1
|
Wei Y, Gao Y, Zhang S, Li Y, Wang Z, Zhang X, Li Z, Li J, Chen Y, Wu D. Gibberellic acid (GA) induces developmental toxicity in zebrafish (Danio rerio) embryos via oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107247. [PMID: 39924290 DOI: 10.1016/j.aquatox.2025.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/11/2025]
Abstract
Gibberellic acid (GA) is a plant growth regulator that stimulates the growth of leaves and increases yield in agricultural production. However, GA is also regarded as an environmental endocrine disruptor, and its effect on aquatic life remains unclear. In this study, the toxic effects of GA on the development of zebrafish (Danio rerio) embryos were evaluated, and the mechanisms were revealed. The expression of genes related to development and function in zebrafish embryos at 96 h post fertilization (96 hpf) were detected by RT-qPCR method. Furthermore, the level of reactive oxygen species (ROS) and the expression of genes related to oxidative stress were detected. The results showed that the hatching and survival rates of zebrafish embryos were inhibited by 25 and 50 μmol/L GA, and the phenotype of pericardial edema was observed, indicating that GA may have cardiotoxicity on zebrafish embryos. Further RT-qPCR experiments showed that the above results may attributed to the down-regulation of Myl7 and Vmhc genes. Besides, the phenotypes of liver degeneration, and the decrease of eye size were led by 10-50 μmol/L GA, along with the alteration of Fabp10a, Gclc, Gsr, Gnat1, and Gnat2 genes, suggesting that GA may exhibit toxicities on liver and eye in zebrafish embryos. In addition, the phenotype of kidney edema and the up-regulation of Kim1, Plce1, and Pkd2 genes were triggered by 50 μmol/L GA, indicating that GA may have toxic effect on kidney in zebrafish embryos. The level of ROS and the expression of genes related to oxidative stress were up-regulated under 10-50 μmol/L GA exposure, which may contribute to the developmental toxicity in zebrafish embryos. In summary, GA may affect the ecological environment of aquatic life, and its harm to aquatic ecology should be given special attention in the future.
Collapse
Affiliation(s)
- Ying Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Yan Gao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Sida Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yue Li
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Zuoying Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Zan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Ying Chen
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| |
Collapse
|
2
|
Shekhar C, Khosya R, Thakur K, Mahajan D, Kumar R, Kumar S, Sharma AK. A systematic review of pesticide exposure, associated risks, and long-term human health impacts. Toxicol Rep 2024; 13:101840. [PMID: 39717852 PMCID: PMC11664077 DOI: 10.1016/j.toxrep.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Pesticides are widely used to control pests, but their widespread use raises concerns regarding potential health risks for humans. There are several routes through which pesticides can be ingested, inhaled, and absorbed, resulting in acute and long-term health consequences. This systematic review synthesizes the available evidence regarding the health risks and long-term effects of pesticide exposure, with a particular focus on epidemiological and toxicological studies. A systematic review was conducted by searching scientific databases i.e. Scopus, and Web of Science for peer-reviewed articles published between 2000 and 2024. Studies were selected based on their focus on pesticide exposure, health risks, and long-term effects. Meta-analysis was conducted where sufficient homogeneity of outcomes allowed. This review identified consistent associations between chronic pesticide exposure and non-communicable diseases, including cancer, neurological disorders, and endocrine disruptions. An increased incidence of respiratory issues and neurodegenerative diseases was often associated with occupational exposure to pesticides. People exposed for a prolonged or high intensity time period, particularly agricultural workers, were more likely to experience long-term health effects. There are a number of factors that influences the ability to draw definitive conclusions, including variations in pesticide types, exposure levels, and health outcomes. Chronic exposure to pesticides presents significant health risks, particularly for individuals in high-exposure environments like agriculture. While evidence indicates strong associations with several long-term health conditions, additional research is necessary to elucidate dose-response relationships and mechanisms of action. This review underscores the necessity for enhanced regulatory measures and improved safety protocols to mitigate pesticide-related health risks.
Collapse
Affiliation(s)
- Chander Shekhar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Reetu Khosya
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Rakesh Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Amit Kumar Sharma
- Correspondence to: Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus-176206, Kangra, India.
| |
Collapse
|
3
|
Garban Z, Ilia G. Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals. Molecules 2024; 29:5671. [PMID: 39683830 DOI: 10.3390/molecules29235671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we emphasize structure-activity and the effects on mammals of plant growth bioregulators. plant growth bioregulators can be referred to as "biochemical effectors" since they are substances having biological activity. It is possible to distinguish between "bioregulators" and "regulators" due to the significance of the compounds mentioned above in biochemistry and agrobiology. Thus, "plant growth bioregulators" (PGBRs) are the names given to naturally occurring chemical substances produced by biosynthetic processes. PGBRs affect both plant reign and animal reign. A plethora of plant growth bioregulators were described in the literature, so the structure, activity in plants, and their effects on mammals are presented.
