1
|
Li P, Xu TY, Yu AX, Liang JL, Zhou YS, Sun HZ, Dai YL, Liu J, Yu P. The Role of Ferroptosis in Osteoporosis and Advances in Chinese Herbal Interventions. BIOLOGY 2025; 14:367. [PMID: 40282232 PMCID: PMC12025301 DOI: 10.3390/biology14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
OP, a systemic bone disorder marked by reduced bone mass and heightened fracture risk, poses a significant global health burden, particularly among aging populations. Current treatments, including bisphosphonates and calcium supplementation, are limited by adverse effects and incomplete efficacy. Emerging research highlights ferroptosis-an iron-dependent cell death driven by lipid peroxidation-as a critical contributor to OP pathogenesis, characterized by dysregulated iron metabolism, oxidative stress, and lipid peroxide accumulation, which disrupt bone remodeling by impairing osteoblast function and enhancing osteoclast activity. This review elucidates the mechanistic interplay between ferroptosis and OP subtypes (diabetic osteoporosis (DOP), glucocorticoid-induced (GIOP), and postmenopausal osteoporosis (PMOP)) and evaluates the efficacy of Chinese herbal interventions in mitigating ferroptosis-driven bone loss. Key findings reveal that excess iron exacerbates lipid peroxidation via the Fenton reaction, while glutathione peroxidase 4 (GPX4) inactivation and system Xc- inhibition amplify oxidative damage. In DIOP, hyperglycemia-induced ROS and advanced glycation end products suppress osteogenesis, countered by melatonin and naringenin via nuclear factor -related factor 2 (Nrf2)/GPX4 activation. GIOP involves dexamethasone-mediated GPX4 downregulation, mitigated by exosomes and melatonin through phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. PMOP driven by estrogen deficiency-induced iron overload is alleviated by aconitine and icariin (ICA) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Chinese herbs, including active compounds (quercetin, gastrodin, ICA, etc.) and formulations (Bugu Shengsui Capsule, Erxian Decoction (EXD), etc.), regulate iron metabolism, enhance antioxidant defenses (Nrf2/heme oxygenase 1(HO-1)), and inhibit lipid peroxidation, effectively restoring bone homeostasis. These findings underscore ferroptosis as a pivotal mechanism in OP progression and highlight the therapeutic promise of Chinese herbs in bridging traditional medicine with modern mechanistic insights. Future research should prioritize elucidating precise molecular targets, optimizing formulations, and validating clinical efficacy to address current therapeutic gaps.
Collapse
Affiliation(s)
- Pan Li
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Tian-Yang Xu
- Innovation Practice Center, Changchun University of Chinese Medicine, Jilin 130117, China;
| | - Ao-Xue Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Jing-Ling Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Ya-Shuang Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Huai-Zhu Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Yu-Lin Dai
- Ginseng Scientific Research Institute, Jilin 130117, China;
| | - Jia Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Peng Yu
- Innovation and Entrepreneurship College, Changchun University of Chinese Medicine, Jilin 130117, China
| |
Collapse
|
2
|
Zhao E, Zhu J, Hao H, Zhang R, Wu D. Anti-Osteoporosis and Bone Protective Effects of Resveratrol in Rats With Chronic Kidney Disease-Induced Osteoporosis. Mol Nutr Food Res 2025; 69:e70017. [PMID: 40045654 DOI: 10.1002/mnfr.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025]
Abstract
Chronic kidney disease (CKD)-induced osteoporosis is a new concept that implies CKD-related impaired bone quality. Resveratrol (RES) is a natural component, known for its anti-inflammatory and anti-osteoporotic effects. In the present study, we aimed to investigate the bone-protective and anti-osteoporotic effects of resveratrol in rats with chronic kidney disease-induced osteoporosis. The 5/6th nephrectomy (Nx) model of CKD was established. Resveratrol and alendronate (ALN), as standard drug, were administered for 45 days. Blood samples and femurs were collected and subjected to molecular analysis, micro-CT, and bone mechanical tests. The results showed a significant decrease in Ca levels but no significant changes in 1,25 vitamin D and phosphorus levels in untreated and treated CKD groups. Treatment with RES and ALN did not reverse the increase of serum parathyroid hormone while reducing the elevated FGF-23 levels. Unlike ALN, RES had no significant effect on increased alkaline phosphatas levels or decreased osteocalcin and OPG levels in CKD rats. Moreover, results showed that RES reversed the increase of RANKL and TRAP in serum and femur tissue close to the control level, leading to an improvement in bone strength and microarchitecture. In conclusion, the present study showed beneficial anti-osteoporotic effects of RES on CKD-induced osteoporosis.
