, bladder, and pancreas has been reported. In this study, we conducted mRNA whole transcriptomic bisulfite sequencing to categorize NSUN2 target sites in the mRNA of human pancreatic cancer cells. We identified a total of 2829 frequent m5C sites in mRNA from pancreatic cancer cells. A total of 90.9% (2572/2829) of these m5C sites were mapped to annotated genes in autosomes and sex chromosomes X and Y. Immunohistochemistry staining confirmed that the NSUN2 expression was significantly upregulated in cancer lesions in the LSL-KrasG12D/+;Trp53fl/fl;Pdx1-Cre (KPC) spontaneous pancreatic cancer mouse model induced by Pdx1-driven Cre/lox system expressing mutant KrasG12D and p53 deletion. The in vitro phenotypic analysis of NSUN2 knockdown showed mild effects on pancreatic cancer cell 2D/3D growth, morphology and gemcitabine sensitivity in the early phase of tumorigenesis, but cumulative changes after multiple cell doubling passages over time were required for these mutations to accumulate. Syngeneic transplantation of NSUN2-knockdown KPC cells via subcutaneous injection showed decreased stromal fibrosis and restored differentiation of ductal epithelium in vivo. SIGNIFICANCE: Transcriptome-wide mRNA bisulfite sequencing identified candidate m5C sites of mRNAs in human pancreatic cancer cells. NSUN2-mediated m5C mRNA metabolism was observed in a mouse model of pancreatic cancer. NSUN2 regulates cancer progression and epithelial differentiation via mRNA methylation.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Lin Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Yun Ding
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, College of Science, National Taiwan University, Tainan, Taiwan
| | - Ya-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jung Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Han Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- Center for Corporate Relations and Technology Transfer, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Na Wu
- International Institute for Macromolecular Analysis and Nanomedicine Innovations, Tainan, Taiwan
| | - Shang-Rung Wu
- International Institute for Macromolecular Analysis and Nanomedicine Innovations, Tainan, Taiwan
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
36
|
Song H, Zhang J, Liu B, Xu J, Cai B, Yang H, Straube J, Yu X, Ma T. Biological roles of RNA m 5C modification and its implications in Cancer immunotherapy. Biomark Res 2022; 10:15. [PMID: 35365216 PMCID: PMC8973801 DOI: 10.1186/s40364-022-00362-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
Epigenetics including DNA and RNA modifications have always been the hotspot field of life sciences in the post-genome era. Since the first mapping of N6-methyladenosine (m6A) and the discovery of its widespread presence in mRNA, there are at least 160-170 RNA modifications have been discovered. These methylations occur in different RNA types, and their distribution is species-specific. 5-methylcytosine (m5C) has been found in mRNA, rRNA and tRNA of representative organisms from all kinds of species. As reversible epigenetic modifications, m5C modifications of RNA affect the fate of the modified RNA molecules and play important roles in various biological processes including RNA stability control, protein synthesis, and transcriptional regulation. Furthermore, accumulative evidence also implicates the role of RNA m5C in tumorigenesis. Here, we review the latest progresses in the biological roles of m5C modifications and how it is regulated by corresponding "writers", "readers" and "erasers" proteins, as well as the potential molecular mechanism in tumorigenesis and cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Biao Cai
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Hai Yang
- Division of Surgical Research, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Julia Straube
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
37
|
Wilkinson E, Cui YH, He YY. Roles of RNA Modifications in Diverse Cellular Functions. Front Cell Dev Biol 2022; 10:828683. [PMID: 35350378 PMCID: PMC8957929 DOI: 10.3389/fcell.2022.828683] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Chemical modifications of RNA molecules regulate both RNA metabolism and fate. The deposition and function of these modifications are mediated by the actions of writer, reader, and eraser proteins. At the cellular level, RNA modifications regulate several cellular processes including cell death, proliferation, senescence, differentiation, migration, metabolism, autophagy, the DNA damage response, and liquid-liquid phase separation. Emerging evidence demonstrates that RNA modifications play active roles in the physiology and etiology of multiple diseases due to their pervasive roles in cellular functions. Here, we will summarize recent advances in the regulatory and functional role of RNA modifications in these cellular functions, emphasizing the context-specific roles of RNA modifications in mammalian systems. As m6A is the best studied RNA modification in biological processes, this review will summarize the emerging advances on the diverse roles of m6A in cellular functions. In addition, we will also provide an overview for the cellular functions of other RNA modifications, including m5C and m1A. Furthermore, we will also discuss the roles of RNA modifications within the context of disease etiologies and highlight recent advances in the development of therapeutics that target RNA modifications. Elucidating these context-specific functions will increase our understanding of how these modifications become dysregulated during disease pathogenesis and may provide new opportunities for improving disease prevention and therapy by targeting these pathways.
