1
|
Biswas P, Woodard DR, Hollingsworth T, Khan NW, Lazaro DR, Berry AM, Dagar M, Pan Y, Garland D, Shaw PX, Oka C, Iwata T, Jablonski MM, Ayyagari R. Ablation of Htra1 leads to sub-RPE deposits and photoreceptor abnormalities. JCI Insight 2025; 10:e178827. [PMID: 39927462 PMCID: PMC11948579 DOI: 10.1172/jci.insight.178827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/13/2024] [Indexed: 02/11/2025] Open
Abstract
The high-temperature requirement A1 (HTRA1), a serine protease, has been demonstrated to play a pivotal role in the extracellular matrix (ECM) and has been reported to be associated with the pathogenesis of age-related macular degeneration (AMD). To delineate its role in the retina, the phenotype of homozygous Htra1-KO (Htra1-/-) mice was characterized to examine the effect of Htra1 loss on the retina and retinal pigment epithelium (RPE) with age. The ablation of Htra1 led to a significant reduction in rod and cone photoreceptor function, primary cone abnormalities followed by rods, and atrophy in the RPE compared with WT mice. Ultrastructural analysis of Htra1-/- mice revealed RPE and Bruch's membrane (BM) abnormalities, including the presence of sub-RPE deposits at 5 months (m) that progressed with age accompanied by increased severity of pathology. Htra1-/- mice also displayed alterations in key markers for inflammation, autophagy, and lipid metabolism in the retina. These results highlight the crucial role of HTRA1 in the retina and RPE. Furthermore, this study allows for the Htra1-/- mouse model to be utilized for deciphering mechanisms that lead to sub-RPE deposit phenotypes including AMD.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, UCSD, La Jolla, California, USA
| | | | - T.J. Hollingsworth
- The Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Naheed W. Khan
- Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Manisha Dagar
- Shiley Eye Institute, UCSD, La Jolla, California, USA
| | - Yang Pan
- The National Institute of Sensory Organs (NISO), NHO Tokyo Medical Center, Tokyo, Japan
| | | | - Peter X. Shaw
- Shiley Eye Institute, UCSD, La Jolla, California, USA
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takeshi Iwata
- The National Institute of Sensory Organs (NISO), NHO Tokyo Medical Center, Tokyo, Japan
| | - Monica M. Jablonski
- The Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | |
Collapse
|
2
|
Gabai V, Bakin E, Langs MH, Delvin R, Krasny S, Baranau Y, Polyakov S, Patapovich M, Gvozdev S, Kardash M, Bazyleuski A, Yeliseyeu A, Lelikov E, Barodka A, Shneider A. Efficacy of p62-expressing plasmid in treatment of canine osteoarthritis. RESEARCH SQUARE 2024:rs.3.rs-5461004. [PMID: 39606451 PMCID: PMC11601851 DOI: 10.21203/rs.3.rs-5461004/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Introduction Osteoarthritis (OA) is a progressive degenerative disease of synovial joints which is highly prevalent in dogs and results in lameness, loss of joint function and mobility, chronic pain, and reduced quality of life. Traditional OA management consist of non-steroidal anti-inflammatory drugs and remains challenging because of significant side effects, thus there is an urgent need for new effective and safe therapeutics for OA. Methods Here we present the results of our one-arm open-label pilot clinical study of our novel biologics, a DNA plasmid encoding SQSTM/p62, in 17 companion dogs suffering from OA. The dogs were injected intramuscular with p62-plasmid once a week for 10 weeks, and pain relief was measured using the CBPI (canine brief pain inventory) validated scale. Assessment by the owners was done weekly. The 11 parameters of CBPI are grouped in three major domains: pain severity score (PSS), pain interference score (PIS) and overall impression of the quality of life (QoL). Results Treatment with the p62-plasmid improved all 11 parameters of CBPI as well as PSS, PIS and QoL: mean PSS score after the treatment decreased from 5.25 to 3.25, PIS score - from 7.0 to 3.27, and number of dogs with excellent and good QoL due to treatment increased from 1 to 12. Overall, the treatment success rate (i.e. a reduction ≥1 in PSS and ≥ 2 in PIS) was 90%. Importantly, similar to our previous studies with dogs and humans, no significant side effects of the p62-plasmid during the whole treatment period were observed. Discussion We believe that anti-inflammatory effects of the p62-plasmid, which we described in our previous works, may play an important role in observed clinical benefits and it is worthy of further studies as a novel OA treatment modality.
