1
|
Conover CA, Oxvig C. The IGF System and Aging. Endocr Rev 2025; 46:214-223. [PMID: 39418083 PMCID: PMC11894535 DOI: 10.1210/endrev/bnae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
There is strong evidence that IGF signaling is involved in fundamental aspects of the aging process. However, the extracellular part of the IGF system is complex with various receptors, ligand effectors, high-affinity IGF-binding proteins, proteinases, and endogenous inhibitors that all, along with their biological context, must be considered. The IGF system components are evolutionarily conserved, underscoring the importance of understanding this system in physiology and pathophysiology. This review will briefly describe the different components of the IGF system and then discuss past and current literature regarding IGF and aging, with a focus on cellular senescence, model organisms of aging, centenarian genetics, and 3 age-related diseases-pulmonary fibrosis, Alzheimer disease, and macular degeneration-in appropriate murine models and in humans. Commonalities in mechanism suggest conditions where IGF system components may be disease drivers and potential targets in promoting healthy aging in humans.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
Hayes CA, Wilson D, De Leon MA, Mustapha MJ, Morales S, Odden MC, Ashpole NM. Insulin-like growth factor-1 and cognitive health: Exploring cellular, preclinical, and clinical dimensions. Front Neuroendocrinol 2025; 76:101161. [PMID: 39536910 DOI: 10.1016/j.yfrne.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Age and insulin-like growth factor-1 (IGF-1) have an inverse association with cognitive decline and dementia. IGF-1 is known to have important pleiotropic functions beginning in neurodevelopment and extending into adulthood such as neurogenesis. At the cellular level, IGF-1 has pleiotropic signaling mechanisms through the IGF-1 receptor on neurons and neuroglia to attenuate inflammation, promote myelination, maintain astrocytic functions for homeostatic balances, and neuronal synaptogenesis. In preclinical rodent models of aging and transgenic models of IGF-1, increased IGF-1 improves cognition in a variety of behavioral paradigms along with reducing IGF-1 via knockout models being able to induce cognitive impairment. At the clinical levels, most studies highlight that increased levels of IGF-1 are associated with better cognition. This review provides a comprehensive and up-to-date evaluation of the association between IGF-1 and cognition at the cellular signaling levels, preclinical, and clinical levels.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Destiny Wilson
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Miguel A De Leon
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | - Sharon Morales
- Department of Biomedical Science, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
3
|
Ryoo SW, Anita NZ, Perlman G, Xiong LY, Wu CY, Wood M, Rabin JS, Mitchell J, Swardfager W. Insulin-like growth factor-1 and cognition in normoglycemia, prediabetes, and type 2 diabetes mellitus. Psychoneuroendocrinology 2024; 161:106946. [PMID: 38198904 DOI: 10.1016/j.psyneuen.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The relationship between insulin-like growth factor-1 (IGF-1) and cognition has been studied in healthy individuals, but not extensively with regards to insulin resistance and type 2 diabetes mellitus (T2DM). In this retrospective observational study, we investigated relationships of IGF-1 with memory and executive function across people with normoglycemia, prediabetes, and T2DM. METHODS Data from the Midlife in the United States (MIDUS) study were used. Episodic memory and executive function were assessed using the Brief Test of Adult Cognition by Telephone approximately 21.42 ± 12.10 months prior to measuring IGF-1 levels from a fasting blood sample. Normoglycemia was identified as individuals without a physician diagnosis of diabetes and glycated hemoglobin (HbA1c) ≤5.6%. Prediabetes was identified as those without a physician diagnosis of diabetes and HbA1c between 5.7%-6.4%. T2DM was identified as anyone with a physician diagnosis of diabetes, or HbA1c ≥6.5%, or anyone using an oral hypoglycemic medication. The associations were assessed using linear regressions controlling for age, sex, education, body mass index, C-reactive protein, HbA1c or homeostatic model of insulin resistance, MIDUS wave, exercise, smoking status, sleep quality, alcohol intake, oral hypoglycemic use, and insulin use. RESULTS The study included 1400 participants, which consisted of 583 normoglycemic (48.4% female, mean age 51.0 ± 12.2 years), 512 prediabetes (58.4% female, mean age 57.3 ± 11.8 years), and 305 T2DM participants (53.8% female, mean age 57.6 ± 11.5 years). Peripheral IGF-1 concentrations were lower (F2,1397 = 28.29, p < 0.001) in people with prediabetes or T2DM, vs. normoglycemia. Participants with prediabetes or T2DM had lower episodic memory (F2,1397 = 9.21, p < 0.001) and executive function (F2,1397 = 20.29, p < 0.001) composite z-scores than people with normoglycemia. Higher IGF-1 concentrations were associated with better executive performance in individuals with prediabetes (β = 0.115 [0.028, 0.202], p = 0.010), but not in individuals with normoglycemia or T2DM. An interaction between IGF-1 and sex in predicting executive function was observed in the prediabetes group (β = -0.344, p = 0.042), where the relationship was weaker in females (β = 0.106 [-0.012, 0.224], p = 0.077) than males (β = 0.251 [0.123, 0.380], p < 0.001). No associations were seen between IGF-1 and memory. CONCLUSION The results suggest that peripheral IGF-1 concentrations may be related to executive function, and that the relationship may be sex-specific and dependent on diabetes status.