Collapse
Affiliation(s)
- Zeno Garban
- Biochemistry and Molecular Biology, University of Life Sciences "King Michael I", 119 Aradului Ave., 300645 Timisoara, Romania
- Working Group for Xenobiochemistry, Romanian Academy-Timisoara Branch, 24 M. Viteazu Ave., 300223 Timisoara, Romania
| | - Gheorghe Ilia
- Department of Biology-Chemistry, West University Timisoara, 16 Pestalozzi Str., 300223 Timisoara, Romania
| |
Collapse
|
4
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
5
|
El-Houseiny W, Arisha AH, Behairy A, Metwally MMM, Abdel-Warith AWA, Younis EM, Davies SJ, Hassan BA, Abd-Elhakim YM. The immunosuppressive, growth-hindering, hepatotoxic, and oxidative stress and immune related-gene expressions-altering effects of gibberellic acid in Oreochromis niloticus: A mitigation trial using alpha-lipoic acid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105725. [PMID: 38225080 DOI: 10.1016/j.pestbp.2023.105725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
This study aimed to examine the effects of gibberellic acid (GBA) on growth, hemato-biochemical parameters related to liver functions, digestive enzymes, and immunological response in Oreochromis niloticus. Besides, the probable underlying mechanisms were explored by assessing antioxidant, apoptotic, and immune-related gene expression. Furthermore, the likelihood of restoration following alpha-lipoic acid (LIP) dietary supplementation was explored. The fish (average initial weight 30.75 ± 0.46) were equally classified into four groups: the control group, the LIP group (fed on a basal diet plus 600 mg/kg of LIP), the GBA group (exposed to 150 mg GBA/L), and the GBA + LIP group (exposed to 150 mg GBA/L and fed a diet containing LIP and GBA) for 60 days. The study findings showed that LIP supplementation significantly reduced GBA's harmful effects on survival rate, growth, feed intake, digestive enzymes, and antioxidant balance. Moreover, the GBA exposure significantly increased liver enzymes, stress markers, cholesterol, and triglyceride levels, all of which were effectively mitigated by the supplementation of LIP. Additionally, LIP addition to fish diets significantly minimized the histopathological alterations in the livers of GBA-treated fish, including fatty change, sharply clear cytoplasm with nuclear displacement to the cell periphery, single-cell necrosis, vascular congestion, and intralobular hemorrhages. The GBA-induced reduction in lysozyme activity, complement C3, and nitric oxide levels, together with the downregulation of antioxidant genes (cat and sod), was significantly restored by dietary LIP. Meanwhile, adding LIP to the GBA-exposed fish diets significantly corrected the aberrant expression of hsp70, caspase- 3, P53, pcna, tnf-a, and il-1β in O. niloticus liver. Conclusively, dietary LIP supplementation could mitigate the harmful effects of GBA exposure on fish growth and performance, physiological conditions, innate immunity, antioxidant capability, inflammatory response, and cell apoptosis.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical pathology, Faculty of Veterinary Medicine, King Salman international University, Ras sidr, Egypt.; Department of pathology, Faculty of Veterinary Medicine, Zagazig university, Zagazig 44519, Egypt
| | | | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
6
|
Huang H, Wang T, Wang L, Huang Y, Li W, Wang J, Hu Y, Zhou Z. Saponins of Panax japonicus ameliorates cardiac aging phenotype in aging rats by enhancing basal autophagy through AMPK/mTOR/ULK1 pathway. Exp Gerontol 2023; 182:112305. [PMID: 37797916 DOI: 10.1016/j.exger.2023.112305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Heart disease is a significant health concern for elderly individuals, with heart aging being the primary cause. Recent studies have shown that autophagy can play a protective role in preventing cardiac aging. Our previous research confirmed that Chikusetsu saponin IVa, a fundamental component of Saponins of Panax japonics (SPJ), can enhance basic autophagy levels in cardiomyocyte of isoproterenol induced cardiac fibrosis mice. However, it remains unclear whether SPJ possesses a protective effect on cardiac dysfunction during the natural aging process. Rats were randomly divided into four groups: adult control group (6 months old), aging group (24 months old), aging group treated with 10 mg/kg SPJ, and aging group treated with 30 mg/kg SPJ. The heart function, blood pressure, and heart mass index (HMI) were measured. Hematoxylin and eosin staining (H&E) and Wheat Germ Agglutinin (WGA) staining were used to observe the changes in morphology, while Masson staining was used to examine collagen deposition in the rat hearts and CD45 immunohistochemistry was conducted to examine the macrophage infiltration in heart tissues. TUNEL