Collapse
Affiliation(s)
| | - Evgeny Bakin
- Institute of Bioinformatics Research and Education (IBRE), Belgrade, Serbia
| | | | | | - Sergei Krasny
- N.N. Alexandrov National Cancer Centre of Belarus Minsk, Belarus
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ebrahimi M, Ebrahimi M, Vergroesen JE, Aschner M, Sillanpää M. Environmental exposures to cadmium and lead as potential causes of eye diseases. J Trace Elem Med Biol 2024; 82:127358. [PMID: 38113800 DOI: 10.1016/j.jtemb.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Humans are exposed to cadmium and lead in various regions of the world daily due to industrial development and climate change. Increasing numbers of preclinical and clinical studies indicate that heavy metals, such as cadmium and lead, play a role in the pathogenesis of eye diseases. Excessive exposure to heavy metals such as cadmium and lead can increase the risk of impaired vision. Therefore, it is essential to better characterize the role of these non-essential metals in disease etiology and progression. This article discusses the potential role of cadmium and lead in the development of age-related eye diseases, including age-related macular degeneration, cataracts, and glaucoma. Furthermore, we discuss how cadmium and lead affect ocular cells and provide an overview of putative pathological mechanisms associated with their propensity to damage the eye.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Ebrahimi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
4
|
Kohandel Z, Darrudi M, Naseri K, Samini F, Aschner M, Pourbagher-Shahri AM, Samarghandian S. The Role of Resveratrol in Aging and Senescence: A Focus on Molecular Mechanisms. Curr Mol Med 2024; 24:867-875. [PMID: 37278035 DOI: 10.2174/1566524023666230602162949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Resveratrol (Res), a polyphenol found in red wine, has been shown to decelerate aging, the progressive loss of physiological integrity and cellular senescence, characterized by the inability to progress through the cell cycle. No successful clinical trials have yet to be completed in humans on dose limitations. Yet, the potent anti-aging and anti-senescence efficacy of Res has been documented in several in vivo animal models. In this review, we highlight the molecular mechanisms of Res efficacy in antiaging disorders, such as diabetes, neurodegenerative disorders, eye diseases, and cardiovascular diseases.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Majid Darrudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| | - Kobra Naseri
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariborz Samini
- Department of Neurosurgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Budnik A, Palewski M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Konstantynowicz J, Kamiński K, Konopińska J. The prevalence of age-related macular degeneration and osteoporosis in the older Polish population: Is there a link? PLoS One 2023; 18:e0293143. [PMID: 37856460 PMCID: PMC10586687 DOI: 10.1371/journal.pone.0293143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Age-related macular degeneration is the primary cause of irreversible blindness in developed countries, whereas the global prevalence of osteoporosis-a major public health problem-is 19.7%. Both diseases may coincide in populations aged >50 years, leading to serious health deterioration and decreased quality of life. OBJECTIVES This study aimed to analyze the relationship between age-related macular degeneration and osteopenia, defined as decreased bone mineral density, in the Polish population. METHODS Participants were derived from the population-based Bialystok PLUS Study. Randomized individuals were stratified into two groups, those with age-related macular degeneration (AMD-1 group) or without age-related macular degeneration (AMD-0 group). Using a cutoff value of -1.0 to identify low bone mass, participants with femoral bone mineral density T-scores above -1.0 were assigned to the normal reference, and those with T-scores below -1.0 were assigned to the osteopenia category. Among 436 Caucasian participants aged 50-80 years (252 women, 184 men), the prevalence of age-related macular degeneration was 9.9% in women and 12.0% in men. Decreased bone mineral density based on T-scores was observed in 36.9% of women and in 18.9% of men. Significant differences in femoral bone mineral density between the AMD-0 and AMD-1 groups were detected only in men (mean difference [95% confidence interval] = 0.11 (0.02; 0.13); p = 0.012 for femoral bone mineral density, and 0.73 [0.015; 0.94]; p = 0.011 for the femoral T-score). No associations were observed between bone mineral density and age-related macular degeneration in women. CONCLUSION Decreased femoral bone mineral density may be associated with a higher risk of age-related macular degeneration in men, but a causal link remains unclear.
Collapse
Affiliation(s)
- Agnieszka Budnik
- Department of Ophthalmology, Medical University of Białystok, Białystok, Poland
| | - Marcin Palewski
- Department of Ophthalmology, Medical University of Białystok, Białystok, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Białystok, Białystok, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Population Research Centre, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Białystok, Białystok, Poland
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Białystok, Białystok, Poland
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
6
|
Agas D, Marchegiani A, Laus F, Gabai V, Sufianov AA, Shneider A, Sabbieti MG. p62/SQSTM1 indirectly mediates remote multipotent mesenchymal cells and rescues bone loss and bone marrow integrity in ovariectomized rats. J Cell Physiol 2023; 238:407-419. [PMID: 36565474 DOI: 10.1002/jcp.30937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Intramuscular administration of p62/SQSTM1 (sequestosome1)-encoding plasmid demonstrated an anticancer effect in rodent models and dogs as well as a high safety profile and the first evidence of clinical benefits in humans. Also, an anti-inflammatory effect of the plasmid was reported in several rodent disease models. Yet, the mechanisms of action for the p62 plasmid remain unknown. Here, we tested a hypothesis that the p62-plasmid can act through the modulation of bone marrow multipotent mesenchymal cells (MSCs). We demonstrated that a p62 plasmid can affect MSCs indirectly by stimulating p62-transfected cells to secrete an active ingredient(s) sensed by untransfected MSCs. When we transfected MSCs with the p62-plasmid, collected their supernatant, and added it to an untransfected MSCs culture, it switched the differentiation state and prompt osteogenic responses of the untransfected MSCs. According to an accepted viewpoint, ovariectomy leads to bone pathology via dysregulation of MSCs, and restoring the MSC homeostasis would restore ovariectomy-induced bone damage. To validate our in vitro observations in a clinically relevant in vivo model, we administered the p62 plasmid to ovariectomized rats. It partially reversed bone loss and notably reduced adipogenesis with concurrent reestablishing of the MSC subpopulation pool within the bone marrow. Overall, our study suggests that remote modulation of progenitor MSCs via administering a p62-encoding plasmid may constitute a mechanism for its previously reported effects and presents a feasible disease-preventing and/or therapeutic strategy.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Albert A Sufianov