Collapse
Affiliation(s)
- Si Won Ryoo
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; University Health Network Toronto Rehabilitation Institute - Rumsey Centre Cardiac Rehabilitation, 347 Rumsey Rd, East York ON M4G 2V6, Canada
| | - Natasha Z Anita
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; University Health Network Toronto Rehabilitation Institute - Rumsey Centre Cardiac Rehabilitation, 347 Rumsey Rd, East York ON M4G 2V6, Canada
| | - George Perlman
- Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal QC H4A 3J1, Canada
| | - Lisa Y Xiong
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada
| | - Che-Yuan Wu
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada
| | - Madeline Wood
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; Rehabilitation Sciences Institute - University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto ON M5G 1V7, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; Rehabilitation Sciences Institute - University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto ON M5G 1V7, Canada; Division of Neurology, Department of Medicine - University of Toronto, C. David Naylor Building, 6 Queen's Park Crescent West, Third Floor, Toronto ON M5S 3H2, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology- University of Toronto, Medical Sciences Building, 1 King's College Circle Room 4207, Toronto ON M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto ON M4N 3M5, Canada; University Health Network Toronto Rehabilitation Institute - Rumsey Centre Cardiac Rehabilitation, 347 Rumsey Rd, East York ON M4G 2V6, Canada.
| |
Collapse
|
4
|
Milman S, Barzilai N. Discovering Biological Mechanisms of Exceptional Human Health Span and Life Span. Cold Spring Harb Perspect Med 2023; 13:a041204. [PMID: 37137499 PMCID: PMC10513160 DOI: 10.1101/cshperspect.a041204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Humans age at different rates and families with exceptional longevity provide an opportunity to understand why some people age slower than others. Unique features exhibited by centenarians include a family history of extended life span, compression of morbidity with resultant extension of health span, and longevity-associated biomarker profiles. These biomarkers, including low-circulating insulin-like growth factor 1 (IGF-1) and elevated high-density lipoprotein (HDL) cholesterol levels, are associated with functional genotypes that are enriched in centenarians, suggesting that they may be causative for longevity. While not all genetic discoveries from centenarians have been validated, in part due to exceptional life span being a rare phenotype in the general population, the APOE2 and FOXO3a genotypes have been confirmed in a number of populations with exceptional longevity. However, life span is now recognized as a complex trait and genetic research methods to study longevity are rapidly extending beyond classical Mendelian genetics to polygenic inheritance methodologies. Moreover, newer approaches are suggesting that pathways that have been recognized for decades to control life span in animals may also regulate life span in humans. These discoveries led to strategic development of therapeutics that may delay aging and prolong health span.
Collapse
Affiliation(s)
- Sofiya Milman
- Institute for Aging Research, Department of Medicine, Divisions of Endocrinology and Geriatrics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine, Divisions of Endocrinology and Geriatrics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
5
|
Kim AB, Arvanitakis Z. Insulin resistance, cognition, and Alzheimer disease. Obesity (Silver Spring) 2023; 31:1486-1498. [PMID: 37203336 PMCID: PMC10421533 DOI: 10.1002/oby.23761] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 05/20/2023]
Abstract
Chronic diseases of aging are increasingly common. Dementia, often due to multiple etiologies including Alzheimer disease (AD), is at the forefront. Previous studies have reported higher rates of dementia among persons with diabetes, yet less is known about how insulin resistance relates to cognition. This article reviews recently published data on the relationship of insulin resistance to cognition and AD, and remaining knowledge gaps in the field are discussed. A structured review of studies was conducted over a 5-year period, investigating insulin and cognitive function in adults with a baseline mean age of ≥65 years. This search yielded 146 articles, of which 26 met the predetermined inclusion and exclusion criteria. Among the nine studies that specifically examined insulin resistance and cognitive dysfunction and/or decline, eight studies suggest an association, but some only in subanalyses. Results are mixed in studies relating insulin to structural and functional changes on brain imaging, and data on intranasal insulin for cognition remain unclear. Future avenues are proposed to elucidate the impact of insulin resistance on brain structure and function, including cognition, in persons with and without AD.
Collapse
Affiliation(s)
- Anne B Kim
- Rush Medical College, Chicago, Illinois, USA
| | - Zoe Arvanitakis
- Rush Medical College, Chicago, Illinois, USA
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Chen Z, Nilsson E, Lindholm B, Heimbürger O, Barany P, Stenvinkel P, Qureshi AR, Chen J. Low-Plasma Insulin-Like Growth Factor-1 Associates With Increased Mortality in Chronic Kidney Disease Patients With Reduced Muscle Strength. J Ren Nutr 2023; 33:298-306. [PMID: 35792256 DOI: 10.1053/j.jrn.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Chronic kidney disease (CKD) leads to metabolic and nutritional abnormalities including resistance to insulin-like growth factor-1 (IGF-1) action, and reduced muscle mass and strength. Low IGF-1 as well as low hand-grip muscle strength (HGS) are independent predictors of increased mortality in CKD patients. METHODS In 685 patients (CKD Stage 3-5, median age 58 years; 62% men), baseline measurements of IGF-1, HGS, subjective global assessment (SGA), lean body mass index (LBMI), and metabolic and inflammatory biomarkers potentially linked to IGF-1 were analyzed in relation to mortality during 5 years of follow-up. We compared survival in 4 groups with high or low (cut-offs defined by receiver operating characteristic curve analysis) levels of IGF-1 and HGS. RESULTS Patients with low IGF-1 were older; had lower BMI, HGS, and LBMI, were more likely to have diabetes, cardiovascular disease (CVD), and malnutrition (SGA >1); and had high-sensitivity C-reactive protein levels. During 5 years of follow-up, 208 patients died. The mortality rate was highest among patients with Low IGF-1 + Low HGS. In competing-risk regression analysis, Low IGF-1 + Low HGS was independently associated with 2.8 times higher all-cause mortality risk than Low IGF-1 + High HGS, after adjusting for Framingham's CVD risk score, presence of CVD, SGA, dialysis status, high-sensitivity C-reactive protein, albumin, LBMI, and sample time in freezer. CONCLUSION Low IGF-1 was associated with increased all-cause mortality in patients who also had low HGS but not in those with high HGS, suggesting that the association of IGF-1 with survival in CKD patients depends on nutritional status.