Collapse
Affiliation(s)
- Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, United States
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
38
|
Wang L, Zhang J, Su Y, Maimaitiyiming Y, Yang S, Shen Z, Lin S, Shen S, Zhan G, Wang F, Hsu CH, Cheng X. Distinct Roles of m5C RNA Methyltransferase NSUN2 in Major Gynecologic Cancers. Front Oncol 2022; 12:786266. [PMID: 35280737 PMCID: PMC8916577 DOI: 10.3389/fonc.2022.786266] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/24/2022] [Indexed: 01/01/2023] Open
Abstract
RNA methylation has recently emerged as an important category of epigenetic modifications, which plays diverse physiopathological roles in various cancers. Recent studies have confirmed the presence of 5-methylcytosine (m5C) modification on mammalian mRNAs, mainly modified by NOP2/Sun RNA methyltransferase family member 2 (NSUN2), but little is known about the underlying functions of m5C. Gynecologic cancers are malignancies starting from women’s reproductive organs. The prevalence of gynecologic cancers leads to a massive economic burden and public health concern. In this study, we investigated the potential biological functions of NSUN2 in common gynecologic cancers including cervical cancer, ovarian cancer, and endometrial cancer. Remarkably, distinct scenarios were found. The levels of NSUN2 did not show alteration in endometrial cancer, and in ovarian cancer, depletion of upregulated NSUN2 did not reduce carcinogenesis in cancer cells, suggesting that the upregulated NSUN2 might be an incidental effect. On the contrary, NSUN2 played a role in tumorigenesis of cervical cancer; depletion of upregulated NSUN2 notably inhibited migration and invasion of cancer cells, and only wild-type but not catalytically inactive NSUN2 rescued these malignant phenotypes of cancer cells. Mechanistically, NSUN2 promoted migration and invasion by leading to m5C methylation on keratin 13 (KRT13) transcripts, and methylated KRT13 transcripts would be recognized and stabilized by an m5C reader, Y-box binding protein 1 (YBX1). Collectively, these results not only displayed the nature of diversity among human malignancies, but also demonstrated a novel NSUN2-dependent m5C-YBX1-KRT13 oncogenic regulatory pathway.