- Federal Center of Neurosurgery, Tyumen, Russian Federation.,Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Shneider
- CureLab Oncology Inc., Dedham, Massachusetts, USA.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | | |
Collapse
|
7
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
Sabbieti MG, Marchegiani A, Sufianov AA, Gabai VL, Shneider A, Agas D. P62/SQSTM1 beyond Autophagy: Physiological Role and Therapeutic Applications in Laboratory and Domestic Animals. Life (Basel) 2022; 12:life12040539. [PMID: 35455030 PMCID: PMC9025487 DOI: 10.3390/life12040539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammation is the preceding condition for the development of mild and severe pathological conditions, including various forms of osteopenia, cancer, metabolic syndromes, neurological disorders, atherosclerosis, cardiovascular, lung diseases, etc., in human and animals. The inflammatory status is induced by multifarious intracellular signaling cascades, where cytokines, chemokines, arachidonic acid metabolites, adhesion molecules, immune cells and other components foster a “slow burn” at a local or systemic level. Assuming that countering inflammation limits the development of inflammation-based diseases, a series of new side-effects-free therapies was assessed in experimental and domestic animals. Within the targets of the drug candidates for quenching inflammation, an archetypal autophagic gear, the p62/sqstm1 protein, has currently earned attention from researchers. Intracellular p62 has been recently coined as a multi-task tool associated with autophagy, bone remodeling, bone marrow integrity, cancer progression, and the maintenance of systemic homeostasis. Accordingly, p62 can act as an effective suppressor of inflamm-aging, reducing oxidative stress and proinflammatory signals. Such an operational schedule renders this protein an effective watchdog for degenerative diseases and cancer development in laboratory and pet animals. This review summarizes the current findings concerning p62 activities as a molecular hub for cell and tissues metabolism and in a variety of inflammatory diseases and other pathological conditions. It also specifically addresses the applications of exogenous p62 (DNA plasmid) as an anti-inflammatory and homeostatic regulator in the treatment of osteoporosis, metabolic syndrome, age-related macular degeneration and cancer in animals, and the possible application of p62 plasmid in other inflammation-associated diseases.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.S.); (A.M.)
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.S.); (A.M.)
| | - Albert A. Sufianov
- Federal Center of Neurosurgery, 625032 Tyumen, Russia;
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alexander Shneider
- CureLab Oncology Inc., Dedham, MA 02026, USA; (V.L.G.); (A.S.)
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.S.); (A.M.)
- Correspondence:
| |
Collapse
|
9
|
Fan X, Huang T, Tong Y, Fan Z, Yang Z, Yang D, Mao X, Yang M. p62 works as a hub modulation in the ageing process. Ageing Res Rev 2022; 73:101538. [PMID: 34890823 DOI: 10.1016/j.arr.2021.101538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
p62 (also known as SQSTM1) is widely used as a predictor of autophagic flux, a process that allows the degradation of harmful and unnecessary components through lysosomes to maintain protein homeostasis in cells. p62 is also a stress-induced scaffold protein that resists oxidative stress. The multiple domains in its structure allow it to be connected with a variety of vital signalling pathways, autophagy and the ubiquitin proteasome system (UPS), allowing p62 to play important roles in cell proliferation, apoptosis and survival. Recent studies have shown that p62 is also directly or indirectly involved in the ageing process. In this review, we summarize in detail the process by which p62 regulates ageing from multiple ageing-related signs with the aim of providing new insight for the study of p62 in ageing.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
10
|
MicroRNA-100 Mediates Hydrogen Peroxide-Induced Apoptosis of Human Retinal Pigment Epithelium ARPE-19 Cells. Pharmaceuticals (Basel) 2021; 14:ph14040314. [PMID: 33915898 PMCID: PMC8067261 DOI: 10.3390/ph14040314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
This study investigated the regulatory role of microRNA 100 (miR-100) in hydrogen peroxide (H2O2)-induced apoptosis of human retinal pigment epithelial ARPE-19 cells. H2O2 induced oxidative cell death of cultured ARPE-19 cells was measured by cytotoxicity assay. qRT-PCR was used to quantify cytosolic and extracellular contents of miR-100. Kinase and miR-100 inhibition treatments were applied to determine the regulatory signaling pathways involved in cell death regulation. H2O2 dose-dependently reduced viability of ARPE-19 cells and simultaneously upregulated miR-100 levels in both cytosolic and extracellular compartments. Western blotting detection indicated that H2O2 elicited hyperphosphorylation of PI3K/Akt, ERK1/2, JNK, p38 MAPK, and p65 NF-κB. Further kinase inhibition experiments demonstrated that PI3K, p38 MAPK, and NF-κB activities were involved in oxidative-stress-induced miR-100 upregulation in ARPE-19 cells, while blockade of PI3K, JNK, and NF-κB signaling significantly attenuated the oxidative cell death. Intriguingly, MiR-100 antagomir treatment exerted a cytoprotective effect against the H2O2-induced oxidative cell death through attenuating the oxidation-induced AMPK hyperphosphorylation, restoring cellular mTOR and p62/SQSTM1 levels and upregulating heme oxygenase-1 expression. These findings support that miR-100 at least in part mediates H2O2-induced cell death of ARPE-19 cells and can be regarded as a preventive and therapeutic target for retinal degenerative disease.
