1
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Kim HJ, Yun SP, Kim HJ, Kim H, Park SW. Deficiency of purinergic P2Y2 receptor impairs the recovery after renal ischemia-reperfusion injury and accelerates renal fibrosis and tubular senescence in mice. Sci Rep 2024; 14:31932. [PMID: 39738595 PMCID: PMC11686187 DOI: 10.1038/s41598-024-83411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR. KO mice showed severe kidney dysfunction and structural damage compared to WT mice. KO mice showed higher senescence-associated β-galactosidase expression and shorter telomere length than WT mice. Consistently, interstitial collagen accumulation and fibrogenic mediators were significantly upregulated in KO mice. Renal apoptosis and inflammation were highly elevated in KO mice. Interestingly, cell proliferation as shown by Ki-67 and PCNA expression, was increased for 3 days after IR in WT mice, whereas it maintained increased for 14 days in KO mice. Cell cycle inhibitors, p16 and p21, and regulators JunB and cyclin E were significantly increased after IR in KO mice, suggesting that cell cycle progression was impaired during recovery after IR. Proximal tubular cells treated with JunB siRNA showed a reduced expression of fibrogenic mediators and proinflammatory cytokines, consistent with the mice treated with MRS2768, a P2Y2 agonist that downregulated JunB levels. In conclusion, P2Y2R reduces kidney tissue damage after IR and repairs the tissue properly by regulating JunB-mediated signaling during the recovery process.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
2
|
Ahumada-Castro U, Puebla-Huerta A, Cuevas-Espinoza V, Lovy A, Cardenas JC. Keeping zombies alive: The ER-mitochondria Ca 2+ transfer in cellular senescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119099. [PMID: 34274397 DOI: 10.1016/j.bbamcr.2021.119099] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
Collapse
Affiliation(s)
- Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Andrea Puebla-Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Victor Cuevas-Espinoza
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, USA
| | - J Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Guo H, Deng H, Liu H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Nickel carcinogenesis mechanism: cell cycle dysregulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4893-4901. [PMID: 33230792 DOI: 10.1007/s11356-020-11764-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Nickel (Ni) is a widely distributed metal in the environment and an important pollutant due to its widespread industrial applications. Ni has various toxicity in humans and experimental animals, including carcinogenicity. However, the carcinogenic effects of Ni remain troublesome. Cell cycle dysregulation may be an important carcinogenic mechanism and is also a potential molecular mechanism for Ni complexes anti-cancerous effects. Therefore, we conducted a literature review to summarize the effects of Ni on cell cycle. Up to now, there were three different reports on Ni-induced cell cycle arrest: (i) Ni can induce cell cycle arrest in G0/G1 phase, phosphorylation and degradation of IkappaB kinase-alpha (IKKα)-dependent cyclin D1 and phosphoinositide-3-kinase (PI3K)/serine-threonine kinase (Akt) pathway-mediated down-regulation of expressions of cyclin-dependent kinases 4 (CDK4) play important role in it; (ii) Ni can induce cell cycle arrest in S phase, but the molecular mechanism is not known; (iii) G2/M phase is the target of Ni toxicity, and Ni compounds cause G2/M cell cycle phase arrest by reducing cyclinB1/Cdc2 interaction through the activation of the ataxia telangiectasia mutated (ATM)-p53-p21 and ATM-checkpoint kinase inhibitor 1 (Chk1)/Chk2-cell division cycle 25 (Cdc25) pathways. Revealing the mechanisms of cell cycle dysregulation associated with Ni exposure may help in the prevention and treatment of Ni-related carcinogenicity and toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural information engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
4
|
Pattarachotanant N, Tencomnao T. Citrus hystrix Extracts Protect Human Neuronal Cells against High Glucose-Induced Senescence. Pharmaceuticals (Basel) 2020; 13:ph13100283. [PMID: 33007805 PMCID: PMC7600454 DOI: 10.3390/ph13100283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Citrus hystrix (CH) is a beneficial plant utilized in traditional folk medicine to relieve various health ailments. The antisenescent mechanisms of CH extracts were investigated using human neuroblastoma cells (SH-SY5Y). Phytochemical contents and antioxidant activities of CH extracts were analyzed using a gas chromatograph–mass spectrometer (GC-MS), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) assay. Effects of CH extracts on high glucose-induced cytotoxicity, reactive oxygen species (ROS) generation, cell cycle arrest and cell cycle-associated proteins were assessed using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, non-fluorescent 2′, 7′-dichloro-dihydrofluorescein diacetate (H2DCFDA) assay, flow cytometer and Western blot. The extracts protected neuronal senescence by inhibiting ROS generation. CH extracts induced cell cycle progression by releasing senescent cells from the G1 phase arrest. As the Western blot confirmed, the mechanism involved in cell cycle progression was associated with the downregulation of cyclin D1, phospho-cell division cycle 2 (pcdc2) and phospho-Retinoblastoma (pRb) proteins. Furthermore, the Western blot showed that extracts increased Surtuin 1 (SIRT1) expression by increasing the phosphorylation of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Collectively, CH extracts could protect high glucose-induced human neuronal senescence by inducing cell cycle progression and up-regulation of SIRT1, thus leading to the improvement of the neuronal cell functions.