kit was used to detect apoptosis level of cardiomyocyte, and western blot was used to evaluate autophagy-related proteins as well as AMPK/mTOR/ULK1 pathway-related markers. SPJ treatment improved the cardiac function, reduced HMI, attenuated myocardial fiber disorder, inhibited inflammatory cell infiltration, and decreased collagen deposition and cardiomyocyte apoptosis in aging rats. Additionally, SPJ treatment decreased the expression of aging-related proteins and restored the expression of autophagy-related markers. SPJ activated autophagy through the activation of AMPK, which in turn increased the phosphorylation of ULK1(Ser555), while inhibited the phosphorylation of mTOR and ULK1(Ser757). Our study demonstrates that SPJ improves the cardiac function of aging rats by enhancing basal autophagy through the AMPK/mTOR/ULK1 pathway. These results offer a theoretical foundation and empirical evidence to support the clinical advancement of SPJ in enhancing age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Hefei Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Tianlun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Luopei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yan Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Weili Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jin'e Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yuanlang Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| | - Zhiyong Zhou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
7
|
Tomy T, Jameson J. Screening of Pharmaceutical Pollutants Along with Emerging Contaminants in the Sediments of the Periyar River, Located in Kerala (India) by Using High-Resolution Mass Spectrometry (UPLC-Q-ToF-MS). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:31. [PMID: 37642782 DOI: 10.1007/s00128-023-03791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
In this study, ultra-performance liquid chromatography coupled with a quadruple time-of-flight mass spectrometry (UPLC-Q-ToF-MS) was employed to screen and identify pharmaceutical pollutants and emerging contaminants (ECs) in the Periyar River near Aster Medicity hospital, the dumping yard of Amrutha hospital, and the Vaduthala bridge regions in Kerala, India. The analysis was conducted in both positive and negative ionization modes using electrospray ionization (ESI). The QuEChERS method was employed for initial sediment sample preparation. Among the twenty-five identified ECs, four compounds were identified as pharmaceutical pollutants. This study have great significance as it represents the first comprehensive investigation of pharmaceutical pollutants in these hospital regions, highlighting the urgent need for further analysis and understanding of the situation. The presence of ECs poses an urgent need for attention due to the irreversible harm caused to the riverine ecosystem by the degradation of water quality resulting from industrial and domestic discharge.
Collapse
Affiliation(s)
- Tintu Tomy
- Department of Botany, Research Centre, St. Albert's College, Ernakulam, Kerala, 682018, India.
| | - J Jameson
- Department of Botany, Research Centre, St. Albert's College, Ernakulam, Kerala, 682018, India
| |
Collapse
|
8
|
Guo X, Meng R, Liu J, Zhang S, Liu H, Du X, Zhang H, Li Y. Microcystin leucine arginine induces human sperm damage: Involvement of the Ca 2+/CaMKKβ/AMPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114845. [PMID: 37001189 DOI: 10.1016/j.ecoenv.2023.114845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
As a common pollutant in the water environment, microcystin leucine arginine (MC-LR) can enter semen and damage the sperm in animals. However, the mechanism by which MC-LR damages human sperm is unclear. Therefore, human sperm samples were obtained from the Henan Provincial Sperm Bank and exposed to different concentrations (0, 1, 10, and 100 μg/L) of MC-LR for 1, 2, 4, and 6 h, to invegest the effects and potential mechanism of MC-LR on sperm. The results showed that MC-LR mainly accumulated in the neck and flagellum of human sperm. Compared to the control group, the sperm capacitation rate and motility were significantly decreased in the 100 μg/L group. After exposure of 100 μg/L of MC-LR, the central microtubule and microtubule doublet of sperm flagellum were blurred, asymmetrical, or even lost. Furthermore, the expression levels of flagellin DNAH17, SPEF2, SPAG16, SPAG6, and CFAP44 in human sperm were reduced. Also, the phosphorylation levels of CaMKKβ and AMPK can be inhibited by MC-LR. These findings revealed that MC-LR can induce functional and structural damage in human sperm, and the Ca2+/CaMKKβ/AMPK pathway may be involved in this process. This study will provide a basis for prevention and treatment of male fertility declines caused by MC-LR.