Collapse
|
11
|
Telegina DV, Kozhevnikova OS, Fursova AZ, Kolosova NG. Autophagy as a Target for the Retinoprotective Effects of the Mitochondria-Targeted Antioxidant SkQ1. BIOCHEMISTRY (MOSCOW) 2021; 85:1640-1649. [PMID: 33705301 DOI: 10.1134/s0006297920120159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Age-related macular degeneration (AMD) is a complex neurodegenerative disease, a main cause of vision loss in elderly people. The pathogenesis of dry AMD, the most common form of AMD (~ 80% cases), involves degenerative changes in the retinal pigment epithelium (RPE), which are closely associated with the age-associated impairments in autophagy. Reversion of these degenerative changes is considered as a promising approach for the treatment of this incurable disease. The purpose of our study was to assess the relationship between previously identified retinoprotective effects of the mitochondrial antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1) and its influence on the autophagy process in senescence-accelerated OXYS rats characterized by the development of AMD-like retinopathy (Wistar rats were used as a control). The treatment with SkQ1 (250 nmol/kg body weight) during the period of active disease progression (from 12 to 18 months of age) completely prevented progression of clinical manifestations of retinopathy in the OXYS rats, suppressed atrophic changes in the RPE cells and activated autophagy in the retina, which was evidenced by a significant decrease in the content of the multifunctional adapter protein p62/Sqstm1 and increase in the level of the Beclin1 gene mRNA. In general, the results obtained earlier and in the present study have shown that SkQ1 is a promising agent for prevention and suppression of AMD.
Collapse
Affiliation(s)
- D V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O S Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - A Zh Fursova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - N G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Vorozhtsov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1α Double Knock-Out Mice. Int J Mol Sci 2021; 22:ijms22041684. [PMID: 33567500 PMCID: PMC7915526 DOI: 10.3390/ijms22041684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. In our previous studies, we found that deficiencies in the nuclear factor, erythroid 2 like 2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) genes caused AMD-like pathological phenotypes in mice. In the present work, we show hijacked epithelial-mesenchymal transition (EMT) due to the common loss of PGC-1α and NFE2L2 (double knock-out, dKO) genes in aged animals. The implanted area was assessed by histology, immunohistochemistry and transmission electron microscopy. Confocal microscopy revealed altered regions in the filamentous actin ring. This contrasted with hexagonal RPE morphology in wild-type mice. The ultrastructural RPE features here illustrated loss of apical microvilli, alteration of cell-cell contact, loss of basal in-folding with deposits on Bruch’s membrane, and excessive lipofuscin deposition in dKO samples. We also found the expression of epithelial-mesenchymal transition transcription factors, such as Snail, Slug, collagen 1, vimentin and OB-cadherin, to be significantly different in dKO RPEs. An increased immunoreactivity of senescence markers p16, DEC1 and HMGB1 was also noted. These findings suggest that EMT and senescence pathways may intersect in the retinas of dKO mice. Both processes can be activated by damage to the RPE, which may be caused by increased oxidative stress resulting from the absence of NFE2L2 and PGC-1α genes, important for antioxidant defense. This dKO model may provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease.
Collapse
|
14
|
Keeling E, Chatelet DS, Tan NYT, Khan F, Richards R, Thisainathan T, Goggin P, Page A, Tumbarello DA, Lotery AJ, Ratnayaka JA. 3D-Reconstructed Retinal Pigment Epithelial Cells Provide Insights into the Anatomy of the Outer Retina. Int J Mol Sci 2020; 21:ijms21218408. [PMID: 33182490 PMCID: PMC7672636 DOI: 10.3390/ijms21218408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
The retinal pigment epithelium (RPE) is located between the neuroretina and the choroid, and plays a critical role in vision. RPE cells internalise outer segments (OS) from overlying photoreceptors in the daily photoreceptor renewal. Changes to RPE structure are linked with age and retinopathy, which has been described in the past by conventional 2D electron microscopy. We used serial block face scanning electron microscopy (SBF-SEM) to reconstruct RPE cells from the central mouse retina. Three-dimensional-reconstructed OS revealed the RPE to support large numbers of photoreceptors (90–216 per RPE cell). Larger bi-nucleate RPE maintained more photoreceptors, although their cytoplasmic volume was comparable to smaller mono-nucleate RPE supporting fewer photoreceptors. Scrutiny of RPE microvilli and interdigitating OS revealed the angle and surface area of contact between RPE and photoreceptors. Bi-nucleate RPE contained more mitochondria compared to mono-nucleate RPE. Furthermore, bi-nucleate cells contained larger sub-RPE spaces, supporting a likely association with disease. Use of perfusion-fixed tissues ensured the highest possible standard of preservation, providing novel insights into the 3D RPE architecture and changes linked with retinopathy. This study serves as a benchmark for comparing retinal tissues from donor eyes with age-related macular degeneration (AMD) and other retinopathies.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - David S. Chatelet
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.S.C.); (P.G.); (A.P.)
| | - Nicole Y. T. Tan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Farihah Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Rhys Richards
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Thibana Thisainathan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Patricia Goggin
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.S.C.); (P.G.); (A.P.)