Collapse
Affiliation(s)
- Lingfang Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfeng Su
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology of First Affiliated Hospital and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Siqi Yang
- Department of Clinical Research Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangjin Shen
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shizhen Shen
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guankai Zhan
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenfen Wang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Women’s Hospital, Institute of Genetics and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chih-Hung Hsu, ; Xiaodong Cheng,
| | - Xiaodong Cheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chih-Hung Hsu, ; Xiaodong Cheng,
| |
Collapse
|
39
|
Meng L, Zhang Q, Huang X. Abnormal 5-methylcytosine lncRNA methylome is involved in human high-grade serous ovarian cancer. Am J Transl Res 2021; 13:13625-13639. [PMID: 35035702 PMCID: PMC8748087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Methylcytosine (m5C) is an important posttranscriptional RNA methylation modification. Studies have reported that aberrant RNA methylation can regulate tumorigenesis and development, indicating the importance of exploring the distribution and biological functions of m5C modification in human high-grade serous ovarian cancer (HGSOC) lncRNAs. In the current study, we identified 2,050 dysregulated m5C peaks, 1,767 of which were significantly upregulated, while 283 were significantly downregulated by performing methylated RNA immunoprecipitation sequencing on 3 pairs of human HGSOC tissues and paired normal tissues. GO enrichment analysis showed that genes altered by the m5C peak played a key role in phylogeny, protein metabolism, and gene mismatch repair. KEGG pathway analysis revealed that these genes were enriched in some important pathways in cancer regulation, such as the PI3K-Akt signalling pathway, transcriptional dysregulation in cancer, and mismatch repair pathways. In addition, through joint analysis of MeRIP-seq and RNA-seq data, we identified 1671 differentially methylated m5C peaks and synchronous differentially expressed genes. These genes play a key role in cell growth or maintenance, RNA metabolism and material transport. We analyzed expression of the m5C modification regulatory gene collagen type IV alpha 3 chain (COL4A3) in 80 HGSOC tissue samples by immunohistochemistry and found that high expression of COL4A3 was significantly correlated with CA125 level (P=0.016), lymph node metastasis (P<0.001), degree of interstitial invasion (P<0.001) and FIGO staging (P<0.001) and indicated a poorer prognosis. Our results revealed the critical role of m5C methylation of lncRNAs in HGSOC, and provided a reference for the prognostic stratification and treatment strategy of HGSOC.
Collapse
Affiliation(s)
- Li Meng
- Department of Gynecology, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050011, Hebei, China
| | - Qianqian Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050011, Hebei, China
| | - Xianghua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
40
|
Guo G, Pan K, Fang S, Ye L, Tong X, Wang Z, Xue X, Zhang H. Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:575-593. [PMID: 34631286 PMCID: PMC8479277 DOI: 10.1016/j.omtn.2021.08.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-methylcytosine (m5C) post-transcriptional modifications affect the maturation, stability, and translation of the mRNA molecule. These modifications play an important role in many physiological and pathological processes, including stress response, tumorigenesis, tumor cell migration, embryogenesis, and viral replication. Recently, there has been a better understanding of the biological implications of m5C modification owing to the rapid development and optimization of detection technologies, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and RNA-BisSeq. Further, predictive models (such as PEA-m5C, m5C-PseDNC, and DeepMRMP) for the identification of potential m5C modification sites have also emerged. In this review, we summarize the current experimental detection methods and predictive models for mRNA m5C modifications, focusing on their advantages and limitations. We systematically surveyed the latest research on the effectors related to mRNA m5C modifications and their biological functions in multiple species. Finally, we discuss the physiological effects and pathological significance of m5C modifications in multiple diseases, as well as their therapeutic potential, thereby providing new perspectives for disease treatment and prognosis.
Collapse
Affiliation(s)
- Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kan Pan
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
42
|
Zhai CT, Tian YC, Tang ZX, Shao LJ. RNA methyltransferase NSUN2 promotes growth of hepatocellular carcinoma cells by regulating fizzy-related-1 in vitro and in vivo. Kaohsiung J Med Sci 2021; 37:991-999. [PMID: 34370374 DOI: 10.1002/kjm2.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the study was to investigate the role of NSUN2 (NOP2/Sun RNA Methyltransferase Family Member 2) in hepatocellular carcinoma (HCC). The expressions of NSUN2 and FZR1 were measured. Cell viability, proliferation, and apoptosis were assessed. HCC xenograft in nude mouse model was established. Tumor weight and volume were examined. Tumor tissues were collected for immunohistochemistry (IHC). TCGA database analysis and clinical sample testing suggested that the transcript levels of NSUN2 and FZR1 were increased in HCC tissues. NSUN2 knockdown inhibited HCC cell viability and proliferation, and promoted cell apoptosis. Moreover, the effects of NSUN2 could be countered by overexpressing FZR1. In animal experiment, NSUN2 silencing suppressed tumor growth in nude mice by downregulating FZR1. In conclusion, NSUN2 has a regulatory effect on HCC cell proliferation and apoptosis. NSUN2 knockout could inhibit cellular processes in HCC and tumor growth, likely via FZR1 inhibition. This finding has not only revealed the role of NSUN2 in HCC growth, but also suggests a promising target for HCC treatment.