Collapse
Affiliation(s)
- Zhimin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Nilsson
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Olof Heimbürger
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Barany
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China.
| |
Collapse
|
7
|
Li T, Pappas C, Klinedinst B, Pollpeter A, Larsen B, Hoth N, Anton F, Wang Q, Willette AA. Associations Between Insulin-Like Growth Factor-1 and Resting-State Functional Connectivity in Cognitively Unimpaired Midlife Adults. J Alzheimers Dis 2023; 94:S309-S318. [PMID: 36710671 PMCID: PMC10473072 DOI: 10.3233/jad-220608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Insulin-like growth factor (IGF)-1 plays an important role in Alzheimer's disease (AD) pathogenesis and increases disease risk. However, prior research examining IGF-1 levels and brain neural network activity is mixed. OBJECTIVE The present study investigated the relationship between IGF-1 levels and 21 neural networks, as measured by functional magnetic resonance imaging (fMRI) in 13,235 UK Biobank participants. METHODS Linear mixed models were used to regress IGF-1 against the intrinsic functional connectivity (i.e., degree of network activity) for each neural network. Interactions between IGF-1 and AD risk factors such as Apolipoprotein E4 (APOE4) genotype, sex, AD family history, and age were also tested. RESULTS Higher IGF-1 was associated with more network activity in the right Executive Function neural network. IGF-1 interactions with APOE4 or sex implicated motor, primary/extrastriate visual, and executive function related neural networks. Neural network activity trends with increasing IGF-1 were different in different age groups. Higher IGF-1 levels relate to much more network activity in the Sensorimotor Network and Cerebellum Network in early-life participants (40-52 years old), compared with mid-life (52-59 years old) and late-life (59-70 years old) participants. CONCLUSION These findings suggest that sex and APOE4 genotype may modify the relationship between IGF-1 and brain network activities related to visual, motor, and cognitive processing. Additionally, IGF-1 may have an age-dependent effect on neural network connectivity.
Collapse
Affiliation(s)
- Tianqi Li
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Colleen Pappas
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Brandon Klinedinst
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Neuroscience Interdepartmental Graduate Program Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Amy Pollpeter
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Brittany Larsen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Neuroscience Interdepartmental Graduate Program Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Nathan Hoth
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Faith Anton
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Auriel A. Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
- Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
- Neuroscience Interdepartmental Graduate Program Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
DeVito LM, Barzilai N, Cuervo AM, Niedernhofer LJ, Milman S, Levine M, Promislow D, Ferrucci L, Kuchel GA, Mannick J, Justice J, Gonzales MM, Kirkland JL, Cohen P, Campisi J. Extending human healthspan and longevity: a symposium report. Ann N Y Acad Sci 2022; 1507:70-83. [PMID: 34498278 PMCID: PMC10231756 DOI: 10.1111/nyas.14681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
For many years, it was believed that the aging process was inevitable and that age-related diseases could not be prevented or reversed. The geroscience hypothesis, however, posits that aging is, in fact, malleable and, by targeting the hallmarks of biological aging, it is indeed possible to alleviate age-related diseases and dysfunction and extend longevity. This field of geroscience thus aims to prevent the development of multiple disorders with age, thereby extending healthspan, with the reduction of morbidity toward the end of life. Experts in the field have made remarkable advancements in understanding the mechanisms underlying biological aging and identified ways to target aging pathways using both novel agents and repurposed therapies. While geroscience researchers currently face significant barriers in bringing therapies through clinical development, proof-of-concept studies, as well as early-stage clinical trials, are underway to assess the feasibility of drug evaluation and lay a regulatory foundation for future FDA approvals in the future.
Collapse
Affiliation(s)
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Sofiya Milman
- Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - George A Kuchel
- University of Connecticut School of Medicine, Farmington, Connecticut
| | | | - Jamie Justice
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mitzi M Gonzales
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | | | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, Los Angeles, California
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, California
- Lawrence Berkeley National Laboratory, Berkley, California
| |
Collapse
|
9
|
Yasuda Y. Sex Differences in Salivary Free Insulin-Like Growth Factor-1 Levels in Elderly Outpatients. Cureus 2021; 13:e17553. [PMID: 34646610 PMCID: PMC8479855 DOI: 10.7759/cureus.17553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Objective Many studies have explored serum insulin-like growth factor (IGF)-1; however, only a few studies have investigated its presence in the saliva. Therefore, this study examined sex-based differences in salivary-free insulin-like growth factor-1 (fIGF-1), salivary growth hormone (GH), serum IGF-1 levels, and serum GH levels in older adults aged ≥60 years. The participants were further divided into <75 years and ≥75 years and examined the differences in the levels of the biomarkers mentioned above based on their sex. Design The participants were 80 regular outpatients (40 men and 40 women) with various diseases, including hypertension, diabetes, and hyperlipidemia. We randomly selected them based on the disease being treated. Men and women were divided into two groups according to age (aged <75 years or ≥75 years) for statistical analysis, including Student's t-test and Pearson's and Spearman's correlation coefficient tests. Results The analysis of sex differences in salivary fIGF-1 levels in patients aged <75 years showed significantly higher levels in women than in men. Correlation analyses of salivary fIGF-1 levels with salivary GH, serum IGF-1, and serum GH revealed a significant positive correlation of salivary fIGF-1 levels with serum IGF-1 and GH levels in men aged <75 years. In women aged ≥75 years, serum GH levels revealed a significant positive correlation with salivary GH levels and age. Conclusions The results suggested a higher possibility of the local synthesis of oral IGF-1 in women aged <75 years than in men aged <75 years.