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.S.C.); (P.G.); (A.P.)
| | - David A. Tumbarello
- Biological Sciences, Faculty of Environmental and Life Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK;
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
15
|
Cecarini V, Bonfili L, Gogoi O, Lawrence S, Venanzi FM, Azevedo V, Mancha-Agresti P, Drumond MM, Rossi G, Berardi S, Galosi L, Cuccioloni M, Angeletti M, Suchodolski JS, Pilla R, Lidbury JA, Eleuteri AM. Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer's disease: a pre-clinical study. Aging (Albany NY) 2020; 12:15995-16020. [PMID: 32855357 PMCID: PMC7485699 DOI: 10.18632/aging.103900] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegeneration characterized by neuron death ending in memory and cognitive decline. A major concern in AD research is the identification of new therapeutics that could prevent or delay the onset of the disorder, with current treatments being effective only in reducing symptoms. In this perspective, the use of engineered probiotics as therapeutic tools for the delivery of molecules to eukaryotic cells is finding application in several disorders. This work introduces a new strategy for AD treatment based on the use of a Lactobacilluslactis strain carrying one plasmid (pExu) that contains a eukaryotic expression cassette encoding the human p62 protein. 3xTg-AD mice orally administered with these bacteria for two months showed an increased expression of endogenous p62 in the brain, with a protein delivery mechanism involving both lymphatic vessels and neural terminations, and positive effects on the major AD hallmarks. Mice showed ameliorated memory, modulation of the ubiquitin-proteasome system and autophagy, reduced levels of amyloid peptides, and diminished neuronal oxidative and inflammatory processes. Globally, we demonstrate that these extremely safe, non-pathogenic and non-invasive bacteria used as delivery vehicles for the p62 protein represent an innovative and realistic therapeutic approach in AD.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Olee Gogoi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Solomon Lawrence
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- FAMINAS- BH, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- FAMINAS- BH, Belo Horizonte, Minas Gerais, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte, Brazil
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| |
Collapse
|
16
|
Eintracht J, Toms M, Moosajee M. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders. Front Cell Neurosci 2020; 14:265. [PMID: 32973457 PMCID: PMC7468397 DOI: 10.3389/fncel.2020.00265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications.
Collapse
Affiliation(s)
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Telegina DV, Kulikova EA, Kozhevnikova OS, Kulikov AV, Khomenko TM, Volcho KP, Salakhutdinov NF, Kolosova NG. Alterations of STEP46 and STEP61 Expression in the Rat Retina with Age and AMD-Like Retinopathy Development. Int J Mol Sci 2020; 21:E5182. [PMID: 32707818 PMCID: PMC7432912 DOI: 10.3390/ijms21155182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Tyrosine phosphatase STEP (striatal-enriched tyrosine protein phosphatase) is a brain-specific protein phosphatase and is involved in the pathogenesis of many neurodegenerative diseases. Here, we examined the impact of STEP on the development of age-related macular degeneration (AMD)-like pathology in senescence-accelerated OXYS rats. Using OXYS and Wistar rats (control), we for the first time demonstrated age-dependent changes in Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the retina. The increases in STEP protein levels and the decrease of total and STEP phosphatase activities in the retina (as compared with Wistar rats) preceded the manifestation of clinical signs of AMD in OXYS rats (age 20 days). There were no differences in these retinal parameters between 13-month-old Wistar rats and OXYS rats with pronounced signs of AMD. Inhibition of STEP with TC-2153 during progressive AMD-like retinopathy (from 9 to 13 months of age) reduced the thickness of the retinal inner nuclear layer, as evidenced by a decreased amount of parvalbumin-positive amacrine neurons. Prolonged treatment with TC-2153 had no effect on Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the OXYS retina. Thus, TC-2153 may negatively affect the retina through mechanisms unrelated to STEP.
Collapse
Affiliation(s)
- Darya V. Telegina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.A.K.); (O.S.K.); (A.V.K.); (N.G.K.)
| | - Elizabeth A. Kulikova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.A.K.); (O.S.K.); (A.V.K.); (N.G.K.)
| | - Oyuna S. Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.A.K.); (O.S.K.); (A.V.K.); (N.G.K.)
| | - Alexander V. Kulikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.A.K.); (O.S.K.); (A.V.K.); (N.G.K.)
| | - Tatyana M. Khomenko
- N.N. Vorozhtsov Institute of Organic Chemistry, SB RAS, 9 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (T.M.K.); (K.P.V.); (N.F.S.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Institute of Organic Chemistry, SB RAS, 9 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (T.M.K.); (K.P.V.); (N.F.S.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Institute of Organic Chemistry, SB RAS, 9 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (T.M.K.); (K.P.V.); (N.F.S.)
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.A.K.); (O.S.K.); (A.V.K.); (N.G.K.)
- N.N. Vorozhtsov Institute of Organic Chemistry, SB RAS, 9 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (T.M.K.); (K.P.V.); (N.F.S.)
