1
|
Xu M, Gan D, Zhang X, He X, Wu RX, Yin Y, Jin R, Li L, Tan Y, Chen F, Li X, Tian B. SLC30A4-AS1 Mediates the Senescence of Periodontal Ligament Stem Cells in Inflammatory Environments via the Alternative Splicing of TP53BP1. Cell Prolif 2025; 58:e13778. [PMID: 39572253 PMCID: PMC11969240 DOI: 10.1111/cpr.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 04/05/2025] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are key cells that suppress periodontal damage during both the progression and recovery stages of periodontitis. Although substantial evidence has demonstrated that incubation under an inflammatory condition may accelerate senescence of PDLSCs, whether cellular senescence in response to inflammatory incubation contributes to cell dysfunction remain unexplored. In this study, we first observed inflammation-caused PDLSC senescence in periodontitis based on comparisons of matched patients, and this cellular senescence was demonstrated in healthy cells that were subjected to inflammatory conditions. We subsequently designed further experiments to investigate the possible mechanism underlying inflammation-induced PDLSC senescence with a particular focus on the role of long noncoding RNAs (lncRNAs). LncRNA microarray analysis and functional gain/loss studies revealed SLC30A4-AS1 as a regulator of inflammation-mediated PDLSC senescence. By full-length transcriptome sequencing, we found that SLC30A4-AS1 interacted with SRSF3 to affect the alternative splicing (AS) of TP53BP1 and alter the expression of TP53BP1-204. Further functional studies showed that decreased expression of TP53BP1-204 reversed PDLSC senescence, and SLC30A4-AS1 overexpression-induced PDLSC senescence was abolished by TP53BP1-204 knockdown. Our data suggest for the first time that SLC30A4-AS1 plays a key role in regulating PDLSC senescence in inflammatory environments by modulating the AS of TP53BP1.
Collapse
Affiliation(s)
- Mei Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Dian Gan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xi‐Yu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiao‐Tao He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Rui Xin Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Yuan Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Rui Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Lin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Yu‐Jie Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Fa‐Ming Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Bei‐Min Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
2
|
Yu Z, Zhang X, Nong Y, Ding H, Fu X, Li F, Liu L, Li M, Peng W, Wu H, Liu F. Analysis of post-transcriptional regulatory signatures and immune cell subsets in premature ovarian insufficiency based on full-length transcriptome. Sci Rep 2025; 15:5533. [PMID: 39953072 PMCID: PMC11829046 DOI: 10.1038/s41598-025-89391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Premature ovarian insufficiency (POI) is a reproductive endocrine disorder characterized by infertility and the perimenopausal syndrome. Its genetic etiology is highly heterogeneous and not yet fully understood. Limited by short-read sequencing, the profile and structural variation of the full-length transcript for POI have remained elusive. Therefore, this study included peripheral blood samples from 5 POI patients and 5 controls, characterizing full-length transcripts of POI using Oxford Nanopore sequencing firstly. Ultimately, we identified 26,122 transcripts, including 7,724 novel gene loci and 13,593 novel transcripts. A total of 382 differentially expressed transcripts were identified, including 366 down-regulated and 16 up-regulated transcripts. Based on transcript structure variant analysis, 8,834 alternative splicing events, 65,254 alternative polyadenylation sites and 32 motifs were further identified, revealing the diversity sources of transcript isoforms, proteins and genetic complexity. Enrichment analysis of differentially AS genes suggested that the ferroptosis pathway may play an important role in the pathogenesis of POI.Additionally, 494 high-confidence lncRNAs, 1,768 transcription factors, and novel gene-coding regions were predicted based on full-length transcript sequence. Analysis of immune cell subtypes revealed the expression of CD8 + T cells and monocytes were down-regulated in POI, which was significantly positively correlated with AMH, suggesting that CD8 + T cells and monocytes could serve as potential diagnostic markers and immunotherapy targets for POI. Conclusively, this study provides new perspectives on the pathogenesis, post-transcriptional regulation mechanisms, and immune targets of POI.
Collapse
Affiliation(s)
- Zhaoyang Yu
- Guangdong Women and Children Hospital, Guangzhou, China
- Guangxi Medical University, Nanning, China
| | - Xiqian Zhang
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Yingqi Nong
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongfan Ding
- Guangxi Medical University, Nanning, China
- Shenzhen Baoan distric SongGang People's Hospital, Shenzhen, China
| | - Xiaoqian Fu
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feiwen Li
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lidan Liu
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mujun Li
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weilong Peng
- School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China
| | - Huimei Wu
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Fenghua Liu
- Guangdong Women and Children Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Zhang X, Liu F, Zhou Y. Coupling of alternative splicing and alternative polyadenylation. Acta Biochim Biophys Sin (Shanghai) 2024; 57:22-32. [PMID: 39632657 PMCID: PMC11802343 DOI: 10.3724/abbs.2024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
RNA splicing and 3'-cleavage and polyadenylation (CPA) are essential processes for the maturation of RNA. There have been extensive independent studies of these regulated processing events, including alternative splicing (AS) and alternative polyadenylation (APA). However, growing evidence suggests potential crosstalk between splicing and 3'-end processing in regulating AS or APA. Here, we first provide a brief overview of the molecular machines involved in splicing and 3'-end processing events, and then review recent studies on the functions and mechanisms of the crosstalk between the two processes. On the one hand, 3'-end processing can affect splicing, as 3'-end processing factors and CPA-generated polyA tail promote the splicing of the last intron. Beyond that, 3'-end processing factors can also influence the splicing of internal and terminal exons. Those 3'-end processing factors can also interact with different RNA-binding proteins (RBPs) to exert their effects on AS. The length of 3' untranslated region (3' UTR) can affect the splicing of upstream exons. On the other hand, splicing and CPA may compete within introns in generating different products. Furthermore, splicing within the 3' UTR is a significant factor contributing to 3' UTR diversity. Splicing also influences 3'-end processing through the actions of certain splicing factors. Interestingly, some classical RBPs play dual roles in both splicing and 3'-end processing. Finally, we discuss how long-read sequencing technologies aid in understanding the coordination of AS-APA events and envision that these findings may potentially promote the development of new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xueying Zhang
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Feiyan Liu
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Yu Zhou
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
4
|
Wang L, Yang X, Xie Y, Xu C, Dai X, Wang M, Liu Y. Nanoparticle-Protein Corona-Based Tissue Proteomics for the Aging Mouse Proteome Atlas. Anal Chem 2024; 96:14363-14371. [PMID: 39192740 DOI: 10.1021/acs.analchem.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Highly abundant proteins present in biological fluids and tissues significantly interfere with low-abundance protein identification by mass spectrometry (MS), limiting proteomic depth and hindering protein biomarker discovery. Herein, to enhance the coverage of tissue proteomics, we developed a nanoparticle-protein corona (NP-PC)-based method for the aging mouse proteome atlas. Based on this method, we investigated the complexity of life process of 5 major organs, including the heart, liver, spleen, lungs, and kidneys, from 4 groups of mice at different ages. Compared with the conventional strategy, NP-PC-based proteomics significantly increased the number of identified protein groups in the heart (from 3007 to 3927; increase of 30.6%), liver (from 2982 to 4610; increase of 54.6%), spleen (from 5047 to 7351; increase of 45.7%), lungs (from 4984 to 6903; increase of 38.5%), and kidneys (from 3550 to 5739; increase of 61.7%), and we identified a total of 10 104 protein groups. The overall data indicated that 3-week-old mice showed more differences compared with the other three age groups. The proteins of amino acid-related metabolism were increased in aged mice compared with those in the 3-week-old mice. Protein-related infections were increased in the spleen of the aged mice. Interestingly, the spliceosome-related pathway significantly changed from youth to elders in the liver, spleen, and lungs, indicating the vital role of the spliceosome during the aging process. Our established aging mouse organ proteome atlas provides comprehensive insights into understanding the aging process, and it may help in prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mengjie Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