Collapse
Affiliation(s)
- Yoshinobu Yasuda
- Internal Medicine- Gastroenterology, Yasuda Clinic, Hamamatsu, JPN
| |
Collapse
|
10
|
From Menopause to Neurodegeneration-Molecular Basis and Potential Therapy. Int J Mol Sci 2021; 22:ijms22168654. [PMID: 34445359 PMCID: PMC8395405 DOI: 10.3390/ijms22168654] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.
Collapse
|
11
|
Salzmann A, James SN, Williams DM, Richards M, Cadar D, Schott JM, Coath W, Sudre CH, Chaturvedi N, Garfield V. Investigating the Relationship Between IGF-I, IGF-II, and IGFBP-3 Concentrations and Later-Life Cognition and Brain Volume. J Clin Endocrinol Metab 2021; 106:1617-1629. [PMID: 33631000 PMCID: PMC8118585 DOI: 10.1210/clinem/dgab121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND The insulin/insulin-like signaling (IIS) pathways, including insulin-like growth factors (IGFs), vary with age. However, their association with late-life cognition and neuroimaging parameters is not well characterized. METHODS Using data from the British 1946 birth cohort, we investigated associations of IGF-I, IGF-II and IGF binding protein 3 (IGFBP-3; measured at 53 and 60-64 years of age) with cognitive performance [word-learning test (WLT) and visual letter search (VLS) at 60-64 years and 69 years of age] and cognitive state [Addenbrooke's Cognitive Exam III (ACE-III) at 69-71 years of age], and in a proportion, quantified neuroimaging measures [whole brain volume (WBV), white matter hyperintensity volume (WMHV), hippocampal volume (HV)]. Regression models included adjustments for demographic, lifestyle, and health factors. RESULTS Higher IGF-I and IGF-II at 53 years of age was associated with higher ACE-III scores [ß 0.07 95% confidence interval (CI) (0.02, 0.12); scoreACE-III 89.48 (88.86, 90.1), respectively). IGF-II at 53 years of age was additionally associated with higher WLT scores [scoreWLT 20 (19.35, 20.65)]. IGFBP-3 at 60 to 64 years of age was associated with favorable VLS score at 60 to 64 and 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.02, 0.12), respectively], higher memory and cognitive state at 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.01, 0.13), respectively], and reduced WMHV [ß -0.1 (-0.21, -0.00)]. IGF-I/IGFBP-3 at 60 to 64 years of was associated with lower VLS scores at 69 years of age [ß -0.08 (-0.15, -0.02)]. CONCLUSIONS Increased measure in IIS parameters (IGF-I, IGF-II, and IGFBP-3) relate to better cognitive state in later life. There were apparent associations with specific cognitive domains (IGF-II relating to memory; IGFBP-3 relating to memory, processing speed, and WMHV; and IGF-I/IGFBP-3 molar ratio related to slower processing speed). IGFs and IGFBP-3 are associated with favorable cognitive function outcomes.
Collapse
Affiliation(s)
- Antoine Salzmann
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Dorina Cadar
- Department of Behavioural Science and Health, University College London, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - William Coath
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Carole H Sudre
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Victoria Garfield
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| |
Collapse
|
12
|
Ferreira ST. Brain insulin, insulin-like growth factor 1 and glucagon-like peptide 1 signalling in Alzheimer's disease. J Neuroendocrinol 2021; 33:e12959. [PMID: 33739563 DOI: 10.1111/jne.12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Although the brain was once considered an insulin-independent organ, insulin signalling is now recognised as being central to neuronal health and to the function of synapses and brain circuits. Defective brain insulin signalling, as well as related signalling by insulin-like growth factor 1 (IGF-1), is associated with neurological disorders, including Alzheimer's disease, suggesting that cognitive impairment could be related to a state of brain insulin resistance. Here, I briefly review key epidemiological/clinical evidence of the association between diabetes, cognitive decline and AD, as well as findings of reduced components of insulin signalling in AD brains, which led to the initial suggestion that AD could be a type of brain diabetes. Particular attention is given to recent studies illuminating mechanisms leading to neuronal insulin resistance as a key driver of cognitive impairment in AD. Evidence of impaired IGF-1 signalling in AD is also examined. Finally, we discuss potentials and possible limitations of recent and on-going therapeutic approaches based on our increased understanding of the roles of brain signalling by insulin, IGF-1 and glucagon-like peptide 1 in AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Neuroprotective Biomarkers and Cognitive Function in a Long-Term Prospective Population-based Study of Aging US Adults. Alzheimer Dis Assoc Disord 2020; 34:31-39. [PMID: 31385821 DOI: 10.1097/wad.0000000000000341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Relationships between brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1), aldosterone, and cognition in aging were evaluated in the population-based Epidemiology of Hearing Loss Study (1993 to present). METHODS Beginning in 1998 to 2000, cognitive impairment was assessed by report of physician diagnoses and the Mini-Mental State Examination. In 2009 to 2010 and 2013 to 2016, information was collected on diagnosis of mild cognitive impairment/dementia. Decline in cognitive function was assessed by principal component analysis from additional tests administered during 2009 to 2010 and 2013 to 2016. BDNF, IGF-1, and aldosterone were measured in serum collected in 1998 to 2000. RESULTS There were 1970 participants (mean age=66.9 y; 59.1% female) without cognitive impairment at baseline. Among women, low BDNF was associated with 16-year incident cognitive impairment [hazard ratio=1.76; 95% confidence interval (CI)=1.04, 2.98]. Among men, increasing IGF-1 was associated with decreased risk [per SD: relative risk (RR)=0.57; 95% CI=0.35, 0.92], whereas increasing aldosterone levels were associated with increased risk (per SD: RR=1.28; 95% CI=1.01, 1.62) for 5-year incident mild cognitive impairment/dementia. Overall, low BDNF was associated with increased risk (RR=1.52; 95% CI=1.02, 2.26) for 5-year cognitive decline. CONCLUSION Low levels of serum BDNF and IGF-1 were associated with poorer cognition during aging. There may be differential biomarker effects by sex.