Collapse
Affiliation(s)
- Chun-Tao Zhai
- Department of General Surgery, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medcial University, Jiangsu Province, China
| | - Yi-Cheng Tian
- Department of General Surgery, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medcial University, Jiangsu Province, China
| | - Zu-Xiong Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Jiangsu Province, China
| | - Long-Jiang Shao
- Department of General Surgery, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medcial University, Jiangsu Province, China
| |
Collapse
|
43
|
Zhao J, Hu H, Wang S, Wang L, Wang R. Regulation and Site-Specific Covalent Labeling of NSUN2 via Genetic Encoding Expansion. Genes (Basel) 2021; 12:1488. [PMID: 34680884 PMCID: PMC8535899 DOI: 10.3390/genes12101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
In living organisms, RNA regulates gene expression, cell migration, differentiation, and cell death. 5-Methylcytosine is a post-transcriptional RNA modification in a wide range of RNA species, including messenger RNAs. The addition of m5C to RNA cytosines is enabled by the NSUN enzyme family, a critical RNA methyltransferase. In this study, natural lysines modified with special groups were synthesized. Through two rounds of positive screening and one round of negative screening, we evaluated and identified the MbPylRS-tRNACUA unnatural lysine substitution system, which specifically recognizes lysine with a defined group. Moreover, non-natural lysine substitution at C271 of NSUN2 active site and the subsequent fluorescent labeling was realized through the click reaction. Then, the function of the NSUN2 mutant and its upregulated CDK1 gene as well as its effect on cell proliferation were evaluated. Efficient labeling and regulation of NSUN2 was achieved, laying the basis for further studies on the function and regulatory mechanism of upregulated genes.
Collapse
Affiliation(s)
- Jizhong Zhao
- The Hubei Key Laboratory of Natural Resource and Medicine, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (J.Z.); (H.H.); (S.W.)
| | - Hongmei Hu
- The Hubei Key Laboratory of Natural Resource and Medicine, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (J.Z.); (H.H.); (S.W.)
| | - Sheng Wang
- The Hubei Key Laboratory of Natural Resource and Medicine, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; (J.Z.); (H.H.); (S.W.)
| | - Li Wang
- Wuhan No.1 Hospital, Huazhong University of Science and Technology, 225 Zhongshan Avenue, Wuhan 430022, China;
| | - Rui Wang
- Wuhan No.1 Hospital, Huazhong University of Science and Technology, 225 Zhongshan Avenue, Wuhan 430022, China;
| |
Collapse
|
44
|
Kumari K, Groza P, Aguilo F. Regulatory roles of RNA modifications in breast cancer. NAR Cancer 2021; 3:zcab036. [PMID: 34541538 PMCID: PMC8445368 DOI: 10.1093/narcan/zcab036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.
Collapse
Affiliation(s)
- Kanchan Kumari
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
45
|
Rengaraj P, Obrdlík A, Vukić D, Varadarajan NM, Keegan LP, Vaňáčová Š, O'Connell MA. Interplays of different types of epitranscriptomic mRNA modifications. RNA Biol 2021; 18:19-30. [PMID: 34424827 PMCID: PMC8677042 DOI: 10.1080/15476286.2021.1969113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Eukaryotic mRNAs are modified by several chemical marks which have significant impacts on mRNA biology, gene expression, and cellular metabolism as well as on the survival and development of the whole organism. The most abundant and well-studied mRNA base modifications are m6A and ADAR RNA editing. Recent studies have also identified additional mRNA marks such as m6Am, m5C, m1A and Ψ and studied their roles. Each type of modification is deposited by a specific writer, many types of modification are recognized and interpreted by several different readers and some types of modifications can be removed by eraser enzymes. Several works have addressed the functional relationships between some of the modifications. In this review we provide an overview on the current status of research on the different types of mRNA modifications and about the crosstalk between different marks and its functional consequences.