5
|
Zhu QM, Hsu YHH, Lassen FH, MacDonald BT, Stead S, Malolepsza E, Kim A, Li T, Mizoguchi T, Schenone M, Guzman G, Tanenbaum B, Fornelos N, Carr SA, Gupta RM, Ellinor PT, Lage K. Protein interaction networks in the vasculature prioritize genes and pathways underlying coronary artery disease. Commun Biol 2024; 7:87. [PMID: 38216744 PMCID: PMC10786878 DOI: 10.1038/s42003-023-05705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
Population-based association studies have identified many genetic risk loci for coronary artery disease (CAD), but it is often unclear how genes within these loci are linked to CAD. Here, we perform interaction proteomics for 11 CAD-risk genes to map their protein-protein interactions (PPIs) in human vascular cells and elucidate their roles in CAD. The resulting PPI networks contain interactions that are outside of known biology in the vasculature and are enriched for genes involved in immunity-related and arterial-wall-specific mechanisms. Several PPI networks derived from smooth muscle cells are significantly enriched for genetic variants associated with CAD and related vascular phenotypes. Furthermore, the networks identify 61 genes that are found in genetic loci associated with risk of CAD, prioritizing them as the causal candidates within these loci. These findings indicate that the PPI networks we have generated are a rich resource for guiding future research into the molecular pathogenesis of CAD.
Collapse
Affiliation(s)
- Qiuyu Martin Zhu
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yu-Han H Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Frederik H Lassen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan T MacDonald
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Stead
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edyta Malolepsza
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - April Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Taibo Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Taiji Mizoguchi
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Schenone
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gaelen Guzman
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Tanenbaum
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadine Fornelos
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rajat M Gupta
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
| |
Collapse
|
6
|
Poser M, Sing KEA, Ebert T, Ziebolz D, Schmalz G. The rosetta stone of successful ageing: does oral health have a role? Biogerontology 2023; 24:867-888. [PMID: 37421489 PMCID: PMC10615965 DOI: 10.1007/s10522-023-10047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Ageing is an inevitable aspect of life and thus successful ageing is an important focus of recent scientific efforts. The biological process of ageing is mediated through the interaction of genes with environmental factors, increasing the body's susceptibility to insults. Elucidating this process will increase our ability to prevent and treat age-related disease and consequently extend life expectancy. Notably, centenarians offer a unique perspective on the phenomenon of ageing. Current research highlights several age-associated alterations on the genetic, epigenetic and proteomic level. Consequently, nutrient sensing and mitochondrial function are altered, resulting in inflammation and exhaustion of regenerative ability.Oral health, an important contributor to overall health, remains underexplored in the context of extreme longevity. Good masticatory function ensures sufficient nutrient uptake, reducing morbidity and mortality in old age. The relationship between periodontal disease and systemic inflammatory pathologies is well established. Diabetes, rheumatoid arthritis and cardiovascular disease are among the most significant disease burdens influenced by inflammatory oral health conditions. Evidence suggests that the interaction is bi-directional, impacting progression, severity and mortality. Current models of ageing and longevity neglect an important factor in overall health and well-being, a gap that this review intends to illustrate and inspire avenues for future research.
Collapse
Affiliation(s)
- Maximilian Poser
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany.
| | - Katie E A Sing
- Department of Medicine, Royal Devon and Exeter Hospital, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Thomas Ebert
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Yu P, Song S, Zhang X, Cui S, Wei G, Huang Z, Zeng L, Ni T, Sun A. Downregulation of apoptotic repressor AVEN exacerbates cardiac injury after myocardial infarction. Proc Natl Acad Sci U S A 2023; 120:e2302482120. [PMID: 37816050 PMCID: PMC10589712 DOI: 10.1073/pnas.2302482120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Myocardial infarction (MI) is a leading cause of heart failure (HF), associated with morbidity and mortality worldwide. As an essential part of gene expression regulation, the role of alternative polyadenylation (APA) in post-MI HF remains elusive. Here, we revealed a global, APA-mediated, 3' untranslated region (3' UTR)-lengthening pattern in both human and murine post-MI HF samples. Furthermore, the 3' UTR of apoptotic repressor gene, AVEN, is lengthened after MI, contributing to its downregulation. AVEN knockdown increased cardiomyocyte apoptosis, whereas restoration of AVEN expression substantially improved cardiac function. Mechanistically, AVEN 3' UTR lengthening provides additional binding sites for miR-30b-5p and miR-30c-5p, thus reducing AVEN expression. Additionally, PABPN1 (poly(A)-binding protein 1) was identified as a potential regulator of AVEN 3' UTR lengthening after MI. Altogether, our findings revealed APA as a unique mechanism regulating cardiac injury in response to MI and also indicated that the APA-regulated gene, AVEN, holds great potential as a critical therapeutic target for treating post-MI HF.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Department of Anthropology and Human Genetics, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai200032, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai200032, China
| | - Shujun Cui
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Department of Anthropology and Human Genetics, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Department of Anthropology and Human Genetics, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai200032, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai200032, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Department of Anthropology and Human Genetics, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai200438, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai200040, China
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot010021, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai201203, China
| | - Aijun Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Department of Anthropology and Human Genetics, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai200438, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai200032, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai201203, China
| |
Collapse
|
8
|
Maharati A, Samsami Y, Latifi H, Tolue Ghasaban F, Moghbeli M. Role of the long non-coding RNAs in regulation of Gemcitabine response in tumor cells. Cancer Cell Int 2023; 23:168. [PMID: 37580768 PMCID: PMC10426205 DOI: 10.1186/s12935-023-03004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM resistant cancer patients and define a suitable therapeutic strategy among these patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Jia R, Zheng ZM. Oncogenic SRSF3 in health and diseases. Int J Biol Sci 2023; 19:3057-3076. [PMID: 37416784 PMCID: PMC10321290 DOI: 10.7150/ijbs.83368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Serine/arginine rich splicing factor 3 (SRSF3) is an important multi-functional splicing factor, and has attracted increasing attentions in the past thirty years. The importance of SRSF3 is evidenced by its impressively conserved protein sequences in all animals and alternative exon 4 which represents an autoregulatory mechanism to maintain its proper cellular expression level. New functions of SRSF3 have been continuously discovered recently, especially its oncogenic function. SRSF3 plays essential roles in many cellular processes by regulating almost all aspects of RNA biogenesis and processing of many target genes, and thus, contributes to tumorigenesis when overexpressed or disregulated. This review updates and highlights the gene, mRNA, and protein structure of SRSF3, the regulatory mechanisms of SRSF3 expression, and the characteristics of SRSF3 targets and binding sequences that contribute to SRSF3's diverse molecular and cellular functions in tumorigenesis and human diseases.