Collapse
|
14
|
Zhang WB, Aleksic S, Gao T, Weiss EF, Demetriou E, Verghese J, Holtzer R, Barzilai N, Milman S. Insulin-like Growth Factor-1 and IGF Binding Proteins Predict All-Cause Mortality and Morbidity in Older Adults. Cells 2020; 9:cells9061368. [PMID: 32492897 PMCID: PMC7349399 DOI: 10.3390/cells9061368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
While the growth hormone/insulin-like growth factor-1 (GH/IGF-1) pathway plays essential roles in growth and development, diminished signaling via this pathway in model organisms extends lifespan and health-span. In humans, circulating IGF-1 and IGF-binding proteins 3 and 1 (IGFBP-3 and 1), surrogate measures of GH/IGF-1 system activity, have not been consistently associated with morbidity and mortality. In a prospective cohort of independently-living older adults (n = 840, mean age 76.1 ± 6.8 years, 54.5% female, median follow-up 6.9 years), we evaluated the age- and sex-adjusted hazards for all-cause mortality and incident age-related diseases, including cardiovascular disease, diabetes, cancer, and multiple-domain cognitive impairment (MDCI), as predicted by baseline total serum IGF-1, IGF-1/IGFBP-3 molar ratio, IGFBP-3, and IGFBP-1 levels. All-cause mortality was positively associated with IGF-1/IGFBP-3 molar ratio (HR 1.28, 95% CI 1.05–1.57) and negatively with IGFBP-3 (HR 0.82, 95% CI 0.680–0.998). High serum IGF-1 predicted greater risk for MDCI (HR 1.56, 95% CI 1.08–2.26) and composite incident morbidity (HR 1.242, 95% CI 1.004–1.538), whereas high IGFBP-1 predicted lower risk for diabetes (HR 0.50, 95% CI 0.29–0.88). In conclusion, higher IGF-1 levels and bioavailability predicted mortality and morbidity risk, supporting the hypothesis that diminished GH/IGF-1 signaling may contribute to human longevity and health-span.
Collapse
Affiliation(s)
- William B. Zhang
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Sandra Aleksic
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Tina Gao
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Erica F. Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
| | - Eleni Demetriou
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY 10033, USA;
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
- Department of Medicine, Division of Geriatrics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY 10033, USA;
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sofiya Milman
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
15
|
Pennuto M, Pandey UB, Polanco MJ. Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Front Neuroendocrinol 2020; 57:100821. [PMID: 32006533 DOI: 10.1016/j.yfrne.2020.100821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The pleiotropic peptide insulin-like growth factor 1 (IGF-I) regulates human body homeostasis and cell growth. IGF-I activates two major signaling pathways, namely phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt) and Ras/extracellular signal-regulated kinase (ERK), which contribute to brain development, metabolism and function as well as to neuronal maintenance and survival. In this review, we discuss the general and tissue-specific effects of the IGF-I pathways. In addition, we present a comprehensive overview examining the role of IGF-I in neurodegenerative diseases, such as spinal and muscular atrophy, amyotrophic lateral sclerosis, and polyglutamine diseases. In each disease, we analyze the disturbances of the IGF-I pathway, the modification of the disease protein by IGF-I signaling, and the therapeutic strategies based on the use of IGF-I developed to date. Lastly, we highlight present and future considerations in the use of IGF-I for the treatment of these disorders.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy; Padova Neuroscience Center (PNC), 35131 Padova, Italy; Myology Center (CIR-Myo), 35131 Padova, Italy.
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - María José Polanco
- Department of Pharmaceutic and Health Science, University San Pablo CEU, Campus Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| |
Collapse
|
16
|
Waters DL, Vlietstra L, Qualls C, Morley JE, Vellas B. Sex-specific muscle and metabolic biomarkers associated with gait speed and cognitive transitions in older adults: a 9-year follow-up. GeroScience 2020; 42:585-593. [PMID: 32002783 PMCID: PMC7205909 DOI: 10.1007/s11357-020-00163-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Physical frailty and cognitive frailty share biological mechanisms, but sex-specific biomarkers associated with transitions in gait speed and cognition during ageing are poorly understood.Gait speed, cognition (3MSE), body composition (DXA) and serological biomarkers were assessed annually over 9 years in 216 males (72.7 + 8.07 years) and 384 females (71.1 + 8.44 years). In females, maintaining normal gait speed was associated with lower percent body fat (IRR 0.793, p = 0.001, 95%CI 0.691-0.910) and lower lactate dehydrogenase (LDH) (IRR 0.623, p = 0.00, 95%CI 0.514-0.752), and in males, the association was with higher cholesterol (IRR 1.394, p = 0.001, 95%CI 1.154-1.684). Abnormal to normal gait speed transitions were associated with higher insulin in females (IRR 1.325, p = 0.022, 95%CI 1.041-1.685) and lower creatinine in males (IRR 0.520, p = 0.01, 95%CI 0.310-0.870). Normal to slow gait speed transitions in males were associated with IGF-1 (IRR 1.74, p = 0.022, 95%CI 1.08-2.79) and leptin in females (IRR 1.39, p = 0.043, 95%CI 1.01-1.91.) Maintaining normal cognition was associated with lower LDH in females (IRR 0.276, p = 0.013, 95%CI 0.099-0.765) and higher appendicular skeletal muscle mass in males (IRR 1.52, p = 0.02, 95%CI 1.076-2.135). Improved cognition was associated with higher leptin (IRR 7.5, p = 0.03, 95%CI 1.282-44.34) and lower triglyceride (IRR 0.299, p = 0.017, 95%CI 0.110-0.809) in males. Education was protective against cognitive decline in females (IRR 0.84, p = 0.037, 0.732-0.982). Sex-specific biomarkers of muscle (LDH, Creatinine, IGF-1, APSM) and metabolism (%fat, insulin,cholesterol, leptin, tryglycerides) were associated with gait speed and cognitive transitions. These data suggest that modifiable biomarkers of muscle and metabolism could be targeted for interventions.