| |
Collapse
|
18
|
Ponomarenko DM, Gabai VL, Sufianov AA, Kolesnikov SI, Shneider AM. Response of a chemo-resistant triple-negative breast cancer patient to a combination of p62-encoding plasmid, Elenagen, and CMF chemotherapy. Oncotarget 2020; 11:294-299. [PMID: 32076489 PMCID: PMC6980632 DOI: 10.18632/oncotarget.27323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancers are often characterized by aggressive behavior and short clinical course once they become chemotherapy-resistant. We describe below a patient who has shown a response to combination of chemotherapy with Elenagen, a plasmid encoding p62. Elenagen was tested in a previous phase I/II study in patients with refractory solid tumors and shown to be safe. Also, plasmid ability to halt tumor progression and restore sensitivity to chemotherapy was found. Preclinical data supports effects on tumor grade and change the tumor’s microenvironment in spontaneous canine breast cancers. We describe here a 48-year old female with triple-negative and BRCA1/2-negative breast cancer who had a primary resistance to chemotherapy and negative dynamics despite the use of multiple lines of treatments. Elenagen was applied intramuscularly at a dose of 1 mg weekly in combination with standard chemotherapy scheme CMF (cyclophosphamide, methotrexate, fluorouracil). In this patient we observed partial tumor regression (by 33%) and 19 weeks of progression-free survival. This first observed objective response to a combination of Elenagen with chemotherapy demonstrates that even in heavily pretreated chemo-resistant triple-negative tumor, the addition of Elenagen to a chemotherapy regimen can cause an objective response and increase in progression-free survival. Such a regimen is worthy of further study in a larger number of patients.
Collapse
Affiliation(s)
- Dmitry M Ponomarenko
- Irkutsk State Medical Academy of Postgraduate Education, Irkutsk Regional Cancer Dispensary, Irkutsk, Russian Federation
| | - Vladimir L Gabai
- CureLab Oncology, Inc, Dedham, MA, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Albert A Sufianov
- Federal Center of Neurosurgery, Tyumen, Russian Federation.,Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Sergey I Kolesnikov
- Russian Academy of Sciences, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation.,Research Center of Family Health and Reproduct ion Problems, Irkutsk, Russian Federation
| | - Alexander M Shneider
- CureLab Oncology, Inc, Dedham, MA, USA.,Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
19
|
Venanzi FM, Gabai V, Mariotti F, Magi GE, Vullo C, Sufianov AA, Kolesnikov SI, Shneider A. p62-DNA-encoding plasmid reverts tumor grade, changes tumor stroma, and enhances anticancer immunity. Aging (Albany NY) 2019; 11:10711-10722. [PMID: 31754084 PMCID: PMC6914433 DOI: 10.18632/aging.102486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Previously, we reported that the administration of a p62/SQSTM1-encoding plasmid demonstrates high safety and signs of clinical benefits for human cancer patients. The treatment also suppressed tumor growth and metastasis in dogs and mouse models. Here we investigated some mechanistic aspects of these effects. In mammary tumors bearing-dogs, i.m. injections of p62 plasmid reduced tumor sizes and their aggressive potential in 5 out of 6 animals, with one carcinoma switching to adenoma. The treatment increased levels of smooth muscle actin in stroma cells and type III collagen in the extracellular matrix, which correlate with a good clinical prognosis. The p62 treatment also increased the abundance of intratumoral T-cells. Because of the role of adaptive immunity cannot be tested in dogs, we compared the protective effects of the p62 plasmid against B16 melanoma in wild type C57BL/6J mice versus their SCID counterpart lacking lymphocytes. The plasmid was only protective in the wild type strain. Also, p62 plasmid amplified the anti-tumor effect of T-cell transfer from tumor-bearing animals to animals challenged with the same tumors. We conclude that the plasmid acts via re-modeling of the tumor microenvironment, making it more favorable for increased anti-cancer immunity. Thus, the p62-encoding plasmid might be a new adjuvant for cancer treatments.
Collapse
Affiliation(s)
- Franco M. Venanzi
- Sechenov First Moscow State Medical University, Moscow, Russia
- CureLab Oncology, Inc, Deadham, MA 02026, USA
| | - Vladimir Gabai
- CureLab Oncology, Inc, Deadham, MA 02026, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesca Mariotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cecilia Vullo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Albert A. Sufianov
- Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Center of Neurosurgery, Tyumen, Russia
| | - Sergey I. Kolesnikov
- Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- Research Center of Family Health and Reproduction Problems, Irkutsk, Russia
| | - Alexander Shneider
- Sechenov First Moscow State Medical University, Moscow, Russia
- CureLab Oncology, Inc, Deadham, MA 02026, USA
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
20
|
Kozhevnikova OS, Telegina DV, Tyumentsev MA, Kolosova NG. Disruptions of Autophagy in the Rat Retina with Age During the Development of Age-Related-Macular-Degeneration-like Retinopathy. Int J Mol Sci 2019; 20:E4804. [PMID: 31569675 PMCID: PMC6801580 DOI: 10.3390/ijms20194804] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the main causes of vision impairment in the elderly. Autophagy is the process of delivery of cytoplasmic components into lysosomes for cleavage; its age-related malfunction may contribute to AMD. Here we showed that the development of AMD-like retinopathy in OXYS rats is accompanied by retinal transcriptome changes affecting genes involved in autophagy. These genes are associated with kinase activity, immune processes, and FoxO, mTOR, PI3K-AKT, MAPK, AMPK, and neurotrophin pathways at preclinical and manifestation stages, as well as vesicle transport and processes in lysosomes at the progression stage. We demonstrated a reduced response to autophagy modulation (inhibition or induction) in the OXYS retina at age 16 months: expression of genes Atg5, Atg7, Becn1, Nbr1, Map1lc3b, p62, and Gabarapl1 differed between OXYS and Wistar (control) rats. The impaired reactivity of autophagy was confirmed by a decreased number of autophagosomes under the conditions of blocked autophagosome-lysosomal fusion according to immunohistochemical analysis and transmission electron microscopy. Thus, the development of AMD signs occurs against the background of changes in the expression of autophagy-related genes and a decrease in autophagy reactivity: the ability to enhance autophagic flux in response to stress.