Collapse
Affiliation(s)
- Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
10
|
Huang K, Wu S, Yang X, Wang T, Liu X, Zhou X, Huang L. CAFuncAPA: a knowledgebase for systematic functional annotations of APA events in human cancers. NAR Cancer 2023; 5:zcad004. [PMID: 36694725 PMCID: PMC9869079 DOI: 10.1093/narcan/zcad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread posttranscriptional regulation process. APA generates diverse mRNA isoforms with different 3' UTR lengths, affecting mRNA expression, miRNA binding regulation and alternative splicing events. Previous studies have demonstrated the important roles of APA in tumorigenesis and cancer progression through diverse aspects. Thus, a comprehensive functional landscape of diverse APA events would aid in a better understanding of the underlying mechanisms related to APA in human cancers. Here, we built CAFuncAPA (https://relab.xidian.edu.cn/CAFuncAPA/) to systematically annotate the functions of 15478 APA events in human pan-cancers. Specifically, we first identified APA events associated with cancer survival and tumor progression. We annotated the potential downstream effects of APA on genes/isoforms expression, regulation of miRNAs, RNA binding proteins (RBPs) and alternative splicing events. Moreover, we also identified up-regulators of APA events, including the effects of genetic variants on poly(A) sites and RBPs, as well as the effect of methylation phenotypes on APA events. These findings suggested that CAFuncAPA can be a helpful resource for a better understanding of APA regulators and potential functions in cancer biology.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaotong Yang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
11
|
Ivanova OM, Anufrieva KS, Kazakova AN, Malyants IK, Shnaider PV, Lukina MM, Shender VO. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis 2023; 14:77. [PMID: 36732501 PMCID: PMC9895063 DOI: 10.1038/s41419-022-05470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.
Collapse
Affiliation(s)
- Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Irina K Malyants
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| |
Collapse
|
12
|
Wen H, Chen W, Chen Y, Wei G, Ni T. Integrative analysis of Iso-Seq and RNA-seq reveals dynamic changes of alternative promoter, alternative splicing and alternative polyadenylation during Angiotensin II-induced senescence in rat primary aortic endothelial cells. Front Genet 2023; 14:1064624. [PMID: 36741323 PMCID: PMC9892061 DOI: 10.3389/fgene.2023.1064624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
In eukaryotes, alternative promoter (AP), alternative splicing (AS), and alternative polyadenylation (APA) are three crucial regulatory mechanisms that modulate message RNA (mRNA) diversity. Although AP, AS and APA are involved in diverse biological processess, whether they have dynamic changes in Angiotensin II (Ang II) induced senescence in rat primary aortic endothelial cells (RAECs), an important cellular model for studying cardiovascular disease, remains unclear. Here we integrated both PacBio single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short-read RNA sequencing (RNA-seq) to analyze the changes of AP, AS and APA in Ang II-induced senescent RAECs. Iso-Seq generated 36,278 isoforms from 10,145 gene loci and 65.81% of these isoforms are novel, which were further cross-validated by public data obtained by other techonologies such as CAGE, PolyA-Seq and 3'READS. APA contributed most to novel isoforms, followed by AS and AP. Further investigation showed that AP, AS and APA could all contribute to the regulation of isoform, but AS has more dynamic changes compared to AP and APA upon Ang II stimulation. Genes undergoing AP, AS and APA in Ang II-treated cells are enriched in various pathways related to aging or senescence, suggesting that these molecular changes are involved in functional alterations during Ang II-induced senescence. Together, the present study largely improved the annotation of rat genome and revealed gene expression changes at isoform level, extending the understanding of the complexity of gene regulation in Ang II-treated RAECs, and also provided novel clues for discovering the regulatory mechanism undelying Ang II caused vascular senescence and diseases.
Collapse
Affiliation(s)
- Haimei Wen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yu Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Gang Wei
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Ni
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Comprehensive mapping of alternative polyadenylation site usage and its dynamics at single-cell resolution. Proc Natl Acad Sci U S A 2022; 119:e2113504119. [PMID: 36454750 PMCID: PMC9894249 DOI: 10.1073/pnas.2113504119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Alternative polyadenylation (APA) plays an important role in posttranscriptional gene regulation such as transcript stability and translation efficiency. However, our knowledge about APA dynamics at the single-cell level is largely unexplored. Here, we developed single-cell polyadenylation sequencing, a strand-specific approach for sequencing the 3' end of transcripts, to investigate the landscape of APA at the single-cell level. By analyzing several cell lines, we found many genes using multiple polyA sites in bulk data are prone to use only one polyA site in each single cell. Interestingly, cell cycle genes were significantly enriched in genes with high variation in polyA site usages. Furthermore, the 414 genes showing a polyA site usage switch after cell synchronization enriched cell cycle genes, while the differentially expressed genes after cell synchronization did not enrich cell cycle genes. We further identified 812 genes showing polyA site usage changes between neighboring cell cycles, which were grouped into six clusters, with cell phase-specific functional categories enriched in each cluster. Deletion of one polyA site in MSL1 and SCCPDH results in slower and faster cell cycle progression, respectively, supporting polyA site usage switch played an important role in cell cycle. These results indicate that APA is an important layer for cell cycle regulation.