Collapse
Affiliation(s)
- D L Waters
- Department of Medicine and School of Physiotherapy, University of Otago, Dunedin, 9054, New Zealand.
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| | - L Vlietstra
- Department of Medicine and School of Physiotherapy, University of Otago, Dunedin, 9054, New Zealand
| | - C Qualls
- Department of Mathematics & Statistics and School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - J E Morley
- Division of Geriatric Medicine, Saint Louis University, 1402 South Grand Blvd, Room M238, St. Louis, MO, 63110-0250, USA
| | - B Vellas
- Department of Internal and Geriatrics Medicine, Gerontopole, CHU de Toulouse, UMR 1027 INSERM, University Toulouse III, Toulouse, France
| |
Collapse
|
17
|
Kord-Varkaneh H, Rinaldi G, Hekmatdoost A, Fatahi S, Tan SC, Shadnoush M, Khani V, Mousavi SM, Zarezadeh M, Salamat S, Bawadi H, Rahmani J. The influence of vitamin D supplementation on IGF-1 levels in humans: A systematic review and meta-analysis. Ageing Res Rev 2020; 57:100996. [PMID: 31816443 DOI: 10.1016/j.arr.2019.100996] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Inconsistencies exist with regard to influence of vitamin D supplementation on IGF-1 levels. The inconsistencies could be attributed to several factors, such as dosage and duration of intervention, among others. To address these inconsistencies, this study was conducted to determine the impact of vitamin D supplementation on IGF-1 levels through a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS A comprehensive systematic search was carried out in PubMed/MEDLINE, Web of Science, SCOPUS and Embase for RCTs that investigated the impact of vitamin D intake on circulating IGF-1 levels from inception until June 2019. Weighted mean difference (WMD) with the 95 % CI were applied for estimating combined effect size. Subgroup analysis was performed to specify the source of heterogeneity among studies. RESULTS Pooled results from eight studies demonstrated an overall non-significant increase in IGF-1 following vitamin D supplementation (WMD: 4 ng/ml, 95 % CI: -4 to 11). However, a significant degree of heterogeneity among studies was observed (I2 = 66 %). The subgroup analyses showed that vitamin D dosage of ≤1000 IU/day (WMD: 10 ng/ml) significantly increased IGF-1 compared to the vitamin D dosage of <1000 IU/day (WMD: -1 ng/ml). Moreover, intervention duration ≤12 weeks (WMD: 11 ng/ml) significantly increased IGF-1 compared to intervention duration <12 weeks (WMD: -3 ng/ml). In the epidemiological cohort study, participants under 60 years of age with a higher dietary vitamin D intake had significantly higher IGF-1 levels when compared to those with lower dietary vitamin D intake in second categories. CONCLUSION The main results indicate a non-significant increase in IGF-1 following vitamin D supplementation. Additionally, vitamin D dosages of <1000 IU/day and intervention durations of <12 weeks significantly raised IGF-1 levels.
Collapse
|
18
|
Andersen SL, Sweigart B, Sebastiani P, Drury J, Sidlowski S, Perls TT. Reduced Prevalence and Incidence of Cognitive Impairment Among Centenarian Offspring. J Gerontol A Biol Sci Med Sci 2019; 74:108-113. [PMID: 29931286 DOI: 10.1093/gerona/gly141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/18/2018] [Indexed: 01/20/2023] Open
Abstract
Background Centenarian offspring have better health and lower mortality in comparison to referent cohorts, however it is unknown whether they have preserved cognition at older ages. Methods This prospective study of 491 centenarian offspring and 270 referent participants without familial longevity (mean baseline age 75.5 years) from the New England Centenarian Study analyzed longitudinal cognitive assessments performed using the Telephone Interview for Cognitive Status. Logistic regression was used for cognitive impairment at baseline and Cox proportional hazards regression for risk of incident cognitive impairment. Results After adjustment for age, sex, education, stroke, and diabetes, offspring were 46% less likely to have baseline cognitive impairment (adjusted odds ratio 0.54, 95% CI 0.35-0.82) and were 27% less likely to become cognitively impaired over a median follow-up of 7.8 years (adjusted hazard ratio 0.73, 95% CI 0.53-0.99). Female gender was also independently associated with lower odds of baseline cognitive impairment and lower risk of incident cognitive impairment. Conclusions Familial longevity may confer exposure to genetic and environmental factors that predispose centenarian offspring to preservation of cognitive function at older ages. Centenarian offspring cohorts may provide an opportunity to study cognitive resilience associated with familial longevity.
Collapse
Affiliation(s)
- Stacy L Andersen
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts
| | - Benjamin Sweigart
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Julia Drury
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts
| | - Sara Sidlowski
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts
| | - Thomas T Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts
| |
Collapse
|
19
|
Fiocco AJ, Krieger L, D'Amico D, Parrott MD, Laurin D, Gaudreau P, Greenwood C, Ferland G. A systematic review of existing peripheral biomarkers of cognitive aging: Is there enough evidence for biomarker proxies in behavioral modification interventions?: An initiative in association with the nutrition, exercise and lifestyle team of the Canadian Consortium on Neurodegeneration in Aging. Ageing Res Rev 2019; 52:72-119. [PMID: 31059801 DOI: 10.1016/j.arr.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Peripheral biomarkers have shown significant value in predicting brain health and may serve as a useful proxy measurement in the assessment of evidence-based lifestyle behavior modification programs, including physical activity and nutrition programs, that aim to maintain cognitive function in late life. The aim of this systematic review was to elucidate which peripheral biomarkers are robustly associated with cognitive function among relatively healthy non-demented older adults. Following the standards for systematic reviews (PICO, PRIMSA), and employing MEDLINE and Scopus search engines, 222 articles were included in the review. Based on the review of biomarker proxies of cognitive health, it is recommended that a comprehensive biomarker panel, or biomarker signature, be developed as a clinical end point for behavior modification trials aimed at enhancing cognitive function in late life. The biomarker signature should take a multisystemic approach, including lipid, immune/inflammatory, and metabolic biomarkers in the biological signature index of cognitive health.