Collapse
Affiliation(s)
- Enzhe Zhao
- Department of Orthopaedics, Shanxi Bethune Hospital(Shanxi Academy of Medical Sciences), Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jian Zhu
- Department of Orthopaedics, Shanxi Bethune Hospital(Shanxi Academy of Medical Sciences), Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Haihu Hao
- Department of Orthopaedics, Shanxi Bethune Hospital(Shanxi Academy of Medical Sciences), Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Rui Zhang
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dou Wu
- Department of Orthopaedics, Shanxi Bethune Hospital(Shanxi Academy of Medical Sciences), Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Shuid AN, Abdul Nasir NA, Ab Azis N, Shuid AN, Razali N, Ahmad Hairi H, Mohd Miswan MF, Naina Mohamed I. A Systematic Review on the Molecular Mechanisms of Resveratrol in Protecting Against Osteoporosis. Int J Mol Sci 2025; 26:2893. [PMID: 40243497 PMCID: PMC11988631 DOI: 10.3390/ijms26072893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Osteoporosis is a prevalent metabolic bone disorder characterized by decreased bone mineral density and increased fracture risk, particularly among aging populations. While conventional pharmacological treatments exist, they often have adverse effects, necessitating the search for alternative therapies. Resveratrol, a naturally occurring polyphenol, has gained significant attention for its potential osteoprotective properties through various molecular mechanisms. This systematic review aims to comprehensively analyze the molecular pathways through which resveratrol protects against osteoporosis. Using an advanced search strategy in the Scopus, PubMed, and Web of Science databases, we identified 513 potentially relevant articles. After title and abstract screening, followed by full-text review, 28 studies met the inclusion criteria. The selected studies comprised 14 in vitro studies, 8 mixed in vitro and in vivo studies, 6 in vivo studies, and 1 cross-sectional study in postmenopausal women. Our findings indicate that resveratrol exerts its osteoprotective effects by enhancing osteoblast differentiation through the activation of the Phosphoinositide 3-Kinase/Protein Kinase B (PI3K/Akt), Sirtuin 1 (SIRT1), AMP-Activated Protein Kinase (AMPK), and GATA Binding Protein 1 (GATA-1) pathways while simultaneously inhibiting osteoclastogenesis by suppressing Mitogen-Activated Protein Kinase (MAPK) and TNF Receptor-Associated Factor 6/Transforming Growth Factor-β-Activated Kinase 1 (TRAF6/TAK1). Additionally, resveratrol mitigates oxidative stress and inflammation-induced bone loss by activating the Hippo Signaling Pathway/Yes-Associated Protein (Hippo/YAP) and Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) pathways and suppressing Reactive Oxygen Species/Hypoxia-Inducible Factor-1 Alpha (ROS/HIF-1α) and NADPH Oxidase 4/Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (Nox4/NF-κB). Despite promising preclinical findings, the low bioavailability of resveratrol remains a significant challenge, highlighting the need for novel delivery strategies to improve its therapeutic potential. This review provides critical insights into the molecular mechanisms of resveratrol in bone health, supporting its potential as a natural alternative for osteoporosis prevention and treatment. Further clinical studies are required to validate its efficacy and establish optimal dosing strategies.
Collapse
Affiliation(s)
- Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia; (A.N.S.); (N.A.A.N.); (N.A.A.); (N.R.)
| | - Nurul Alimah Abdul Nasir
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia; (A.N.S.); (N.A.A.N.); (N.A.A.); (N.R.)
| | - Norasikin Ab Azis
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia; (A.N.S.); (N.A.A.N.); (N.A.A.); (N.R.)
| | - Ahmad Naqib Shuid
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia;
| | - Norhafiza Razali
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia; (A.N.S.); (N.A.A.N.); (N.A.A.); (N.R.)
| | - Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru 75150, Melaka, Malaysia;
| | - Mohd Fairudz Mohd Miswan
- Department of Orthopaedics, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia;
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Guo Z, Chi R, Peng Y, Sun K, Liu H, Guo F, Guo J. The Role and Interactive Mechanism of Endoplasmic Reticulum Stress and Ferroptosis in Musculoskeletal Disorders. Biomolecules 2024; 14:1369. [PMID: 39595546 PMCID: PMC11591632 DOI: 10.3390/biom14111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular phenomenon that arises in response to the accumulation of misfolded proteins within the ER. This process triggers the activation of a signalling pathway known as the unfolded protein response (UPR), which aims to restore ER homeostasis by reducing protein synthesis, increasing protein degradation, and promoting proper protein folding. However, excessive ER stress can perturb regular cellular function and contribute to the development of diverse pathological conditions. As is well known, ferroptosis is a kind of programmed cell death characterized by the accumulation of lipid peroxides and iron-dependent reactive oxygen species (ROS), resulting in oxidative harm to cellular structures. In recent years, there has been increasing evidence indicating that ferroptosis occurs in musculoskeletal disorders (MSDs), with emerging recognition of the complex relationship between ER stress and ferroptosis. This review presents a summary of ER stress and the ferroptosis pathway. Most importantly, it delves into the significance of ER stress in the ferroptosis process within diverse skeletal or muscle cell types. Furthermore, we highlight the potential benefits of targeting the correlation between ER stress and ferroptosis in treating degenerative MSDs.
Collapse
Affiliation(s)
- Zhou Guo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yawen Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Sun
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Haigang Liu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Fengjing Guo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Tang MM, Sun LP, Song F, Chen H. Protective effects of arecanut seed phenols in retinoic acid induced osteoporosis and the potential mechanisms explored by network pharmacology. Front Endocrinol (Lausanne) 2024; 15:1472146. [PMID: 39449745 PMCID: PMC11499182 DOI: 10.3389/fendo.2024.1472146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Arecanut seed is an important traditional medicine in Southeast Asia. It has been presented in a clinical formula to treat osteoporosis (OP) in China. Arecanut seed is abundant in phenols. However, most of current studies mainly focused on estrogen-deficient osteoporosis (OP) model of arecanut seed phenols (ASP), there is still a lack of roundly research about molecular mechanism of ASP therapy on OP and its influence on in drug-induced bone loss. Materials and methods To explore potential molecular mechanisms and the effects of ASP on OP, network pharmacology, molecular docking methods and a retinoic acid-induced OP rat model were employed in this study. According to the network pharmacology method, OP related targets and ASP compound related targets were collected from databases to obtain hub targets and top active chemicals in ASP treating OP. The potential therapic pathways were also calculated. Binding capacities of top active chemicals to hub targets were analyzed by molecular dock assay. In the animal experiment, osteocalcin (OCN) levels and alkaline phosphatase (ALP) activity in serum of all the rats were determined. The views of bone section were stained to observe the bone micro-structure of ASP affects. Bone mineral density (BMD), cortical bone thickness (CBT), area ratio of bone cortex (CAR) and area ratio of bone trabecula (TAR) were obtained from micro computed tomography to evaluate the effectiveness of ASP on bone loss. Conclusion Three hub genes and three top active compounds were screened by network pharmacology analysis and they combined well with each other. ASP had positive effects on alleviating RA-induced bone loss by regulating the expression of the hub genes. Signals in IL-17 pathway were predicted and primarily verified being potential targets in ASP treating OP.