Collapse
Affiliation(s)
- Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-1533
| |
Collapse
|
5
|
Jia C, Ke-Hong C, Fei X, Huan-Zi D, Jie Y, Li-Ming W, Xiao-Yue W, Jian-Guo Z, Ya-Ni H. Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. Kidney Int 2020; 98:645-662. [PMID: 32739204 DOI: 10.1016/j.kint.2020.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Premature senescence of renal tubular epithelial cell (RTEC), which is involved in kidney fibrosis, is a key event in the progression of diabetic nephropathy. However, the underlying mechanism remains unclear. Here we investigated the role and mechanism of decoy receptor 2 (DcR2) in kidney fibrosis and the senescent phenotype of RTEC. DcR2 was specifically expressed in senescent RTEC and associated with kidney fibrosis in patients with diabetic nephropathy and mice with streptozotocin-induced with diabetic nephropathy. Knockdown of DcR2 decreased the expression of α-smooth muscle actin, collagen I, fibronectin and serum creatinine levels in streptozotocin-induced mice. DcR2 knockdown also inhibited the expression of senescent markers p16, p21, senescence-associated beta-galactosidase and senescence-associated heterochromatic foci and promoted the secretion of a senescence-associated secretory phenotype including IL-6, TGF-β1, and matrix metalloproteinase 2 in vitro and in vivo. However, DcR2 overexpression showed the opposite effects. Quantitative proteomics and validation studies revealed that DcR2 interacted with peroxiredoxin 1 (PRDX1), which regulated the cell cycle and senescence. Knockdown of PRDX1 upregulated p16 and cyclin D1 while downregulating cyclin-dependent kinase 6 expression in vitro, resulting in RTEC senescence. Furthermore, PRDX1 knockdown promoted DcR2-induced p16, cyclin D1, IL-6, and TGF-β1 expression, whereas PRDX1 overexpression led to the opposite results. Subsequently, DcR2 regulated PRDX1 phosphorylation, which could be inhibited by the specific tyrosine kinase inhibitor genistein. Thus, DcR2 mediated the senescent phenotype of RTEC and kidney fibrosis by interacting with PRDX1. Hence, DcR2 may act as a potential therapeutic target for the amelioration of diabetic nephropathy progression.
Collapse
Affiliation(s)
- Chen Jia
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Ke-Hong
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Fei
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dai Huan-Zi
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang Jie
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Wang Li-Ming
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Wang Xiao-Yue
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhang Jian-Guo
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - He Ya-Ni
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, Asghari R, Kafil HS, Safa A, Mahmoodpoor A, Yousefi B. MicroRNAs, DNA damage response and ageing. Biogerontology 2020; 21:275-291. [PMID: 32067137 DOI: 10.1007/s10522-020-09862-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Ageing is a multifactorial and integrated gradual deterioration affecting the most of biological process of cells. MiRNAs are differentially expressed in the cellular senescence and play important role in regulating of genes expression involved in features of ageing. The perception of miRNAs functions in ageing regulation can be useful in clarifying the mechanisms underlying ageing and designing of therapeutic strategies. The preservation of genomic integrity through DNA damage response (DDR) is related to the process of cellular senescence. The recent studies have shown that miRNAs has directly regulated the expression of numerous proteins in DDR pathways. In this review study, DDR pathways, miRNA biogenesis and functions, current finding on DDR regulations, molecular biology of ageing and the role of miRNAs in these processes have been studied. Finally, a brief explanation about the therapeutic function of miRNAs in ageing regarding its regulation of DDR has been provided.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mostafa Mir
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Roghaieh Asghari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Stem Cell Center Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam. .,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Center Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Tan YJ, Lee YT, Petersen SH, Kaur G, Kono K, Tan SC, Majid AMSA, Oon CE. BZD9L1 sirtuin inhibitor as a potential adjuvant for sensitization of colorectal cancer cells to 5-fluorouracil. Ther Adv Med Oncol 2019; 11:1758835919878977. [PMID: 31632470 PMCID: PMC6767736 DOI: 10.1177/1758835919878977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background: This study aims to investigate the combination effect of a novel sirtuin
inhibitor (BZD9L1) with 5-fluorouracil (5-FU) and to determine its molecular
mechanism of action in colorectal cancer (CRC). Methods: BZD9L1 and 5-FU either as single treatment or in combination were tested
against CRC cells to evaluate synergism in cytotoxicity, senescence and
formation of micronucleus, cell cycle and apoptosis, as well as the
regulation of related molecular players. The effects of combined treatments
at different doses on stress and apoptosis, migration, invasion and cell
death mechanism were evaluated through two-dimensional and three-dimensional
cultures. In vivo studies include investigation on the
combination effects of BZD9L1 and 5-FU on colorectal tumour xenograft growth
and an evaluation of tumour proliferation and apoptosis using
immunohistochemistry. Results: Combination treatments exerted synergistic reduction on cell viability on HCT
116 cells but not on HT-29 cells. Combined treatments reduced survival,
induced cell cycle arrest, apoptosis, senescence and micronucleation in HCT
116 cells through modulation of multiple responsible molecular players and
apoptosis pathways, with no effect in epithelial mesenchymal transition
(EMT). Combination treatments regulated SIRT1 and SIRT2 protein expression
levels differently and changed SIRT2 protein localization. Combined
treatment reduced growth, migration, invasion and viability of HCT 116
spheroids through apoptosis, when compared with the single treatment. In
addition, combined treatment was found to reduce tumour growth in
vivo through reduction of tumour proliferation and necrosis
compared with the vehicle control group. This highlights the potential
therapeutic effects of BZD9L1 and 5-FU towards CRC. Conclusion: This study may pave the way for use of BZD9L1 as an adjuvant to 5-FU in
improving the therapeutic efficacy for the treatment of colorectal
cancer.