Collapse
Affiliation(s)
- Praveenkumar Rengaraj
- Central European Institute of Technology (CEITEC), CEITEC, Masaryk University Brno, Brno, Czech Republic
| | - Aleš Obrdlík
- Central European Institute of Technology (CEITEC), CEITEC, Masaryk University Brno, Brno, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology (CEITEC), CEITEC, Masaryk University Brno, Brno, Czech Republic
| | - Nandan Mysore Varadarajan
- Central European Institute of Technology (CEITEC), CEITEC, Masaryk University Brno, Brno, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology (CEITEC), CEITEC, Masaryk University Brno, Brno, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), CEITEC, Masaryk University Brno, Brno, Czech Republic
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), CEITEC, Masaryk University Brno, Brno, Czech Republic
| |
Collapse
|
46
|
Meng L, Zhang Q, Huang X. Comprehensive Analysis of 5-Methylcytosine Profiles of Messenger RNA in Human High-Grade Serous Ovarian Cancer by MeRIP Sequencing. Cancer Manag Res 2021; 13:6005-6018. [PMID: 34377020 PMCID: PMC8349203 DOI: 10.2147/cmar.s319312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Accumulating evidence has indicated that methylation status is closely related to tumourigenesis and a few aggressive features of diverse cancers. However, as an important methylation regulation modification, the distribution of 5-methylcytosine (m5C) in high-grade serous ovarian cancer (HGSOC) remains unclear. Materials and Methods We collected three pairs of human HGSOC tissues and adjacent non-tumour tissues to analyse the transcriptome-wide m5C methylation of messenger RNAs (mRNAs) by methylated RNA immunoprecipitation sequencing. Gene ontology (GO) enrichment analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were performed to eExplore the potential biological functions of these genes and important cancer pathways. We used immunohistochemistry to analyse the expression of the m5C modification regulatory gene MAP2K3 in 80 HGSOC tissue samples, and their associations with clinical parameters were analyzed using the Spearman-rho test. Univariate and multivariate Cox regression analyses were performed to identify potential prognostic factors. Kaplan–Meier analysis was performed to analyze overall survival. Results We identified 2050 dysregulated m5C peaks, 1767 of which were significantly upregulated, while 283 were significantly downregulated. GO enrichment analysis showed that genes altered by the m5C peak played a key role in system development, transporter complex, and transporter activity. KEGG pathway analysis revealed that these genes were enriched in some important pathways in cancer regulation, such as inflammatory mediator regulation of the TRP channels pathway, Wnt signalling pathway, and focal adhesion pathways. In addition, through joint analysis of MeRIP-seq and RNA-seq data, we identified 125 differentially methylated m5C peaks and synchronous differentially expressed genes. These genes play key roles in cell growth, maintenance, plasma membranes, and cell adhesion molecule activity. Immunohistochemical staining results showed that high expression of MAP2K3 was significantly correlated with CA125 level (p < 0.001), tumour size (p = 0.001), lymph node metastasis (p = 0.008), depth of myometrial invasion (p < 0.001), and FIGO stage (p < 0.001), indicating a poor prognosis. Conclusion Our results reveal the different distribution patterns of m5C in HGSOC and adjacent tissues and the possible involvement of m5C in HGSOC cell functions. Our study provides new insights into the epi-transcriptomic dysregulation of m5C in the tumourigenesis of HGSOC.
Collapse
Affiliation(s)
- Li Meng
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Qianqian Zhang
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xianghua Huang
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang, Hebei, 050000, People's Republic of China
| |
Collapse
|
47
|
Gao Y, Fang J. RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark. RNA Biol 2021; 18:117-127. [PMID: 34288807 DOI: 10.1080/15476286.2021.1950993] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
5-methylcytosine (m5C) is identified as an abundant and conserved modification in various RNAs, including tRNAs, mRNAs, rRNAs, and other non-coding RNAs. The application of high-throughput sequencing and mass spectrometry allowed for the detection of m5C at a single-nucleotide resolution and at a global abundance separately; this contributes to a better understanding of m5C modification and its biological functions. m5C modification plays critical roles in diverse aspects of RNA processing, including tRNA stability, rRNA assembly, and mRNA translation. Notably, altered m5C modifications and mutated RNA m5C methyltransferases are associated with diverse pathological processes, such as nervous system disorders and cancers. This review may provide new sights of molecular mechanism and functional importance of m5C modification.