Collapse
Affiliation(s)
- Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Junjie Liu
- Henan Human Sperm Bank, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yushan Li
- Henan Human Sperm Bank, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Zolotareva D, Zazybin A, Belyankova Y, Dauletbakov A, Tursynbek S, Rafikova K, Ten A, Yu V, Bayazit S, Basharimova A, Aydemir M. Increasing Sugar Content in Source for Biofuel Production Using Agrochemical and Genetic Approaches at the Stages of BioMass Preharvesting and Harvesting. Molecules 2022; 27:molecules27165210. [PMID: 36014450 PMCID: PMC9416125 DOI: 10.3390/molecules27165210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
In order to optimize biofuel (including bioethanol) production processes, various problems need to be solved, such as increasing the sugar content of raw materials/biomass to gain a higher yield of the product. This task can be solved in several ways, with their own advantages and disadvantages, and an integrated approach, such as using a combination of ripening agents and phytohormones or application of a superabsorbent polymer with at least one sugar-enhancing agent, can be applied as well. Here, we reviewed several methods, including pre- and postharvest factors (light, temperature, partial replacement of potassium with magnesium, etc.), genetic modifications (traditional breeding, phytohormones, etc.), chemical ripening methods (Ethephon, Moddus, etc.), and some alternative methods (DMSO treatment, ionic liquids, etc.). The aim of this review was to provide a comprehensive, up-to-date summary of methods of increasing the carbohydrate level in plants/biomass for bioethanol production.
Collapse
Affiliation(s)
- Darya Zolotareva
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
- Department of Chemical and Biochemical Engineering, Institute of Oil and Gas Geology, Satbayev University, Almaty 050013, Kazakhstan
| | - Alexey Zazybin
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
- Department of Chemical and Biochemical Engineering, Institute of Oil and Gas Geology, Satbayev University, Almaty 050013, Kazakhstan
- Correspondence: ; Tel.: +7-705-293-0778
| | - Yelizaveta Belyankova
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
- Department of Chemical and Biochemical Engineering, Institute of Oil and Gas Geology, Satbayev University, Almaty 050013, Kazakhstan
| | - Anuar Dauletbakov
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
- Department of Chemical and Biochemical Engineering, Institute of Oil and Gas Geology, Satbayev University, Almaty 050013, Kazakhstan
| | - Saniya Tursynbek
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
| | - Khadichahan Rafikova
- Department of Chemical and Biochemical Engineering, Institute of Oil and Gas Geology, Satbayev University, Almaty 050013, Kazakhstan
| | - Assel Ten
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A. B. Bekturov Institute of Chemical Sciences, Sh. Ualikhanov, Almaty 050010, Kazakhstan
| | - Valentina Yu
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A. B. Bekturov Institute of Chemical Sciences, Sh. Ualikhanov, Almaty 050010, Kazakhstan
| | - Sarah Bayazit
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
| | - Anna Basharimova
- School of Chemical Engineering, Kazakh-British Technical University, Tole bi Street 59, Almaty 050000, Kazakhstan
| | - Murat Aydemir
- Department of Chemistry, Dicle University, Diyarbakır 21280, Turkey
| |
Collapse
|
10
|
Incerpi S, Gionfra F, De Luca R, Candelotti E, De Vito P, Percario ZA, Leone S, Gnocchi D, Rossi M, Caruso F, Scapin S, Davis PJ, Lin HY, Affabris E, Pedersen JZ. Extranuclear effects of thyroid hormones and analogs during development: An old mechanism with emerging roles. Front Endocrinol (Lausanne) 2022; 13:961744. [PMID: 36213288 PMCID: PMC9540375 DOI: 10.3389/fendo.2022.961744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine), induce a variety of long-term effects on important physiological functions, ranging from development and growth to metabolism regulation, by interacting with specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects of thyroid hormones are mediated by plasma membrane or cytoplasmic receptors, mainly by αvβ3 integrin, and are independent of protein synthesis. A wide variety of nongenomic effects have now been recognized to be elicited through the binding of thyroid hormones to this receptor, which is mainly involved in angiogenesis, as well as in cell cancer proliferation. Several signal transduction pathways are modulated by thyroid hormone binding to αvβ3 integrin: protein kinase C, protein kinase A, Src, or mitogen-activated kinases. Thyroid hormone-activated nongenomic effects are also involved in the regulation of Na+-dependent transport systems, such as glucose uptake, Na+/K+-ATPase, Na+/H+ exchanger, and amino acid transport System A. Of note, the modulation of these transport systems is cell-type and developmental stage-dependent. In particular, dysregulation of Na+/K+-ATPase activity is involved in several pathological situations, from viral infection to cancer. Therefore, this transport system represents a promising pharmacological tool in these pathologies.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Sciences, University Roma Tre, Roma, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| | - Fabio Gionfra