Collapse
Affiliation(s)
| | - Laura Krieger
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Danielle D'Amico
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | | | - Danielle Laurin
- Laval University, Centre de recherche du CHU de Québec, QC, Canada
| | | | | | | |
Collapse
|
20
|
Farias Quipildor GE, Mao K, Hu Z, Novaj A, Cui MH, Gulinello M, Branch CA, Gubbi S, Patel K, Moellering DR, Tarantini S, Kiss T, Yabluchanskiy A, Ungvari Z, Sonntag WE, Huffman DM. Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice. GeroScience 2019; 41:185-208. [PMID: 31076997 DOI: 10.1007/s11357-019-00065-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Disruptions in growth hormone/insulin-like growth factor-1 (GH/IGF-1) signaling have been linked to improved longevity in mice and humans. Nevertheless, while IGF-1 levels are associated with increased cancer risk, they have been paradoxically implicated with protection from other age-related conditions, particularly in the brain, suggesting that strategies aimed at selectively increasing central IGF-1 action may have favorable effects on aging. To test this hypothesis, we generated inducible, brain-specific (TRE-IGF-1 × Camk2a-tTA) IGF-1 (bIGF-1) overexpression mice and studied effects on healthspan. Doxycycline was removed from the diet at 12 weeks old to permit post-development brain IGF-1 overexpression, and animals were monitored up to 24 months. Brain IGF-1 levels were increased approximately twofold in bIGF-1 mice, along with greater brain weights, volume, and myelin density (P < 0.05). Age-related changes in rotarod performance, exercise capacity, depressive-like behavior, and hippocampal gliosis were all attenuated specifically in bIGF-1 male mice (P < 0.05). However, chronic brain IGF-1 failed to prevent declines in cognitive function or neurovascular coupling. Therefore, we performed a short-term intranasal (IN) treatment of either IGF-1 or saline in 24-month-old male C57BL/6 mice and found that IN IGF-1 treatment tended to reduce depressive (P = 0.09) and anxiety-like behavior (P = 0.08) and improve motor coordination (P = 0.07) and unlike transgenic mice improved motor learning (P < 0.05) and visuospatial and working memory (P < 0.05). These data highlight important sex differences in how brain IGF-1 action impacts healthspan and suggest that translational approaches that target IGF-1 centrally can restore cognitive function, a possibility that should be explored as a strategy to combat age-related cognitive decline.
Collapse
Affiliation(s)
- Gabriela E Farias Quipildor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zunju Hu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ardijana Novaj
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Gulinello
- Behavioral Core Facility, Dominick S. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sriram Gubbi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Internal Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Khushbu Patel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Douglas R Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
22
|
Di Benedetto S, Gaetjen M, Müller L. The Modulatory Effect of Gender and Cytomegalovirus-Seropositivity on Circulating Inflammatory Factors and Cognitive Performance in Elderly Individuals. Int J Mol Sci 2019; 20:ijms20040990. [PMID: 30823516 PMCID: PMC6412896 DOI: 10.3390/ijms20040990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by a chronic increase in the systemic levels of inflammatory cytokines even in ostensibly healthy individuals. The drivers of age-related increase in systemic inflammation are unclear but one potential contributor may be a persistent infection with Cytomegalovirus (CMV). In this study, we characterized the inflammatory status of 161 older participants recruited to undergo a six-month training intervention. We investigated the influence of gender and CMV-seropositivity on the main inflammatory and anti-inflammatory circulating biomarkers, such as cytokines, receptor antagonist, soluble receptor, immune cells, and relevant metabolic markers. We found that both gender and CMV-seropositivity modulate circulating peripheral biomarkers, and that CMV-infection modifies associations among the latter. Moreover, we observed an interaction between CMV-serostatus and gender associations with cognitive abilities: gender differences in fluid intelligence (Gf) and working memory (WM) were noted only in CMV-negative individuals. Finally, we found that in the CMV-seronegative participants Gf, episodic memory (EM), and WM correlated negatively with pro-inflammatory tumor necrosis factor (TNF); and EM correlated positively with anti-inflammatory interleukin (IL)-10. In CMV-seropositive individuals EM and Gf correlated negatively with pro-inflammatory IL-6, while EM, Gf, and WM correlated negatively with anti-inflammatory IL-1RA. We conclude that both CMV-serostatus and gender may modulate neuroimmune factors, cognitive performance and the relationship between the two domains and should therefore be considered in comparative and interventional studies with elderly people.
Collapse
Affiliation(s)
- Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
- Center for Medical Research, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany.
| | - Marcel Gaetjen
- Becton Dickinson Biosciences, Tullastr. 8-12, 69126 Heidelberg, Germany.
| | - Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
| |
Collapse
|
23
|
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 2018; 61:T171-T185. [PMID: 29739805 PMCID: PMC5988994 DOI: 10.1530/jme-18-0093] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF1, its role in the aging brain remains complex and controversial. While IGF1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF1 in that context. Appreciating the dual, at times opposing 'Dr Jekyll' and 'Mr Hyde' characteristics of IGF1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF1-related interventions.