Collapse
Affiliation(s)
- Min-min Tang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
- Hainan Betel Nut Engineering Technology Research Center, Wenchang, Hainan, China
| | - Li-ping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
- Hainan Betel Nut Engineering Technology Research Center, Wenchang, Hainan, China
| | - Hua Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
- Hainan Betel Nut Engineering Technology Research Center, Wenchang, Hainan, China
| |
Collapse
|
6
|
Ma Q, Wang Y, Zhang W, Du Z, Tian Z, Li H. The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle. Nutrients 2024; 16:3417. [PMID: 39408382 PMCID: PMC11478625 DOI: 10.3390/nu16193417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
PURPOSE This study aimed to compare the effects of the phytoestrogens resveratrol (RES) and genistein (GEN) on the contractility of isolated uterine smooth muscle from rats, focusing on both spontaneous and stimulated contractions, and to investigate the underlying mechanisms. METHODS Uterine strips were suspended vertically in perfusion chambers containing Kreb's solution, various concentrations of RES and GEN were added to the ex vivo uterine strips, and contractions were measured before and after incubation with RES or GEN. RESULTS (1) Both RES and GEN inhibited K+-induced contractions in a dose-dependent manner; the β/β2-adrenoceptor antagonist propranolol (PRO), ICI118551, the ATP-dependent K+ channel blocker glibenclamide (HB-419) and the NO synthase inhibitor N-nitro-L-arginine (L-NNA) diminished the inhibitory effects of RES and GEN on K+-induced contractions. (2) RES and GEN also dose-dependently inhibited PGF2α-induced uterine contractions. (3) The inhibitory effects of RES and GEN were observed in spontaneous contractile activities as well; PRO, ICI118551, HB-419 and L-NNA attenuated the inhibitory effects of RES and GEN on the spontaneous contractions of isolated uterine muscle strips. (4) RES and GEN significantly decreased the cumulative concentration response of Ca2+ and shifted the Ca2+ cumulative concentration-response curves to the right in high-K+ Ca2+-free Kreb's solution. (5) RES and GEN markedly reduced the first phasic contraction induced by oxytocin, acetylcholine, and prostaglandin F2α but did not alter the second phasic contraction caused by CaCl2 in Ca2+-free Kreb's solution. CONCLUSIONS RES and GEN can directly inhibit both spontaneous and activated contractions of isolated uterine smooth muscle. The mechanisms underlying the inhibitory effects of RES and GEN likely involve β adrenergic receptor activation, reduced Ca2+ influx and release, the activation of ATP-dependent K+ channels and increased NO production.
Collapse
Affiliation(s)
- Qin Ma
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yudong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhongrui Du
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhifeng Tian
- Function Laboratory in College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
7
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
8
|
Zhang W, Zheng L, Yan Y, Shi W. Facile Preparation of Multifunctional Hydrogels with Sustained Resveratrol Release Ability for Bone Tissue Regeneration. Gels 2024; 10:429. [PMID: 39057452 PMCID: PMC11275495 DOI: 10.3390/gels10070429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Injectable hydrogels show great promise for bone tissue engineering applications due to their high biocompatibility and drug delivery capabilities. The bone defects in osteoporosis are usually characterized by an oxidative and inflammatory microenvironment that impairs the regeneration capability of bone tissues. To attenuate the reactive oxygen species (ROS) and promote bone regeneration, an anti-oxidative hydrogel with osteogenic capacity was developed in this study. The poorly water soluble, natural antioxidant, resveratrol, was encapsulated in thiolated Pluronic F-127 micelles with over 50-times-enhanced solubility. The injectable hydrogel was facilely formed because of the new thioester bond between the free thiol group in modified F-127 and the arylate group in hyaluronic acid (HA)-acrylate. The resveratrol-loaded hydrogel showed good viscoelastic properties and in vitro stability and was cyto-compatible with bone-marrow-derived mesenchymal stem cells (BMSCs). The hydrogel allowed for a sustained release of resveratrol for at least two weeks and effectively enhanced the osteogenic differentiation of BMSCs by the up-regulation of osteogenic markers, including ALP, OCN, RUNX-2, and COL1. Moreover, the hydrogel exhibited anti-oxidative and anti-inflammatory abilities through the scavenging of intracellular ROS in RAW264.7 cells and inhibiting the gene expression and secretion of pro-inflammatory cytokines TNF-α and IL-1β under LPS exposure. In summary, the results suggest that our multifunctional hydrogel loaded with resveratrol bearing osteogenic, anti-oxidative, and anti-inflammatory actions is easily prepared and represents a promising resveratrol delivery platform for the repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Wenhai Zhang
- Orthopedic Department, Tianjin Hospital, Tianjin 300211, China
| | - Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yi Yan
- Healthcare Security Office & Biomedical Engineering Lab, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 2024; 101:44-57. [PMID: 38762096 DOI: 10.1016/j.semcancer.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
Collapse
Affiliation(s)
- Youyi Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Peter W Wang
- Department of Medicine, Oasis Medical Research Center, Watertown, MA 02472, USA.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
10
|
Meyer C, Brockmueller A, Buhrmann C, Shakibaei M. Prevention and Co-Management of Breast Cancer-Related Osteoporosis Using Resveratrol. Nutrients 2024; 16:708. [PMID: 38474838 DOI: 10.3390/nu16050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer (BC) is currently one of the most common cancers in women worldwide with a rising tendency. Epigenetics, generally inherited variations in gene expression that occur independently of changes in DNA sequence, and their disruption could be one of the main causes of BC due to inflammatory processes often associated with different lifestyle habits. In particular, hormone therapies are often indicated for hormone-positive BC, which accounts for more than 50-80% of all BC subtypes. Although the cure rate in the early stage is more than 70%, serious negative side effects such as secondary osteoporosis (OP) due to induced estrogen deficiency and chemotherapy are increasingly reported. Approaches to the management of secondary OP in BC patients comprise adjunctive therapy with bisphosphonates, non-steroidal anti-inflammatory drugs (NSAIDs), and cortisone, which partially reduce bone resorption and musculoskeletal pain but which are not capable of stimulating the necessary intrinsic bone regeneration. Therefore, there is a great therapeutic need for novel multitarget treatment strategies for BC which hold back the risk of secondary OP. In this review, resveratrol, a multitargeting polyphenol that has been discussed as a phytoestrogen with anti-inflammatory and anti-tumor effects at the epigenetic level, is presented as a potential adjunct to both support BC therapy and prevent osteoporotic risks by positively promoting intrinsic regeneration. In this context, resveratrol is also known for its unique role as an epigenetic modifier in the regulation of essential signaling processes-both due to its catabolic effect on BC and its anabolic effect on bone tissue.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| |
Collapse
|
11
|