Collapse
Affiliation(s)
- Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Sven H Petersen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Koji Kono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Choon Tan
- USains Biomics Laboratory Testing Services Sdn. Bhd., Universiti Sains Malaysia, Penang, Malaysia
| | - Amin M S Abdul Majid
- EMAN Testing and Research Laboratories, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia
| |
Collapse
|
8
|
Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF. Cyclin-Dependent Kinase 2 in Cellular Senescence and Cancer. A Structural and Functional Review. Curr Drug Targets 2019; 20:716-726. [DOI: 10.2174/1389450120666181204165344] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 02/03/2023]
Abstract
<P>Background: Cyclin-dependent kinase 2 (CDK2) has been studied due to its role in the
cell-cycle progression. The elucidation of the CDK2 structure paved the way to investigate the molecular
basis for inhibition of this enzyme, with the coordinated efforts combining crystallography with
functional studies.
</P><P>
Objective: Our goal here is to review recent functional and structural studies directed to understanding
the role of CDK2 in cancer and senescence.
</P><P>
Methods: There are over four hundreds of crystallographic structures available for CDK2, many of
them with binding affinity information. We use this abundance of data to analyze the essential features
responsible for the inhibition of CDK2 and its function in cancer and senescence.
</P><P>
Results: The structural and affinity data available CDK2 makes it possible to have a clear view of the
vital CDK2 residues involved in molecular recognition. A detailed description of the structural basis
for ligand binding is of pivotal importance in the design of CDK2 inhibitors. Our analysis shows the
relevance of the residues Leu 83 and Asp 86 for binding affinity. The recent findings revealing the
participation of CDK2 inhibition in senescence open the possibility to explore the richness of structural
and affinity data for a new era in the development of CDK2 inhibitors, targeting cellular senescence.
</P><P>
Conclusion: Here, we analyzed structural information for CDK2 in combination with inhibitors and
mapped the molecular aspects behind the strongest CDK2 inhibitors for which structures and ligandbinding
affinity data were available. From this analysis, we identified the significant intermolecular
interactions responsible for binding affinity. This knowledge may guide the future development of
CDK2 inhibitors targeting cancer and cellular senescence.</P>
Collapse
Affiliation(s)
- Priscylla Andrade Volkart
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| | - Gabriela Bitencourt-Ferreira
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| | - André Arigony Souto
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| | - Walter Filgueira de Azevedo
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| |
Collapse
|
9
|
Zhang C, Wang F, Xie Z, Chen L, Sinkemani A, Yu H, Wang K, Mao L, Wu X. Dysregulation of YAP by the Hippo pathway is involved in intervertebral disc degeneration, cell contact inhibition, and cell senescence. Oncotarget 2017; 9:2175-2192. [PMID: 29416763 PMCID: PMC5788631 DOI: 10.18632/oncotarget.23299] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023] Open
Abstract
The Hippo pathway plays important roles in wound healing, tissue repair and regeneration, and in the treatment of degenerative diseases, by regulating cell proliferation and apoptosis in mammals. Intervertebral disc degeneration (IDD) is one of the major causes of low back pain, a widespread issue associated with a heavy economic burden. However, the mechanism underlying how the Hippo pathway regulates IDD is not well understood. Here, we demonstrate that the Hippo pathway is involved in natural IDD. Activation and dephosphorylation of yes-associated protein (YAP) were observed in younger rat discs, and decreased gradually with age. Surprisingly, Hippo pathway suppression was accompanied by overexpression of YAP, caused by acute disc injury, suggesting a limited ability for self-repair in IDD. We also demonstrated that YAP is inhibited by cell-to-cell contact via the Hippo pathway in vitro. Phosphorylation by large tumor suppressor kinases 1/2 (LATS1/2) led to cytoplasmic translocation and inactivation of YAP. YAP dephosphorylation was mainly localized in the nucleus and regulated by the Hippo pathway, whereas YAP dephosphorylation occurred in the cytoplasm and was associated with nucleus pulposus cell (NPC) senescence. Moreover, NPCs were transfected with shYAP and it accelerates the premature senescence of cells by interfered Hippo pathway through YAP. Therefore, our results indicate that the Hippo pathway plays an important role in maintaining the homeostasis of intervertebral discs and controlling NPC proliferation.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhiyang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haomin Yu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Kun Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Mao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|