Collapse
|
14
|
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol 2022; 23:779-796. [PMID: 35798852 PMCID: PMC9261900 DOI: 10.1038/s41580-022-00507-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions (UTRs). The expression of alternative 3' UTR isoforms is highly cell type specific and is further controlled in a gene-specific manner by environmental cues. In this Review, we discuss how the dynamic, fine-grained regulation of APA is accomplished by several mechanisms, including cis-regulatory elements in RNA and DNA and factors that control transcription, pre-mRNA cleavage and post-transcriptional processes. Furthermore, signalling pathways modulate the activity of these factors and integrate APA into gene regulatory programmes. Dysregulation of APA can reprogramme the outcome of signalling pathways and thus can control cellular responses to environmental changes. In addition to the regulation of protein abundance, APA has emerged as a major regulator of mRNA localization and the spatial organization of protein synthesis. This role enables the regulation of protein function through the addition of post-translational modifications or the formation of protein-protein interactions. We further discuss recent transformative advances in single-cell RNA sequencing and CRISPR-Cas technologies, which enable the mapping and functional characterization of alternative 3' UTRs in any biological context. Finally, we discuss new APA-based RNA therapeutics, including compounds that target APA in cancer and therapeutic genome editing of degenerative diseases.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Chen H, Lv L, Liang R, Guo W, Liao Z, Chen Y, Zhu K, Huang R, Zhao H, Pu Q, Yuan Z, Zeng Z, Zheng X, Feng S, Qi X, Cai D. miR-486 improves fibrotic activity in myocardial infarction by targeting SRSF3/p21-Mediated cardiac myofibroblast senescence. J Cell Mol Med 2022; 26:5135-5149. [PMID: 36117396 PMCID: PMC9575141 DOI: 10.1111/jcmm.17539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
The regulation of fibrotic activities is key to improving pathological remodelling post‐myocardial infarction (MI). Currently, in the clinic, safe and curative therapies for cardiac fibrosis and improvement of the pathological fibrotic environment, scar formation and pathological remodelling post‐MI are lacking. Previous studies have shown that miR‐486 is involved in the regulation of fibrosis. However, it is still unclear how miR‐486 functions in post‐MI regeneration. Here, we first demonstrated that miR‐486 targeting SRSF3/p21 mediates the senescence of cardiac myofibroblasts to improve their fibrotic activity, which benefits the regeneration of MI by limiting scar size and post‐MI remodelling. miR‐486‐targeted silencing has high potential as a novel target to improve fibrotic activity, cardiac fibrosis and pathological remodelling.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Luocheng Lv
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Ruoxu Liang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Weimin Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Zhaofu Liao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Yilin Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Kuikui Zhu
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Ruijin Huang
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty, University of Bonn, Germany
| | - Hui Zhao
- Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Qin Pu
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty, University of Bonn, Germany
| | - Ziqiang Yuan
- Cancer Institute of New Jersey, Department of Medical Oncology, Robert Wood Johnson of Medical School, USA
| | - Zhaohua Zeng
- Division of Cardiology, Department of Internal Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Zheng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Schmauck-Medina T, Molière A, Lautrup S, Zhang J, Chlopicki S, Madsen HB, Cao S, Soendenbroe C, Mansell E, Vestergaard MB, Li Z, Shiloh Y, Opresko PL, Egly JM, Kirkwood T, Verdin E, Bohr VA, Cox LS, Stevnsner T, Rasmussen LJ, Fang EF. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany NY) 2022; 14:6829-6839. [PMID: 36040386 PMCID: PMC9467401 DOI: 10.18632/aging.204248] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 01/02/2023]
Abstract
Genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, loss of proteostasis, deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication were the original nine hallmarks of ageing proposed by López-Otín and colleagues in 2013. The proposal of these hallmarks of ageing has been instrumental in guiding and pushing forward research on the biology of ageing. In the nearly past 10 years, our in-depth exploration on ageing research has enabled us to formulate new hallmarks of ageing which are compromised autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation, among other emerging ones. Amalgamation of the 'old' and 'new' hallmarks of ageing may provide a more comprehensive explanation of ageing and age-related diseases, shedding light on interventional and therapeutic studies to achieve healthy, happy, and productive lives in the elderly.
Collapse
Affiliation(s)
- Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway
| | - Adrian Molière
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway
| | - Jianying Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow 30-348, Poland
| | - Helena Borland Madsen
- Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2400, Denmark
| | - Shuqin Cao
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway
| | - Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Els Mansell
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.,Stem Cell Laboratory, UCL Cancer Institute, University College London, London, UK
| | - Mark Bitsch Vestergaard
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Zhiquan Li
- Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2400, Denmark
| | - Yosef Shiloh
- The David and Inez Myers Laboratory of Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine P.O.B 39040, Tel Aviv, Israel
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,College of Medicine, Center for Genomics and Precision Medicine, National Taiwan University, Taipei City, Taiwan
| | - Thomas Kirkwood
- Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2400, Denmark.,UK National Innovation Centre for Ageing, The Catalyst, 3 Science Square, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK
| | - Eric Verdin
- Buck Institute for Research on Ageing, Novato, CA 94945, USA
| | - Vilhelm A Bohr
- Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2400, Denmark.,Section on DNA Repair, National Institute on Ageing, Baltimore, MD 21224, USA
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2400, Denmark
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog 1478, Norway.,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
17
|
Wang ZW, Pan JJ, Hu JF, Zhang JQ, Huang L, Huang Y, Liao CY, Yang C, Chen ZW, Wang YD, Shen BY, Tian YF, Chen S. SRSF3-mediated regulation of N6-methyladenosine modification-related lncRNA ANRIL splicing promotes resistance of pancreatic cancer to gemcitabine. Cell Rep 2022; 39:110813. [PMID: 35545048 DOI: 10.1016/j.celrep.2022.110813] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3) regulates mRNA alternative splicing of more than 90% of protein-coding genes, providing an essential source for biological versatility. This study finds that SRSF3 expression is associated with drug resistance and poor prognosis in pancreatic cancer. We also find that SRSF3 regulates ANRIL splicing and m6A modification of ANRIL in pancreatic cancer cells. More importantly, we demonstrate that m6A methylation on lncRNA ANRIL is essential for the splicing. Moreover, our results show that SRSF3 promotes gemcitabine resistance by regulating ANRIL's splicing and ANRIL-208 (one of the ANRIL spliceosomes) can enhance DNA homologous recombination repair (HR) capacity by forming a complex with Ring1b and EZH2. In conclusion, this study establishes a link between SRSF3, m6A modification, lncRNA splicing, and DNA HR in pancreatic cancer and demonstrates that abnormal alternative splicing and m6A modification are closely related to chemotherapy resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Jing-Jing Pan
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Jia-Qiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Long Huang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Can Yang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Zhi-Wen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Yao-Dong Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Bai-Yong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China.