Lai J, Yang H, Huang J, He L. Investigating the impact of Wnt pathway-related genes on biomarker and diagnostic model development for osteoporosis in postmenopausal females. Sci Rep 2024; 14:2880. [PMID: 38311613 PMCID: PMC10838932 DOI: 10.1038/s41598-024-52429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
The Wnt signaling pathway is essential for bone development and maintaining skeletal homeostasis, making it particularly relevant in osteoporosis patients. Our study aimed to identify distinct molecular clusters associated with the Wnt pathway and develop a diagnostic model for osteoporosis in postmenopausal Caucasian women. We downloaded three datasets (GSE56814, GSE56815 and GSE2208) related to osteoporosis from the GEO database. Our analysis identified a total of 371 differentially expressed genes (DEGs) between low and high bone mineral density (BMD) groups, with 12 genes associated with the Wnt signaling pathway, referred to as osteoporosis-associated Wnt pathway-related genes. Employing four independent machine learning models, we established a diagnostic model using the 12 osteoporosis-associated Wnt pathway-related genes in the training set. The XGB model showed the most promising discriminative potential. We further validate the predictive capability of our diagnostic model by applying it to three external datasets specifically related to osteoporosis. Subsequently, we constructed a diagnostic nomogram based on the five crucial genes identified from the XGB model. In addition, through the utilization of DGIdb, we identified a total of 30 molecular compounds or medications that exhibit potential as promising therapeutic targets for osteoporosis. In summary, our comprehensive analysis provides valuable insights into the relationship between the osteoporosis and Wnt signaling pathway.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Hainan Yang
- Department of Ultrasound, First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Jingshan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Lijiang He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
12
|
Salekeen R, Lustgarten MS, Khan U, Islam KMD. Model organism life extending therapeutics modulate diverse nodes in the drug-gene-microbe tripartite human longevity interactome. J Biomol Struct Dyn 2024; 42:393-411. [PMID: 36970862 DOI: 10.1080/07391102.2023.2192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Advances in antiaging drug/lead discovery in animal models constitute a large body of literature on novel senotherapeutics and geroprotectives. However, with little direct evidence or mechanism of action in humans-these drugs are utilized as nutraceuticals or repurposed supplements without proper testing directions, appropriate biomarkers, or consistent in-vivo models. In this study, we take previously identified drug candidates that have significant evidence of prolonging lifespan and promoting healthy aging in model organisms, and simulate them in human metabolic interactome networks. Screening for drug-likeness, toxicity, and KEGG network correlation scores, we generated a library of 285 safe and bioavailable compounds. We interrogated this library to present computational modeling-derived estimations of a tripartite interaction map of animal geroprotective compounds in the human molecular interactome extracted from longevity, senescence, and dietary restriction-associated genes. Our findings reflect previous studies in aging-associated metabolic disorders, and predict 25 best-connected drug interactors including Resveratrol, EGCG, Metformin, Trichostatin A, Caffeic Acid and Quercetin as direct modulators of lifespan and healthspan-associated pathways. We further clustered these compounds and the functionally enriched subnetworks therewith to identify longevity-exclusive, senescence-exclusive, pseudo-omniregulators and omniregulators within the set of interactome hub genes. Additionally, serum markers for drug-interactions, and interactions with potentially geroprotective gut microbial species distinguish the current study and present a holistic depiction of optimum gut microbial alteration by candidate drugs. These findings provide a systems level model of animal life-extending therapeutics in human systems, and act as precursors for expediting the ongoing global effort to find effective antiaging pharmacological interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA
| | - Umama Khan
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
13
|
Zhang P, Liu X, Yu X, Zhuo Y, Li D, Yang L, Lu Y. Protective Effects of Liriodendrin on Myocardial Infarction-Induced Fibrosis in Rats via the PI3K/Akt Autophagy Pathway: A Network Pharmacology Study. Comb Chem High Throughput Screen 2024; 27:1566-1575. [PMID: 37461344 DOI: 10.2174/1386207326666230717155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2024]
Abstract
BACKGROUND Liriodendrin (LIR) has been reported to improve cardiac function in rats following myocardial infarction. However, its role and mechanism in reparative myocardial fibrosis remain unclear. METHODS In this study, a rat model of myocardial fibrosis was established via left anterior descending artery ligation and randomly divided into three groups (n = 6 per group): sham-operated, myocardial infarction, and LIR intervention (100 mg/kg/day) groups. The pharmacological effects of LIR were assessed using echocardiography, hematoxylin, and eosin (H&E) staining, and Masson staining. Network pharmacology and bioinformatics were utilized to identify potential mechanisms of LIR, which were further validated via western blot analysis. RESULTS Our findings demonstrated that LIR improved cardiac function, histology scores, and col lagen volume fraction. Moreover, LIR downregulated the expression of Beclin-1, LC3-II/LC3-I while upregulating the expression of p62, indicating LIR-inhibited autophagy in the heart after myocardial infarction. Further analysis revealed that the PI3K/Akt signaling pathway was significantly enriched and validated by western blot. This analysis suggested that the ratios of p- PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR were significantly increased. CONCLUSION LIR may attenuate myocardial infarction-induced fibrosis in rats by inhibiting excessive myocardial autophagy, with the potential mechanism involving the activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, 300100, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Xuanming Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Yu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Yanmin Lu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| |
Collapse
|
14
|
Su Z, Yao B, Liu G, Fang J. Polyphenols as potential preventers of osteoporosis: A comprehensive review on antioxidant and anti-inflammatory effects, molecular mechanisms, and signal pathways in bone metabolism. J Nutr Biochem 2024; 123:109488. [PMID: 37865383 DOI: 10.1016/j.jnutbio.2023.109488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Osteoporosis (OP) is a skeletal disorder characterized by decreased bone density, alterations in bone microstructure, and increased damage to the bones. As the population ages and life expectancy increases, OP has become a global epidemic, drawing attention from scientists and doctors. Because of polyphenols have favorable antioxidant and anti-allergy effects, which are regarded as potential methods to prevent angiocardipathy and OP. Polyphenols offer a promising approach to preventing and treating OP by affecting bone metabolism, reducing bone resolution, maintaining bone density, and lowering the differentiation level of osteoclasts (OC). There are multiple ways in which polyphenols affect bone metabolism. This article provides an overview of how polyphenols inhibit oxidative stress, exert antibacterial effects, and prevent the occurrence of OP. Furthermore, we will explore the regulatory mechanisms and signaling pathways implicated in this process.