Collapse
Affiliation(s)
- Oyuna S Kozhevnikova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia.
| | - Darya V Telegina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Mikhail A Tyumentsev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Pr. Lavrentyeva 10, Novosibirsk 630090, Russia
| |
Collapse
|
21
|
Mariotti F, Magi GE, Gavazza A, Vincenzetti S, Komissarov A, Shneider A, Venanzi FM. p62/SQSTM1 expression in canine mammary tumours: Evolutionary notes. Vet Comp Oncol 2019; 17:570-577. [PMID: 31332942 DOI: 10.1111/vco.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/30/2022]
Abstract
Recent studies highlighted the role of autophagy as a cardinal regulatory system for homeostasis and cancer-related signalling pathways. In this context, the deregulated expression of p62 - Sequestosome1 (p62/SQSTM1) - a protein acting both as an autophagy receptor and signalling hub, has been associated with tumour development and chronic inflammation. Multiple clinical studies test drugs targeting autophagy, and even more research is on the way to clinical trials. However, no comparative investigations have been carried out to identify adequate preclinical models to assess p62-based medicine. In veterinary oncology the role of p62 in cancer-related pathways has been largely ignored. We compared p62 sequences in multiple organisms and found that canine p62 significantly diverges from the humans and from other animals sequences. Then, we chart by immunohistochemistry the expression levels of p62 in canine mammary tumours. A total of 66 tumours and 10 non-neoplastic mammary samples were examined. The expression of p62 was higher in normal tissue and adenomas than carcinomas, with lowest levels of p62 protein detected in high grade carcinomas. In all cases examined the tumour stroma appeared to be p62-negative. Taken together our results would suggest that in dogs the association between p62 expression and cancer cells overturns that reported in human breast carcinoma, where p62 accumulates in malignant cells as compared to normal epithelium. Thus, at least in canine mammary tumours, p62 should be not considered a tumour-rejection antigen for an anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Francesca Mariotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | | | - Alex Shneider
- CureLab Oncology. Inc. Dedham Boston, Massachusetts.,Department of Molecular Biology, Ariel University, Ariel, Israel.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Franco Maria Venanzi
- CureLab Oncology. Inc. Dedham Boston, Massachusetts.,Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
22
|
Wang S, Wang X, Cheng Y, Ouyang W, Sang X, Liu J, Su Y, Liu Y, Li C, Yang L, Jin L, Wang Z. Autophagy Dysfunction, Cellular Senescence, and Abnormal Immune-Inflammatory Responses in AMD: From Mechanisms to Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3632169. [PMID: 31249643 PMCID: PMC6556250 DOI: 10.1155/2019/3632169] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Age-related macular degeneration (AMD) is a blinding disease caused by multiple factors and is the primary cause of vision loss in the elderly. The morbidity of AMD increases every year. Currently, there is no effective treatment option for AMD. Intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is currently the most widely used therapy, but it only aims at neovascularization, which is an intermediate pathological phenomenon of wet AMD, not at the etiological treatment. Anti-VEGF therapy can only temporarily delay the degeneration process of wet AMD, and AMD is easy to relapse after drug withdrawal. Therefore, it is urgent to deepen our understanding of the pathophysiological processes underlying AMD and to identify integrated or new strategies for AMD prevention and treatment. Recent studies have found that autophagy dysfunction in retinal pigment epithelial (RPE) cells, cellular senescence, and abnormal immune-inflammatory responses play key roles in the pathogenesis of AMD. For many age-related diseases, the main focus is currently the clearing of senescent cells (SNCs) as an antiaging treatment, thereby delaying diseases. However, in AMD, there is no relevant antiaging application. This review will discuss the pathogenesis of AMD and how interactions among RPE autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses are involved in AMD, and it will summarize the three antiaging strategies that have been developed, with the aim of providing important information for the integrated prevention and treatment of AMD and laying the ground work for the application of antiaging strategies in AMD treatment.
Collapse
Affiliation(s)
- Shoubi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Weijie Ouyang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahui Liu
- Department of Ophthalmology, Dongguan People's Hospital, Dongguan 523059, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
23
|
Chan CM, Huang DY, Sekar P, Hsu SH, Lin WW. Reactive oxygen species-dependent mitochondrial dynamics and autophagy confer protective effects in retinal pigment epithelial cells against sodium iodate-induced cell death. J Biomed Sci 2019; 26:40. [PMID: 31118030 PMCID: PMC6532221 DOI: 10.1186/s12929-019-0531-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Background Oxidative stress is a major factor in retinal pigment epithelium (RPE) cells injury that contributes to age-related macular degeneration (AMD). NaIO3 is an oxidative toxic agent and its selective RPE cell damage makes it as a reproducible model of AMD. Although NaIO3 is an oxidative stress inducer, the roles of ROS in NaIO3-elicited signaling pathways and cell viability have not been elucidated, and the effect of NaIO3 on autophagy in RPE cells remains elusive. Methods In human ARPE-19 cells, we used Annexin V/PI staining to determine cell viability, immunoblotting to determine protein expression and signaling cascades, confocal microscopy to determine mitochondrial dynamics and mitophagy, and Seahorse analysis to determine mitochondrial oxidative phosphorylation. Results We found that NaIO3 can dramatically induce cytosolic but not mitochondrial ROS production. NaIO3 can also activate ERK, p38, JNK and Akt, increase LC3II expression, induce Drp-1 phosphorylation and mitochondrial fission, but inhibit mitochondrial respiration. Confocal microscopic data indicated a synergism of NaIO3 and bafilomycin A1 on LC3 punctate formation, indicating the induction of autophagy. Using cytosolic ROS antioxidant NAC, we found that p38 and JNK are downstream signals of ROS and involve in NaIO3-induced cytotoxicity but not in mitochondrial dynamics, while ROS is also involved in LC3II expression. Unexpectedly NAC treatment upon NaIO3 stimulation leads to an enhancement of mitochondrial fragmentation and cell death. Moreover, inhibition of autophagy and Akt further enhances cell susceptibility to NaIO3. Conclusions We conclude that NaIO3-induced oxidative stress and cytosolic ROS production exert multiple signaling pathways that coordinate to control cell death in RPE cells. ROS-dependent p38 and JNK activation lead to cytotoxicity, while ROS-mediated autophagy and mitochondrial dynamic balance counteract the cell death mechanisms induced by NaIO3 in RPE cells.