| |
Collapse
|
18
|
Guo L, Ke H, Zhang H, Zou L, Yang Q, Lu X, Zhao L, Jiao B. TDP43 promotes stemness of breast cancer stem cells through CD44 variant splicing isoforms. Cell Death Dis 2022; 13:428. [PMID: 35504883 PMCID: PMC9065105 DOI: 10.1038/s41419-022-04867-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Alternative splicing (AS) is a promising clinical target for cancer treatment at the post-transcriptional level. We previously identified a unique AS profile in triple-negative breast cancer (TNBC), which is regulated by the splicing regulator TAR DNA-binding protein-43 (TDP43), thus indicating the crucial role of TDP43 in heterogeneous TNBC. Cluster of differentiation 44 (CD44), a widely recognized marker for breast cancer stem cells (BCSCs), is extensively spliced into CD44 variant AS isoforms (CD44v) during the development of breast cancer. At present, however, the regulatory mechanism of CD44v is not fully understood. In the current study, we found that loss of TDP43 inhibits BCSC stemness by reducing the abundance of CD44v. In addition, serine-arginine-rich splicing factor 3 (SRSF3), another splicing factor and partner of TDP43, acts as an upstream regulator of TDP43 to maintain CD44v isoforms and thereafter BCSC stemness. Mechanistically, SRSF3 stabilizes the mRNA of TDP43 by inhibiting nonsense-mediated decay (NMD). These findings illustrate the important role of complicated regulatory networks formed by splicing factors in TNBC progression, thus providing potential therapeutic targets from an AS perspective.
Collapse
Affiliation(s)
- Lu Guo
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201 China
| | - Hao Ke
- grid.260463.50000 0001 2182 8825Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031 Jiangxi China
| | - Honglei Zhang
- grid.440773.30000 0000 9342 2456Center for Scientific Research, Yunnan University of Chinese Medicine, Kunming, 650500 Yunnan China
| | - Li Zou
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qin Yang
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Xuemei Lu
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| | - Limin Zhao
- grid.260463.50000 0001 2182 8825Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031 Jiangxi China
| | - Baowei Jiao
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| |
Collapse
|
19
|
Li Z, Huang H, Wu X, Yu T, Xiao F, Zhou H, Shang A, Yang Y. SRSF3 Expression Serves as a Potential Biomarker for Prognostic and Immune Response in Pan-Cancer. Front Oncol 2022; 12:808530. [PMID: 35494088 PMCID: PMC9047863 DOI: 10.3389/fonc.2022.808530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Serine-rich splicing factor3 (SRSF3) plays an essential role in cell proliferation and inducing and maintaining of cancers as a proto-oncogene. However, the mechanisms of SRSF3 in pan-cancers are still unknown. In our study, a visualized prognostic landscape of SRSF3 in pan-cancer was investigated and the relationship between SRSF3 expression and immune infiltration was also investigated. The expression pattern and prognostic worth of SRSF3 among pan-cancers were explored through different databases, namely, the TCGA and Kaplan–Meier Plotter. Moreover, the survival analysis including Kaplan-Meier method for evaluating between groups was conducted. Further analyses including the correlation between expression SRSF expression and immune infiltration including tumor mutation burden (TMB), microsatellite instability (MSI) was investigated using Spearman test. In ACC, KIRP and UCEC cancer, upregulated expression of SRSF3 was associated with worse disease-free interval (DFI), representing a mechanism in promoting progression of tumor. Our results showed that SRSF3 expression was positively correlated immune cell infiltration, TMB, MSI in certain cancer types, indicating SRSF3 expression to potential value of therapy response. Additionally, we explored the functional characteristics of SRSF in vitro through western blot detecting the expression level of the apoptosis-related proteins in SW480 and 786-O cells. SRSF3 expression was upregulated in pan-cancer tissue compared with normal tissue, which confirmed by immunohistochemistry and its expression indicated poor overall survival and death-specific survival. Therefore, SRSF3 was found to be a possible biomarker for prognostic and therapeutic assessment through bioinformatic analysis. SRSF3 is expressed in various cancers and its high expression correlated to poor survival and disease progression. In summary, SRSF3 expression can be considered as a prognostic biomarker in pan-cancer and therapeutic evaluation.
Collapse
Affiliation(s)
- Zihua Li
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Huang
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinbo Wu
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Yu
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fajiao Xiao
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haichao Zhou
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Anquan Shang, ; Yunfeng Yang,
| | - Yunfeng Yang
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Anquan Shang, ; Yunfeng Yang,
| |
Collapse
|
20
|
Xiong J, Chen Y, Wang W, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett 2021; 23:21. [PMID: 34858525 PMCID: PMC8617561 DOI: 10.3892/ol.2021.13139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3; also known as SRp20), an important member of the family of SRSFs, is abnormally expressed in tumors, resulting in aberrant splicing of hub genes, such as CD44, HER2, MDM4, Rac family small GTPase 1 and tumor protein p53. Under normal conditions, the splicing and expression of SRSF3 are strictly regulated. However, the splicing, expression and phosphorylation of SRSF3 are abnormal in tumors. SRSF3 plays important roles in the occurrence and development of tumors, including the promotion of tumorigenesis, cellular proliferation, the cell cycle and metastasis, as well as inhibition of cell senescence, apoptosis and autophagy. SRSF3-knockdown significantly inhibits the proliferation and metastatic characteristics of tumor cells. Therefore, SRSF3 may be suggested as a novel anti-tumor target. The other biological functions of SRSF3 and its regulatory mechanisms are also summarized in the current review.