Collapse
Affiliation(s)
- Sriram Gubbi
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal MedicineJacobi Medical Center, Bronx, New York, USA
| | - Gabriela Farias Quipildor
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of GeneticsAlbert Einstein College of Medicine, Bronx, New York, USA
| | - Derek M Huffman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
24
|
Wennberg AMV, Hagen CE, Machulda MM, Hollman JH, Roberts RO, Knopman DS, Petersen RC, Mielke MM. The association between peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging. Neurobiol Aging 2018; 66:68-74. [PMID: 29547749 PMCID: PMC5924628 DOI: 10.1016/j.neurobiolaging.2017.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022]
Abstract
Levels of insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3, and their ratio in the blood may be useful for monitoring those at risk of cognitive and functional decline. However, the association between IGF measures and functional and cognitive outcomes has been mixed, and the associations may vary by sex. The present study investigated the cross-sectional, sex-specific associations between serum measures total IGF-1, IGFBP-3, and the IGF-1/IGFBP-3 ratio, gait speed, and cognition in 1320 cognitively unimpaired participants aged 50-95 years enrolled in the Mayo Clinic Study of Aging. We used multivariable linear regression models to determine the association between IGF measures and gait speed or cognitive test performance by sex. IGF measures were not associated with cognitive or functional performance among men. Among women, higher levels of log total IGF-1 and IGFBP-3 were associated with better performance in attention, visuospatial, and global cognitive domains, independent of the gait speed. These findings suggest that among women, IGF measures are associated with cognition, and these associations are independent of function.
Collapse
Affiliation(s)
| | - Clinton E Hagen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - John H Hollman
- Department of Physical Medicine and Rehabilitation, Rochester, MN, USA
| | - Rosebud O Roberts
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald C Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Hébert JM, Vijg J. Cell Replacement to Reverse Brain Aging: Challenges, Pitfalls, and Opportunities. Trends Neurosci 2018; 41:267-279. [PMID: 29548515 DOI: 10.1016/j.tins.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
Current antiaging strategies focusing on druggable targets have met with relatively limited success to date. Replacement of cells, tissues, and organs could provide an alternative means for targeting age-induced damage and potentially eliminating some of it. However, before this is a viable option, numerous challenges need to be addressed. Most notably, whether the brain, which defines our self-identity, is amenable to replacement therapies is unclear. Here, we consider whether progressive cell replacement is a potential approach to reverse brain aging without grossly altering function. We focus mainly on the neocortex, seat of our highest cognitive functions, because of abundant knowledge on neocortical development, plasticity, and how the neocortex can functionally incorporate new neurons. We outline the primary challenges for brain cell replacement, and key areas that require further investigation.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res Rev 2018; 42:14-27. [PMID: 29233786 DOI: 10.1016/j.arr.2017.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline.
Collapse
|
27
|
Ben-Avraham D, Govindaraju DR, Budagov T, Fradin D, Durda P, Liu B, Ott S, Gutman D, Sharvit L, Kaplan R, Bougnères P, Reiner A, Shuldiner AR, Cohen P, Barzilai N, Atzmon G. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. SCIENCE ADVANCES 2017; 3:e1602025. [PMID: 28630896 PMCID: PMC5473676 DOI: 10.1126/sciadv.1602025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/26/2017] [Indexed: 05/26/2023]
Abstract
Although both growth hormone (GH) and insulin-like growth factor 1 (IGF-1) signaling were shown to regulate life span in lower organisms, the role of GH signaling in human longevity remains unclear. Because a GH receptor exon 3 deletion (d3-GHR) appears to modulate GH sensitivity in humans, we hypothesized that this polymorphism could play a role in human longevity. We report a linear increased prevalence of d3-GHR homozygosity with age in four independent cohorts of long-lived individuals: 841 participants [567 of the Longevity Genes Project (LGP) (8% increase; P = 0.01), 152 of the Old Order Amish (16% increase; P = 0.02), 61 of the Cardiovascular Health Study (14.2% increase; P = 0.14), and 61 of the French Long-Lived Study (23.5% increase; P = 0.02)]. In addition, mega analysis of males in all cohorts resulted in a significant positive trend with age (26% increase; P = 0.007), suggesting sexual dimorphism for GH action in longevity. Further, on average, LGP d3/d3 homozygotes were 1 inch taller than the wild-type (WT) allele carriers (P = 0.05) and also showed lower serum IGF-1 levels (P = 0.003). Multivariate regression analysis indicated that the presence of d3/d3 genotype adds approximately 10 years to life span. The LGP d3/d3-GHR transformed lymphocytes exhibited superior growth and extracellular signal-regulated kinase activation, to GH treatment relative to WT GHR lymphocytes (P < 0.01), indicating a GH dose response. The d3-GHR variant is a common genetic polymorphism that modulates GH responsiveness throughout the life span and positively affects male longevity.
Collapse
Affiliation(s)
- Danny Ben-Avraham
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Diddahally R. Govindaraju
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Temuri Budagov
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Delphine Fradin
- INSERM U986, Pincus Building, Bicêtre Hospital, Paris Sud University, 94275 Le Kremlin Bicêtre, France
| | - Peter Durda
- Department of Pathology University of Vermont, 208 South Park Drive, Colchester, VT 05446, USA
| | - Bing Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandy Ott
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Danielle Gutman
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pierre Bougnères
- INSERM U986, Pincus Building, Bicêtre Hospital, Paris Sud University, 94275 Le Kremlin Bicêtre, France
- INSERM U1169 and Department of Pediatric Endocrinology and Diabetes, Bicêtre Hospital, Pôle I3E, Paris Sud University, 94275 Le Kremlin Bicêtre, France
| | - Alex Reiner
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alan R. Shuldiner
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Geriatrics Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD 20420, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|