Collapse
Affiliation(s)
- Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Bin Yao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China.
| |
Collapse
|
15
|
Chopane S, Chaudhry K, Kohli A, Singh S, Banerjee M, Kumar P, Ganesan A, Chugh A. Safety and Efficacy of Resveratrol in Healing of Maxillofacial Fractures: A Randomized Controlled Study. J Maxillofac Oral Surg 2023; 22:987-994. [PMID: 38105826 PMCID: PMC10719438 DOI: 10.1007/s12663-023-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/05/2023] [Indexed: 12/19/2023] Open
Abstract
Objectives To assess the efficacy of resveratrol in improving functional outcomes following open reduction and internal fixation of maxillofacial fractures. Study Design A single-center, randomized, parallel group, prospective, double-blind clinical trial was conducted on 40 patients between the age 20 and 60 years, requiring open reduction and internal fixation of maxillofacial fractures. The selected patients were randomly divided into two groups, Group 1 (placebo) and Group 2 (resveratrol) where tablets resveratrol 500 mg were given twice daily for 1 month following open reduction and internal fixation of fractured segments. Bite force was calculated pre-operatively and on the 1st, 4th, 8th and 12th week postoperatively. Serum markers osteocalcin and alkaline phosphate were calculated pre-operatively and at 4th and 12th week postoperatively. Results Bite force (690.55 ± 262.00) in the resveratrol group was higher than the placebo group (553.27 ± 300.08) at 12th week postoperatively. However, the difference was non-significant statistically (p = 0.132). Resveratrol group (116.80 ± 55.25) showed better maintenance of serum ALP level as compared to placebo group (107.90 ± 42.99) at 12th week postoperatively, but again it lacked statistical significance (p = 0.573). Resveratrol group after initial reduction at 4th week showed serum osteocalcin levels nearly equal to the preoperative values at 12th week, while the placebo group showed a decline both at 4th and 12th week postoperatively. However, these results were not statistically significant (p = 0.065). Conclusion There was no statistically significant difference in bite force, serum ALP level and serum osteocalcin levels between placebo group and resveratrol group. Though not statistically significant but early increased level of serum osteogenic markers, better restoration of bite force in group 2 (tab. Resveratrol) indicates toward its possible optimistic role in maxillofacial fracture healing. More studies with larger sample sizes are needed in order to confirm the efficacy of this drug in maxillofacial fracture.
Collapse
Affiliation(s)
- Shivkumar Chopane
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Kirti Chaudhry
- Oral and Maxillofacial Surgery, Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Aakash Kohli
- Oral and Maxillofacial Surgery, Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Surjit Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Pravin Kumar
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Aparna Ganesan
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Ankita Chugh
- Oral and Maxillofacial Surgery, Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
16
|
Zaychenko G, Belenichev I, Hnatiuk V, Doroshenko A, Sinitsyna O, Sulaieva O, Falalyeyeva T, Kobyliak N. Protective effect of vaginal resveratrol administration on joint tissues in ovariectomized rats: Targeting mTOR and сaspase 3. Biomed Pharmacother 2023; 165:115176. [PMID: 37480827 DOI: 10.1016/j.biopha.2023.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
INTRODUCTION Estrogens play a considerable role in maintaining bone and articular cartilage homeostasis. Menopause provokes joint disorders due to metabolic syndrome and altered signaling pathways. Phytoestrogen resveratrol was demonstrated to provide chondroprotective and osteoprotective effects. However, the mechanisms of such action of Resveratrol are still being explored. AIM The study aims to determine the effect of Resveratrol on the joints and its therapeutic mechanism in ovariectomized rats. MATERIAL AND METHODS The study was carried out on Wistar female rats that were divided into three groups, including control animals; ovariectomized rats (OVX); and the OVX group treated with an intravaginal gel containing Resveratrol (0.5 % 0.1 mL, daily 28 days). Knee joint tissues (articular cartilage, subchondral plate, subchondral bone) were assessed by histomorphometry. The expression of mTOR, PTEN, Caspase 3 and BCL-2 in articular cartilage and subchondral bone were evaluated immunohistochemically. RESULTS Resveratrol treatment of OVX rats prevented weight gain by 17 % (P < 0.001), demonstrating the systemic effect on metabolic pathways. Although there were no statistically significant differences in the thickness of articular cartilage between groups, OVX rats possessed degenerative changes in chondrocytes, associated with the enhanced expression of mTOR (P < 0.001) and Casp-3 (P = 0.005). Resveratrol decreased mTOR (P = 0.007) and Casp-3 (P = 0.011) expression in chondrocytes, reducing degenerative changes. At the same time, resveratrol attenuated the deterioration of trabecular bone in OVX rats (P = 0.002). This effect was through the up-regulation of BCL-2 (P = 0.018) and down-regulation of Casp-3 expression (P < 0.001). CONCLUSIONS Intravaginal administration of resveratrol provided systemic effects and ameliorated joint tissue structure and signaling in OVX rats through stimulation of BCL-2 and reduced Casp-3 expression.