Collapse
Affiliation(s)
- Jian Xiong
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jing Sun
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| |
Collapse
|
21
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
22
|
Ye P, Yang Y, Zhang L, Zheng G. Prognostic Signatures of Alternative Splicing Events in Esophageal Carcinoma Based on TCGA Splice-Seq Data. Front Oncol 2021; 11:658262. [PMID: 34676158 PMCID: PMC8524056 DOI: 10.3389/fonc.2021.658262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
An alternative splicing (AS) event is a highly complex process that plays an essential role in post-transcriptional gene expression. Several studies have suggested that abnormal AS events were the primary element in the pathological process of cancer. However, few works are dedicated to the study of AS events in esophageal carcinoma (EC). In the present study, clinical information and RNA-seq data of EC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The percent spliced in (PSI) values of AS events were acquired from the TCGA Splice-seq. A total of 183 EC patients were enrolled in this study, and 2,212 AS events were found significantly associated with the overall survival of these patients by univariate Cox regression analysis. The prognostic signatures based on AS events were built by multivariate Cox analysis. Receiver operating characteristic (ROC) curves displayed that the area under the curve (AUC) of the following prognostic signatures, including exon skip (ES), alternate terminator (AT), alternate acceptor site (AA), alternate promoter (AP), alternate donor site (AD), retained intron (RI), and total events, was greater than 0.8, suggesting that these seven signatures had valuable prognosis prediction capacity. Finally, the risk score of prognostic signatures was indicated as an independent risk factor of survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to explore the function of splicing factors (SFs) that were associated with AS events. Also, the interactive network between AS events and SFs identified several hub genes and AS events which need further study. This was a comprehensive study that explored prognosis-related AS events and established valuable prognosis signatures in EC patients. The network of interactions between AS events and SFs might offer novel insights into the fundamental mechanisms of tumorigenesis and progression of EC.
Collapse
Affiliation(s)
- Ping Ye
- National Health Commission Key Laboratory of Otorhinolaryngology, Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Yang
- National Health Commission Key Laboratory of Otorhinolaryngology, Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Liqiang Zhang
- National Health Commission Key Laboratory of Otorhinolaryngology, Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
24
|
Ye C, Zhao D, Ye W, Wu X, Ji G, Li QQ, Lin J. QuantifyPoly(A): reshaping alternative polyadenylation landscapes of eukaryotes with weighted density peak clustering. Brief Bioinform 2021; 22:6319934. [PMID: 34255024 DOI: 10.1093/bib/bbab268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamic choice of different polyadenylation sites in a gene is referred to as alternative polyadenylation, which functions in many important biological processes. Large-scale messenger RNA 3' end sequencing has revealed that cleavage sites for polyadenylation are presented with microheterogeneity. To date, the conventional determination of polyadenylation site clusters is subjective and arbitrary, leading to inaccurate annotations. Here, we present a weighted density peak clustering method, QuantifyPoly(A), to accurately quantify genome-wide polyadenylation choices. Applying QuantifyPoly(A) on published 3' end sequencing datasets from both animals and plants, their polyadenylation profiles are reshaped into myriads of novel polyadenylation site clusters. Most of these novel polyadenylation site clusters show significantly dynamic usage across different biological samples or associate with binding sites of trans-acting factors. Upstream sequences of these clusters are enriched with polyadenylation signals UGUA, UAAA and/or AAUAAA in a species-dependent manner. Polyadenylation site clusters also exhibit species specificity, while plants ones generally show higher microheterogeneity than that of animals. QuantifyPoly(A) is broadly applicable to any types of 3' end sequencing data and species for accurate quantification and construction of the complex and dynamic polyadenylation landscape and enables us to decode alternative polyadenylation events invisible to conventional methods at a much higher resolution.
Collapse
Affiliation(s)
- Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Danhui Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenbin Ye
- Department of Automation, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian 361102, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.,FAFU-UCR Joint Center, Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
25
|
Yalamanchili HK, Elrod ND, Jensen MK, Ji P, Lin A, Wagner EJ, Liu Z. A computational pipeline to infer alternative poly-adenylation from 3' sequencing data. Methods Enzymol 2021; 655:185-204. [PMID: 34183121 PMCID: PMC10866047 DOI: 10.1016/bs.mie.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An increasing number of investigations have established alternative polyadenylation (APA) as a key mechanism of gene regulation through altering the length of 3' untranslated region (UTR) and generating distinct mRNA termini. Further, appreciation for the significance of APA in disease contexts propelled the development of several 3' sequencing techniques. While these RNA sequencing technologies have advanced APA analysis, the intrinsic limitation of 3' read coverage and lack of appropriate computational tools constrain precise mapping and quantification of polyadenylation sites. Notably, Poly(A)-ClickSeq (PAC-seq) overcomes limiting factors such as poly(A) enrichment and 3' linker ligation steps using click-chemistry. Here we provide an updated PolyA-miner protocol, a computational approach to analyze PAC-seq or other 3'-Seq datasets. As a key practical constraint, we also provide a detailed account on the impact of sequencing depth on the number of detected polyadenylation sites and APA changes. This protocol is also updated to handle unique molecular identifiers used to address PCR duplication potentially observed in PAC-seq.
Collapse
Affiliation(s)
- Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Madeline K Jensen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ai Lin
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
26
|
Sofiadis K, Josipovic N, Nikolic M, Kargapolova Y, Übelmesser N, Varamogianni‐Mamatsi V, Zirkel A, Papadionysiou I, Loughran G, Keane J, Michel A, Gusmao EG, Becker C, Altmüller J, Georgomanolis T, Mizi A, Papantonis A. HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Mol Syst Biol 2021; 17:e9760. [PMID: 34166567 PMCID: PMC8224457 DOI: 10.15252/msb.20209760] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Spatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is perturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin and its nuclear roles. To address this, we mapped HMGB1 binding genome-wide in two primary cell lines. We integrated ChIP-seq and Hi-C with graph theory to uncover clustering of HMGB1-marked topological domains that harbor genes involved in paracrine senescence. Using simplified Cross-Linking and Immuno-Precipitation and functional tests, we show that HMGB1 is also a bona fide RNA-binding protein (RBP) binding hundreds of mRNAs. It presents an interactome rich in RBPs implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and regulate availability of SASP-relevant transcripts. Our findings reveal a broader than hitherto assumed role for HMGB1 in coordinating chromatin folding and RNA homeostasis as part of a regulatory loop controlling cell-autonomous and paracrine senescence.