Collapse
Affiliation(s)
- Yaqi Gao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
De Paolis V, Lorefice E, Orecchini E, Carissimi C, Laudadio I, Fulci V. Epitranscriptomics: A New Layer of microRNA Regulation in Cancer. Cancers (Basel) 2021; 13:3372. [PMID: 34282776 PMCID: PMC8268402 DOI: 10.3390/cancers13133372] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are pervasive regulators of gene expression at the post-transcriptional level in metazoan, playing key roles in several physiological and pathological processes. Accordingly, these small non-coding RNAs are also involved in cancer development and progression. Furthermore, miRNAs represent valuable diagnostic and prognostic biomarkers in malignancies. In the last twenty years, the role of RNA modifications in fine-tuning gene expressions at several levels has been unraveled. All RNA species may undergo post-transcriptional modifications, collectively referred to as epitranscriptomic modifications, which, in many instances, affect RNA molecule properties. miRNAs are not an exception, in this respect, and they have been shown to undergo several post-transcriptional modifications. In this review, we will summarize the recent findings concerning miRNA epitranscriptomic modifications, focusing on their potential role in cancer development and progression.
Collapse
Affiliation(s)
| | | | | | - Claudia Carissimi
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | - Ilaria Laudadio
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161 Rome, Italy; (V.D.P.); (E.L.); (E.O.); (V.F.)
| | | |
Collapse
|
49
|
Berdasco M, Esteller M. Towards a druggable epitranscriptome: Compounds that target RNA modifications in cancer. Br J Pharmacol 2021; 179:2868-2889. [PMID: 34185879 DOI: 10.1111/bph.15604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022] Open
Abstract
Epitranscriptomics is an exciting emerging area that studies biochemical modifications of RNA. The field has been opened up by the technical efforts of the last decade to characterize and quantify RNA modifications, and this has led to a map of post-transcriptional RNA marks in normal cell fate and development. However, the scientific interest has been fuelled by the discovery of aberrant epitranscriptomes associated with human diseases, mainly cancer. The challenge is now to see whether epitrancriptomics offers mechanisms that can be effectively targeted by low MW compounds and are thus druggable. In this review, we will describe the principal RNA modifications (with a focus on mRNA), summarize the latest scientific evidence of their dysregulation in cancer and provide an overview of the state-of-the-art drug discovery to target the epitranscriptome. Finally, we will discuss the principal challenges in the field of chemical biology and drug development to increase the potential of targeted-RNA for clinical benefit.
Collapse
Affiliation(s)
- María Berdasco
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
50
|
Chen H, Liu O, Chen S, Zhou Y. Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology 2021; 68:339-352. [PMID: 34161948 DOI: 10.1159/000516668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
With aging, a portion of cells, including mesenchymal stem cells (MSCs), become senescent, and these senescent cells accumulate and promote various age-related diseases. Therefore, the older age group has become a major population for MSC therapy, which is aimed at improving tissue regeneration and function of the aged body. However, the application of MSC therapy is often unsatisfying in the aged group. One reasonable conjecture for this correlation is that aging microenvironment reduces the number and function of MSCs. Cellular senescence also plays an important role in MSC function impairment. Thus, it is necessary to explore the relationship between senescence and MSCs for improving the application of MSCs in the elderly. Here, we present the influence of aging on MSCs and the characteristics and functional changes of senescent MSCs. Furthermore, current therapeutic strategies for improving MSC therapy in the elderly group are also discussed.
Collapse
Affiliation(s)
- Huan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Sijia Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yueying Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|