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Roberto De Luca
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Paolo De Vito
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Sergio Scapin
- Department of Cellular and Developmental Biology, Sapienza University, Rome, Italy
| | - Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Hung-Yun Lin
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei, Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Jens Z. Pedersen
- Department of Biology, University Tor Vergata, Rome, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| |
Collapse
|
11
|
Williams WR. Phytohormones: structural and functional relationship to purine nucleotides and some pharmacologic agents. PLANT SIGNALING & BEHAVIOR 2021; 16:1837544. [PMID: 33100143 PMCID: PMC7781725 DOI: 10.1080/15592324.2020.1837544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Structural components of second messenger signaling (nucleotides and associated enzyme systems) within plant and animal cells have more in common than the hormones that initiate metabolic and functional changes. Neurotransmitters and hormones of mammalian pharmacologic classes relate to purine nucleotides in respect of chemical structure and the molecular changes they initiate. This study compares the molecular structures of purine nucleotides with compounds from the abscisic acid, auxin, brassinosteroid, cytokinin, gibberellin, and jasmonate classes by means of a computational program. The results illustrate how phytohomones relate to each other through the structures of nucleotides and cyclic nucleotides. Molecular similarity within the phytohormone structures relates to synergism, antagonism and the modulation of nucleotide function that regulates germination and plant development. As with the molecular evolution of mammalian hormones, cell signaling and cross-talk within the phytohormone classes is purine nucleotide centered.
Collapse
Affiliation(s)
- W. Robert Williams
- Faculty of Life Sciences & Education, University of South Wales, Cardiff, UK
| |
Collapse
|
12
|
Guo Y, Wang W, Chen Y, Sun Y, Li Y, Guan F, Shen Q, Guo Y, Zhang W. Continuous gibberellin A3 exposure from weaning to sexual maturity induces ovarian granulosa cell apoptosis by activating Fas-mediated death receptor signaling pathways and changing methylation patterns on caspase-3 gene promoters. Toxicol Lett 2020; 319:175-186. [PMID: 31733319 DOI: 10.1016/j.toxlet.2019.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
Information on the effects of gibberellic acid (gibberellin A3, GA3) on ovarian follicle development is limited. In our present study, 21-day-old female Wistar rats were exposed to GA3 by gavage (25, 50, and 100 mg/kg body weight, once per day) for eight weeks to evaluate the influence of GA3 on ovarian follicle development. After treatment, significant (P < 0.05) increases (to 40.17 % and 44.5 %, respectively) in atretic follicle proportions and significant decreases (to 19.49 % and 17.86 %, respectively) in corpus luteum proportions were observed in the 50 and 100 mg/kg treatment groups compared to the control group. Significant (P < 0.05) increases (to 31.3 % and 42.0 %, respectively) in follicle apoptosis were observed in the 50 and 100 mg/kg treatment groups by transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Significantly increased expression of caspase-3, caspase-8, caspase-9 and Fas was observed by real-time PCR and Western blotting. Bisulfite sequencing PCR (BSP) revealed obviously decreased total methylation percentages of the caspase-3 promoter region in the two treatment groups. Real-time quantitative PCR also showed significantly decreased mRNA expression of DNA methyltransferase (Dnmt) 3a and Dnmt3b. Further in vitro studies showed that a DNA methylation inhibitor could enhance the GA3-induced increase in the mRNA expression of caspase-3. Overall, our present study indicates that GA3 administration from weaning until sexual maturity can affect ovarian follicle development by inducing apoptosis and suggests that signaling through the Fas-mediated apoptotic pathway may be an important underlying mechanism of this apoptosis. In addition, GA3-induced aberrant DNA methylation patterns might be partly responsible for upregulation of caspase-3 gene expression.
Collapse
Affiliation(s)
- Yiwei Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yiqin Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Sun
- Center for Reproductive Medicine, Teaching Hospital of Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yuchen Li
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Fangyuan Guan
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Shen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiruo Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenchang Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|