Collapse
Affiliation(s)
| | - Natasa Josipovic
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Milos Nikolic
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Yulia Kargapolova
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
- Present address:
Heart CenterUniversity Hospital CologneCologneGermany
| | - Nadine Übelmesser
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | | | - Anne Zirkel
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | | | | | - James Keane
- RibomapsCorkIreland
- Cork Institute of TechnologyCorkIreland
| | | | - Eduardo G Gusmao
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | | | | | - Theodore Georgomanolis
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
- Cologne Center for GenomicsUniversity of CologneCologneGermany
| | - Athanasia Mizi
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Argyris Papantonis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| |
Collapse
|
27
|
Chen M, Wei R, Wei G, Xu M, Su Z, Zhao C, Ni T. Systematic evaluation of the effect of polyadenylation signal variants on the expression of disease-associated genes. Genome Res 2021; 31:890-899. [PMID: 33875481 PMCID: PMC8092010 DOI: 10.1101/gr.270256.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
Single nucleotide variants (SNVs) within polyadenylation signals (PASs), a specific six-nucleotide sequence required for mRNA maturation, can impair RNA-level gene expression and cause human diseases. However, there is a lack of genome-wide investigation and systematic confirmation tools for identifying PAS variants. Here, we present a computational strategy to integrate the most reliable resources for discovering distinct genomic features of PAS variants and also develop a credible and convenient experimental tool to validate the effect of PAS variants on expression of disease-associated genes. This approach will greatly accelerate the deciphering of PAS variation-related human diseases.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Eye & ENT Hospital, Fudan University, Shanghai, 200438, China.,Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Ran Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center of Genetics and Development, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Limited, Shanghai, 201318, China
| | - Chen Zhao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
28
|
Wang H, Jiang Y. SRp20: A potential therapeutic target for human tumors. Pathol Res Pract 2021; 224:153444. [PMID: 34126370 DOI: 10.1016/j.prp.2021.153444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
As an important member of SR protein family, SRp20 plays a crucial role in alternative splicing. It not only participates in cell cycle regulation, export of mRNA, cleaving of primary microRNAs, homologous recombination-mediated DNA repair, cellular senescence and apoptosis, but also gets involved in the integrity and pluripotency of genome. Alternative splicing maintains a strict balance in the body to ensure the normal physiological function of cells. Once the balance is broken, diseases, even tumors, will follow. Through the analysis of SRp20-related articles, we found that Alzheimer's disease, glaucoma, bipolar disorder and other diseases have a certain relationship with SRp20. More importantly, SRp20 is closely related to the occurrence, proliferation, invasion and metastasis of various tumors, as well as chemotherapy resistance. Some SRp20 inhibitors have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Schwich OD, Blümel N, Keller M, Wegener M, Setty ST, Brunstein ME, Poser I, Mozos IRDL, Suess B, Münch C, McNicoll F, Zarnack K, Müller-McNicoll M. SRSF3 and SRSF7 modulate 3'UTR length through suppression or activation of proximal polyadenylation sites and regulation of CFIm levels. Genome Biol 2021; 22:82. [PMID: 33706811 PMCID: PMC7948361 DOI: 10.1186/s13059-021-02298-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background Alternative polyadenylation (APA) refers to the regulated selection of polyadenylation sites (PASs) in transcripts, which determines the length of their 3′ untranslated regions (3′UTRs). We have recently shown that SRSF3 and SRSF7, two closely related SR proteins, connect APA with mRNA export. The mechanism underlying APA regulation by SRSF3 and SRSF7 remained unknown. Results Here we combine iCLIP and 3′-end sequencing and find that SRSF3 and SRSF7 bind upstream of proximal PASs (pPASs), but they exert opposite effects on 3′UTR length. SRSF7 enhances pPAS usage in a concentration-dependent but splicing-independent manner by recruiting the cleavage factor FIP1, generating short 3′UTRs. Protein domains unique to SRSF7, which are absent from SRSF3, contribute to FIP1 recruitment. In contrast, SRSF3 promotes distal PAS (dPAS) usage and hence long 3′UTRs directly by counteracting SRSF7, but also indirectly by maintaining high levels of cleavage factor Im (CFIm) via alternative splicing. Upon SRSF3 depletion, CFIm levels decrease and 3′UTRs are shortened. The indirect SRSF3 targets are particularly sensitive to low CFIm levels, because here CFIm serves a dual function; it enhances dPAS and inhibits pPAS usage by binding immediately downstream and assembling unproductive cleavage complexes, which together promotes long 3′UTRs. Conclusions We demonstrate that SRSF3 and SRSF7 are direct modulators of pPAS usage and show how small differences in the domain architecture of SR proteins can confer opposite effects on pPAS regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02298-y.
Collapse
Affiliation(s)
- Oliver Daniel Schwich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Nicole Blümel
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany
| | - Mario Keller
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany.,Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Marius Wegener
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Samarth Thonta Setty
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Melinda Elaine Brunstein
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Sandhofstr. 2-4, 60528, Frankfurt am Main, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | | | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Sandhofstr. 2-4, 60528, Frankfurt am Main, Germany
| | - François McNicoll
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany. .,Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Michaela Müller-McNicoll
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany.
| |
Collapse
|
31
|
Xie J, Sun Y, Xu Q. Inhibition of SRSF3 Alleviates Proliferation and Migration of Gastric Cancer Cells by Regulating the PI3K/AKT/mTOR Signalling Pathway. Folia Biol (Praha) 2021; 67:102-107. [PMID: 35151243 DOI: 10.14712/fb2021067030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study was aimed to investigate the impact of serine/arginine-rich splicing factor 3 (SRSF3) on the proliferation and migration of gastric cancer (GC) cells. SRSF3 levels in GC tissues and cell lines were measured by Western blotting. Functional assays were used for evaluation of GC cell proliferation, migration and invasion. The PI3K/AKT/mTOR pathway was then examined by Western blotting. SRSF3 exhibits abnormal expression for the significantly increased levels in GC. SRSF3 knockdown significantly suppressed GC progression. SRSF3 knockdown significantly inhibited activation of PI3K/AKT/mTOR signalling. Inhibition of SRSF3 alleviates proliferation and migration of GC cells, and this process is mediated by inactivation of PI3K/ AKT/mTOR signalling. Targeting SRSF3 may be a promising strategy to combat GC.
Collapse
Affiliation(s)
- J Xie
- Department of Gastroenterology, The First Affiliated Hospital of Yangtez University, the First People's Hospital of Jingzhou, Jingzhou City, Hubei Province, China
| | - Y Sun
- Department of Gastroenterology, The First Affiliated Hospital of Yangtez University, the First People's Hospital of Jingzhou, Jingzhou City, Hubei Province, China
| | - Q Xu
- Department of Medical Oncology, Minhang District Oncology Hospital, Shanghai City, 200240, China
| |
Collapse
|
32
|
Alternative Polyadenylation: a new frontier in post transcriptional regulation. Biomark Res 2020; 8:67. [PMID: 33292571 PMCID: PMC7690165 DOI: 10.1186/s40364-020-00249-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Polyadenylation of pre-messenger RNA (pre-mRNA) specific sites and termination of their downstream transcriptions are signaled by unique sequence motif structures such as AAUAAA and its auxiliary elements. Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism that processes RNA products depending on its 3'-untranslated region (3'-UTR) specific sequence signal. APA processing can generate several mRNA isoforms from a single gene, which may have different biological functions on their target gene. As a result, cellular genomic stability, proliferation capability, and transformation feasibility could all be affected. Furthermore, APA modulation regulates disease initiation and progression. APA status could potentially act as a biomarker for disease diagnosis, severity stratification, and prognosis forecast. While the advance of modern throughout technologies, such as next generation-sequencing (NGS) and single-cell sequencing techniques, have enriched our knowledge about APA, much of APA biological process is unknown and pending for further investigation. Herein, we review the current knowledge on APA and how its regulatory complex factors (CFI/IIm, CPSF, CSTF, and RBPs) work together to determine RNA splicing location, cell cycle velocity, microRNA processing, and oncogenesis regulation. We also discuss various APA experiment strategies and the future direction of APA research.