Collapse
Affiliation(s)
- Ganna Zaychenko
- Pharmacology Department, Bogomolets National Medical University, Kyiv, Ukraine.
| | - Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology Zaporizhzhya State Medical University, Zaporizhzhya 69000, Ukraine
| | - Valeriia Hnatiuk
- Pharmacology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Andrii Doroshenko
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology Zaporizhzhya State Medical University, Zaporizhzhya 69000, Ukraine
| | - Oksana Sinitsyna
- Department of Clinical Pharmacology, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv 61002, Ukraine
| | | | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv 02000, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv 02000, Ukraine; Endocrinology Department, Bogomolets National Medical University, Kyiv 01601, Ukraine.
| |
Collapse
|
17
|
Cai W, Sun B, Song C, Liu F, Wu Z, Liu Z. Resveratrol induces proliferation and differentiation of mouse pre-osteoblast MC3T3-E1 by promoting autophagy. BMC Complement Med Ther 2023; 23:121. [PMID: 37060066 PMCID: PMC10103476 DOI: 10.1186/s12906-023-03943-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND In mouse, it was discovered that resveratrol (Res) enhanced osteoporosis (OP) by boosting osteogenesis. Besides, Res can also have an impact on MC3T3-E1 cells, which are crucial for the control of osteogenesis and thus increase osteogenesis. Although some articles have discovered that Res enhanced autophagy to promote the value-added differentiation of MC3T3, it is unclear exactly how this affects the process of osteogenesis in mouse. Therefore, we will show that Res encourages MC3T3-E1 proliferation and differentiation in mouse pre-osteoblasts and further investigate the autophagy-related mechanism for this impact. METHODS (1) MC3T3-E1 cells were separated into blank control group and various concentrations (0.01, 0.1, 1, 10, 100µmol/L) of group in order to determine the ideal Res concentration. In the Res group, Cell Counting Kit-8 (CCK-8) was used to measure the proliferation activity of pre-osteoblasts in mice in each group after resveratrol intervention. Alkaline Phosphatase (ALP) and alizarin red staining were used to gauge the degree of osteogenic differentiation, and RT-qPCR was used to measure the expression levels of Runx2 and OCN in the osteogenic differentiation ability of the cells. (2) In the experiment, four groups were set up: the control group, 3MA group, Res group, and Res + 3MA group. To examine cell mineralization, ALP and alizarin red staining were utilized. RT-qPCR and Western blot detection of cell autophagy activity levels and osteogenic differentiation capacity in each group following intervention. RESULTS (1) Resveratrol might increase the number of mice pre-osteoblast, with the impact being most pronounced at 10µmol/L (P < 0.05). The nodules developed substantially more often than in the blank control group, and Runx2 and OCN expressions significantly increased (P < 0.05). (2) In contrast to the Res group, after 3MA purine blocked autophagy, the Res + 3MA group's alkaline phosphatase staining and the development of mineralized nodules were reduced. Runx2, OCN, LC3II / LC3I expression decreased, p62 expression increased (P < 0.05). CONCLUSION The present study partially or indirectly demonstrated that Res may, through increased autophagy, induce osteogenic differentiation of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Weiye Cai
- Department of Orthopaedics and Traumatology, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Sun
- The People's Hospital Of Jimo, Jimo, Qingdao, China
| | - Chao Song
- Department of Orthopaedics and Traumatology, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Fei Liu
- Department of Orthopaedics and Traumatology, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengliang Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zongchao Liu
- Department of Orthopaedics and Traumatology, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
18
|
Ozturk S, Cuneyit I, Altuntas F, Karagur ER, Donmez AC, Ocak M, Unal M, Sarikanat M, Donmez BO. Resveratrol prevents ovariectomy-induced bone quality deterioration by improving the microarchitectural and biophysicochemical properties of bone. J Bone Miner Metab 2023:10.1007/s00774-023-01416-z. [PMID: 37031330 DOI: 10.1007/s00774-023-01416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/01/2023] [Indexed: 04/10/2023]
Abstract
INTRODUCTION Osteoporosis is a major health problem that is very common worldwide and is characterized by both low bone density and deterioration in bone quality. New treatment options without side effects have become an active area of research in recent years. This study was designed to investigate the preventive effects of resveratrol on bone quality deterioration caused by ovariectomy. MATERIALS AND METHODS Sixty rats were randomly divided into five groups (12 animals per group): Control, Sham-operated (SHAM), ovariectomized (OVX), OVX + Resveratrol-40 mg/kg/day (OVX + Res40), OVX + Resveratrol-80 mg/kg/day (OVX + Res80). Resveratrol was administered by oral gavage (40 and 80 mg/kg/day) for ten weeks. Micro-CT measurements, biomechanical testing, Raman spectroscopy analysis, and RT-PCR analysis were performed. ALP, OCN, TAS, and TOS levels were also measured from blood serum. RESULTS Bone strength, bone volume/total volume, trabecular volume, and trabecular thickness were higher in the OVX + RES-80 group than in the OVX group. Resveratrol increased osteogenic differentiation, as the expression of osteogenic markers ALP, Col1A1, Runx2, OPG, OCN increased in both OVX + RES-80 and OVX + RES-40 groups compared to the OVX group. 80 mg/kg/day resveratrol administration decreased the levels of ALP, OCN and TOS in ovariectomized rats. Raman spectroscopy findings showed a preventive effect of resveratrol administration against ovariectomy-induced deterioration in biophysiochemical properties of bone tissue. CONCLUSION This study revealed that administration of different doses of 80 mg/kg/day and 40 mg/kg/day of resveratrol had protective effects on bone quality deterioration caused by ovariectomy.