Collapse
Affiliation(s)
- Chi-Ming Chan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Telegina DV, Kolosova NG, Kozhevnikova OS. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics 2019; 12:48. [PMID: 30871541 PMCID: PMC6417162 DOI: 10.1186/s12920-019-0493-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of AMD is poorly understood. A large body of evidence has corroborated the key role of neurotrophins in development, proliferation, differentiation, and survival of retinal cells. Neurotrophin deprivation has been proposed to contribute to retinal-cell death associated with neurodegenerative diseases. Little is known about the expression of the immature form of neurotrophins (proneurotrophins) and their mature form [e.g., nerve growth factor (proNGF and mNGF) and brain-derived neurotrophic factor (proBDNF and mBDNF)] in the retina during physiological aging and against the background of AMD. In addition, cell-specific localization of proteins NGF and BDNF in the retina during AMD development is not clear. Here, we evaluated contributions of the age-related alterations in the neurotrophin system to the development of AMD-like retinopathy in OXYS rats. METHODS Male OXYS rats at preclinical (20 days), early (3 months), and late (18 months) stages of the disease and age-matched male Wistar rats (as controls) were used. We performed immunohistochemical localization of NGF, BDNF, and their receptors TrkA, TrkB, and p75NTR by fluorescence microscopy in retinal sections from OXYS and Wistar rats. RESULTS We found increased NGF staining in Muller cells in 18-month-old OXYS rats (progressive stage of retinopathy). In contrast, we observed only subtle changes in the labeling of mature BDNF (mBDNF) and TrkB during the development of AMD-like retinopathy in OXYS rats. Using colocalization with vimentin and NeuN, we detected a difference in the cell type-specific localization of mBDNF between OXYS and Wistar rats. We showed that the mBDNF protein was located in Muller cells in OXYS rats, whereas in the Wistar retina, mBDNF immunoreactivity was detected in Muller cells and ganglion cells. During the development of AMD-like retinopathy, proBDNF dominated over mBDNF during increasing cell loss in the OXYS retina. CONCLUSIONS These data indicate that alterations in the balance of neurotrophic factors in the retina are involved in the development of AMD-like retinopathy in OXYS rats and confirm their participation in the pathogenesis of AMD in humans.
Collapse
Affiliation(s)
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
25
|
Cai J, Zhang H, Zhang YF, Zhou Z, Wu S. MicroRNA-29 enhances autophagy and cleanses exogenous mutant αB-crystallin in retinal pigment epithelial cells. Exp Cell Res 2018; 374:231-248. [PMID: 30513336 DOI: 10.1016/j.yexcr.2018.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
Retinal pigment epithelial cells (RPEs), a pigmented cell layer in the outer retina, are constantly exposed to photo-oxidative stress. Autophagy relieves the stress by removing oxidative protein adducts, protein aggregates, and damaged mitochondria. We previously found that miR-29 is downregulated in choroid/RPE tissue in a model of exudative age-related macular degeneration (AMD), suggesting that miR-29 deficiency may contribute to autophagy inhibition and AMD progression. Here we wanted to test whether overexpression of miR-29 in RPEs could enhance autophagy, thereby facilitating removal of drusen components. Indeed, overexpression of miR-29 in the RPEs increased autophagy, assessed by decreased protein levels of p62, increased lipid form of microtubule-associated protein light chain (LC3-II), and elevated autophagy flux. Furthermore, overexpression of miR-29 mitigated the formation of mutant αB-crystallin (R120G) protein aggregates. In probing the mechanism, we demonstrated that miR-29 post-transcriptionally repressed LAMPTOR1/p18 via targeting its 3'-UTRs of messenger RNA. MiR-29 overexpression and knockdown of LAMPTOR1/p18 led to limited mTORC1 recruitment to lysosomes and inhibition of mTORC1 activity. Altogether, miR-29 enhances autophagy which aids in removal of protein aggregates. These findings reveal a novel role of miR-29, which has the potential of being a therapeutic strategy for rescuing RPE degeneration in ocular disorders.
Collapse
Affiliation(s)
- Jingjing Cai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China.
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Yun-Feng Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Zhonglou Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China.
| |
Collapse
|