Collapse
|
33
|
Yalamanchili HK, Alcott CE, Ji P, Wagner EJ, Zoghbi HY, Liu Z. PolyA-miner: accurate assessment of differential alternative poly-adenylation from 3'Seq data using vector projections and non-negative matrix factorization. Nucleic Acids Res 2020; 48:e69. [PMID: 32463457 PMCID: PMC7337927 DOI: 10.1093/nar/gkaa398] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/05/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Almost 70% of human genes undergo alternative polyadenylation (APA) and generate mRNA transcripts with varying lengths, typically of the 3′ untranslated regions (UTR). APA plays an important role in development and cellular differentiation, and its dysregulation can cause neuropsychiatric diseases and increase cancer severity. Increasing awareness of APA’s role in human health and disease has propelled the development of several 3′ sequencing (3′Seq) techniques that allow for precise identification of APA sites. However, despite the recent data explosion, there are no robust computational tools that are precisely designed to analyze 3′Seq data. Analytical approaches that have been used to analyze these data predominantly use proximal to distal usage. With about 50% of human genes having more than two APA isoforms, current methods fail to capture the entirety of APA changes and do not account for non-proximal to non-distal changes. Addressing these key challenges, this study demonstrates PolyA-miner, an algorithm to accurately detect and assess differential alternative polyadenylation specifically from 3′Seq data. Genes are abstracted as APA matrices, and differential APA usage is inferred using iterative consensus non-negative matrix factorization (NMF) based clustering. PolyA-miner accounts for all non-proximal to non-distal APA switches using vector projections and reflects precise gene-level 3′UTR changes. It can also effectively identify novel APA sites that are otherwise undetected when using reference-based approaches. Evaluation on multiple datasets—first-generation MicroArray Quality Control (MAQC) brain and Universal Human Reference (UHR) PolyA-seq data, recent glioblastoma cell line NUDT21 knockdown Poly(A)-ClickSeq (PAC-seq) data, and our own mouse hippocampal and human stem cell-derived neuron PAC-seq data—strongly supports the value and protocol-independent applicability of PolyA-miner. Strikingly, in the glioblastoma cell line data, PolyA-miner identified more than twice the number of genes with APA changes than initially reported. With the emerging importance of APA in human development and disease, PolyA-miner can significantly improve data analysis and help decode the underlying APA dynamics.
Collapse
Affiliation(s)
- Hari Krishna Yalamanchili
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Callison E Alcott
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Ji
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Eric J Wagner
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M, Schmitz ML, Sträßer K. Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules 2020; 10:biom10091310. [PMID: 32932892 PMCID: PMC7565591 DOI: 10.3390/biom10091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.
Collapse
Affiliation(s)
- Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany;
| | | | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Vladislav Kunetsky
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
35
|
Kaczmarek Michaels K, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 2020; 48:5407-5425. [PMID: 32356874 PMCID: PMC7261179 DOI: 10.1093/nar/gkaa292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3′ end processing machinery to the vicinity of pA sites.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Julia Ruiz Capella
- Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
36
|
More DA, Kumar A. SRSF3: Newly discovered functions and roles in human health and diseases. Eur J Cell Biol 2020; 99:151099. [PMID: 32800280 DOI: 10.1016/j.ejcb.2020.151099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
The serine/arginine rich proteins (SR proteins) are members of a family of RNA binding proteins involved in regulating various features of RNA metabolism, including pre-mRNA constitutive and alternative splicing. In humans, a total of 12 SR splicing factors (SRSFs) namely SRSF1-SRSF12 have been reported. SRSF3, the smallest member of the SR family and the focus of this review, regulates critical steps in mRNA metabolism and has been shown to have mRNA-independent functions as well. Recent studies on SRSF3 have uncovered its role in a wide array of complex biological processes. We have also reviewed the involvement of SRSF3 in disease conditions like cancer, ageing, neurological and cardiac disorders. Finally, we have discussed in detail the autoregulation of SRSF3 and its implications in cancer and commented on the potential of SRSF3 as a therapeutic target, especially in the context of cancer.
Collapse
Affiliation(s)
- Dhanashree Anil More
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
37
|
Tempo-spatial alternative polyadenylation analysis reveals that 3' UTR lengthening of Mdm2 regulates p53 expression and cellular senescence in aged rat testis. Biochem Biophys Res Commun 2020; 523:1046-1052. [PMID: 31973811 DOI: 10.1016/j.bbrc.2020.01.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/11/2020] [Indexed: 12/21/2022]
Abstract
Although tissue aging is accompanied with cellular senescence, it is much complicated than senescence given both types and number of cells change with age. Alternative polyadenylation (APA) had shown tissue specificity and APA-mediated 3' untranslated region (3' UTR) lengthening could regulate senescence-associated phenotypes. However, whether tissue aging shows similar trends remains unknown. Here, we performed a comprehensive analysis on RNA-seq datasets derived from multiple cells and rat tissues of young and old age. Although APA-mediated 3' UTR lengthening in various senescent cells reinforced the previous discovery, tissue aging showed much more complexity in APA. Interestingly, testis was the only tissue displaying dramatic 3' UTR lengthening and decreased expression trend of corresponding genes in aged rat. Genes with longer 3' UTR in aged testis were enriched in senescence-associated pathways, among which, Mdm2, encoding an E3 ligase of p53, favored distal poly(A) site resulting in lengthened 3' UTR and decreased expression. Longer 3' UTR of Mdm2 generated less protein, and decreased Mdm2 expression led to senescence-associated phenotypes along with increased p53 and p21 protein abundance, which could all be reversed by Mdm2 overexpression. Our work revealed complicated APA changes during tissue aging and discovered APA-mediated 3' UTR lengthening of Mdm2 is a hidden layer in regulating the well-known senescence-related p53-p21 signal axis during testis aging, and also has potential implications regarding declined male fertility along aging.
Collapse
|