Collapse
Affiliation(s)
- Sevval Ozturk
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Ibrahim Cuneyit
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Fatih Altuntas
- School of Medicine, Department of Physiology, Pamukkale University, 20070, Denizli, Turkey
| | - Ege Riza Karagur
- School of Medicine, Department of Medical Genetics, Pamukkale University, 20070, Denizli, Turkey
| | - Aysegul Cort Donmez
- School of Medicine, Department of Medical Biochemistry, Pamukkale University, 20070, Denizli, Turkey
| | - Mert Ocak
- School of Dentistry, Department of Anatomy, Ankara University, 06650, Ankara, Turkey
| | - Mustafa Unal
- School of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
- Faculty of Engineering, Department of Bioengineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Mehmet Sarikanat
- Faculty of Engineering, Department of Mechanical Engineering, Ege University, 35040, Izmir, Turkey
| | - Baris Ozgur Donmez
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey.
| |
Collapse
|
19
|
Zheng Y, Deng J, Wang G, Zhang X, Wang L, Ma X, Dai Y, E L, Liu X, Zhang R, Zhang Y, Liu H. P53 negatively regulates the osteogenic differentiation in jaw bone marrow MSCs derived from diabetic osteoporosis. Heliyon 2023; 9:e15188. [PMID: 37096002 PMCID: PMC10121411 DOI: 10.1016/j.heliyon.2023.e15188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Patients with diabetic osteoporosis (DOP) often suffer from poor osseointegration of artificial implants, which is a challenge that affects implant outcomes. The osteogenic differentiation ability of human jaw bone marrow mesenchymal stem cells (JBMMSCs) is the key to implant osseointegration. Studies have shown that the microenvironment of hyperglycemia affects the osteogenic differentiation of mesenchymal stem cells (MSC), but the mechanism is still unclear. Therefore, the aim of this study was to isolate and culture JBMMSCs from surgically derived bone fragments from DOP patients and control patients to investigate the differences in their osteogenic differentiation ability and to elucidate its mechanisms. The results showed that the osteogenic ability of hJBMMSCs was significantly decreased in the DOP environment. Mechanism study showed that the expression of senescence marker gene P53 was significantly increased in DOP hJBMMSCs compared to control hJBMMSCs according to RNA-sequencing result. Further, DOP hJBMMSCs were found to display significant senescence using β-galactosidase staining, mitochondrial membrane potential and ROS assay, qRT-PCR and WB analysis. Overexpression of P53 in hJBMMSCs, knockdown of P53 in DOP hJBMMSCs, and knockdown followed by overexpression of P53 significantly affected the osteogenic differentiation ability of hJBMMSCs. These results suggest that MSC senescence is an important reason for decreasing osteogenic capacity in DOP patients. P53 is a key target in regulating hJBMMSCs aging, and knocking down P53 can effectively restore the osteogenic differentiation ability of DOP hJBMMSCs and promote osteosynthesis in DOP dental implants. It provided a new idea to elucidate the pathogenesis and treatment of diabetic bone metabolic diseases.
Collapse
Affiliation(s)
- Ying Zheng
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Junhao Deng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Gang Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaru Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
| | - Lin Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaocao Ma
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yawen Dai
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiangwei Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Rong Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
- Corresponding author.
| | - Hongchen Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Corresponding author. Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
20
|
Mahmoud AF, Aboumanei MH, Abd-Allah WH, Swidan MM, Sakr TM. New frontier radioiodinated probe based on in silico resveratrol repositioning for microtubules dynamic targeting. Int J Radiat Biol 2023; 99:281-291. [PMID: 35549606 DOI: 10.1080/09553002.2022.2078001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the 'de novo' drug discovery faces a highly attrition rates, drug repositioning procures a heighten concern in identifying novel uses for existing medications. This study aimed to fabricate radioiodinated resveratrol as a potent microtubules interfering agent for cancer theragnosis. METHODS Resveratrol was radiolabeled with radioactive iodine where the radioiodination efficiency was enlightened and the computational approaches were employed to investigate the affinity and specificity with tubulins. Furthermore, the in-vivo distribution and pharmacokinetic studies in normal and tumor induced mice were investigated. RESULTS The maximum radioiodination yield (94.6 ± 1.66) was achieved at optimum preparation parameters stated as 100 μg/mL of oxidizing agent, 100 μg/ml of resveratrol, reaction time of 30 min and reaction pH 5. The in silico studies showed that di-iodinated resveratrol (compound 6) exhibited the best binding score (-34.46) and interaction with the β-tubulin binding site. The in vivo distribution in tumor models revealed a significant accumulation (4.02% ID/g) in tumor lesion at 60 min p.i. The rate of drug elimination demonstrated a mono-exponential decline of radioactivity versus time in the blood. CONCLUSION Radioiodinated resveratrol revealed good microtubules targeting which render it as a novel theranostic probe for cancer management.
Collapse
Affiliation(s)
- Ashgan F Mahmoud
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed H Aboumanei
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt.,Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Sakr
- Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, Egypt.,Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
21
|
Zhan W, Ruan B, Dong H, Wang C, Wu S, Yu H, Xu X, Sun H, Cai J. Isopsoralen suppresses receptor activator of nuclear factor kappa- β ligand-induced osteoclastogenesis by inhibiting the NF- κB signaling. PeerJ 2023; 11:e14560. [PMID: 36643647 PMCID: PMC9838210 DOI: 10.7717/peerj.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis is a serious systemic metabolic bone system disease.This study aimed to identify the target genes of isopsoralen and the signaling pathways involved in the differential expression of the genes involved in osteoclast differentiation. We hypothesized that isopsoralen may inhibit osteoclast differentiation by blocking the nuclear factor kappa-B (NF-κB) signaling pathway and verified our hypothesis through basic experiments. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to detect the effect of isopsoralen on the proliferation and viability of primary mouse bone marrow monocytes (BMMCs). The effect of isopsoralen on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation was determined by using tartrate-resistant acid phosphatase (TRAP) staining. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of the related genes and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of isopsoralen target genes were obtained through comprehensive analysis using the STITCH database, Cytoscape 3.8.2, and R-Studio software. Differentially expressed genes (DEGs) were found in osteoclasts induced by RANKL before and after 3 days using R-Studio, following which KEGG analysis was performed. Next, enrichment analysis was performed on the KEGG pathway shared by the target genes of isopsoralen and the differentially expressed genes during osteoclast differentiation to predict the signaling pathway underlying the inhibition of osteoclast differentiation by isopsoralen. Finally, Western blot was used to detect the effect of isopsoralen on the activation of signaling pathways to verify the results of our bioinformatics analysis. Based on the enrichment analysis of isopsoralen target genes and differentially expressed genes during osteoclastogenesis, we believe that isopsoralen can inhibit RANKL-induced osteoclastogenesis by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wanda Zhan
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binjia Ruan
- Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hui Dong
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chaoyong Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuangshi Wu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hang Yu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohang Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Sun
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Cai
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
22
|
Zhang Y, Liang J, Liu P, Wang Q, Liu L, Zhao H. The RANK/RANKL/OPG system and tumor bone metastasis: Potential mechanisms and therapeutic strategies. Front Endocrinol (Lausanne) 2022; 13:1063815. [PMID: 36589815 PMCID: PMC9800780 DOI: 10.3389/fendo.2022.1063815] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
With the markedly increased diagnosis and incidence of cancer in the population, tumor bone metastasis has become a frequent event in tumor patients. Healthy bone integrity is maintained by a delicate balance between bone formation and bone resorption. Unfortunately, many tumors, such as prostate and breast, often metastasize to the bone, and the alterations to the bone homeostasis can particularly favor tumor homing and consequent osteolytic or osteoblastic lesions. Receptor activator of NF-κB ligand (RANKL), its receptor RANK, and osteoprotegerin (OPG) are involved in the regulation of the activation, differentiation, and survival of osteoclasts, which play critical roles in bone metastasis formation. High rates of osteoclastic bone resorption significantly increase fracture risk, cause severe bone pain, and contribute to homing tumor cells in bone and bone marrow. Consequently, suppression of the RANK/RANKL/OPG system and osteoclastic activity can not only ameliorate bone resorption but may also prevent tumor bone metastases. This review summarizes the important role of the RANK/RANKL/OPG system and osteoclasts in bone homeostasis and its effect on tumor bone metastasis and discusses therapeutic strategies based on RANKL inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
23
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
24
|
Wen X, Wang J, Wang Q, Liu P, Zhao H. Interaction between N6-methyladenosine and autophagy in the regulation of bone and tissue degeneration. Front Bioeng Biotechnol 2022; 10:978283. [PMID: 36072293 PMCID: PMC9443517 DOI: 10.3389/fbioe.2022.978283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bone and tissue degeneration are the most common skeletal disorders that seriously affect people’s quality of life. N6-methyladenosine (m6A) is one of the most common RNA modifications in eukaryotic cells, affecting the alternative splicing, translation, stability and degradation of mRNA. Interestingly, increasing number of evidences have indicated that m6A modification could modulate the expression of autophagy-related (ATG) genes and promote autophagy in the cells. Autophagy is an important process regulating intracellular turnover and is evolutionarily conserved in eukaryotes. Abnormal autophagy results in a variety of diseases, including cardiomyopathy, degenerative disorders, and inflammation. Thus, the interaction between m6A modification and autophagy plays a prominent role in the onset and progression of bone and tissue degeneration. In this review, we summarize the current knowledge related to the effect of m6A modification on autophagy, and introduce the role of the crosstalk between m6A modification and autophagy in bone and tissue degeneration. An in-depth knowledge of the above crosstalk may help to improve our understanding of their effects on bone and tissue degeneration and provide novel insights for the future therapeutics.
Collapse
|
25
|
Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif 2022; 55:e13323. [DOI: 10.1111/cpr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
26
|
The Regulatory Role of Ferroptosis in Bone Homeostasis. Stem Cells Int 2022; 2022:3568597. [PMID: 35873534 PMCID: PMC9300333 DOI: 10.1155/2022/3568597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Ferroptosis is an iron-dependent form of programmed cell death and an important type of biological catabolism. Through the action of divalent iron or ester oxygenase, ferroptosis can induce lipid peroxidation and cell death, regulating a variety of physiological processes. The role of ferroptosis in the modulation of bone homeostasis is a significant topic of interest. Herein, we review and discuss recent studies exploring the mechanisms and functions of ferroptosis in different bone-related cells, including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. The association between ferroptosis and disorders of bone homeostasis is also explored in this review. Overall, we aim to provide a detailed overview of ferroptosis, summarizing recent understanding on its role in regulation of bone physiology and bone disease pathogenesis.
Collapse
|
27
|
Poudel S, Izquierdo M, Cancela ML, Gavaia PJ. Reversal of Doxorubicin-Induced Bone Loss and Mineralization by Supplementation of Resveratrol and MitoTEMPO in the Early Development of Sparus aurata. Nutrients 2022; 14:nu14061154. [PMID: 35334811 PMCID: PMC8950850 DOI: 10.3390/nu14061154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin is a widely used chemotherapeutic drug known to induce bone loss. The mechanism behind doxorubicin-mediated bone loss is unclear, but oxidative stress has been suggested as a potential cause. Antioxidants that can counteract the toxic effect of doxorubicin on the bone would be helpful for the prevention of secondary osteoporosis. We used resveratrol, a natural antioxidant, and MitoTEMPO, a mitochondria-targeted antioxidant, to counteract doxorubicin-induced bone loss and mineralization on Sparus aurata larvae. Doxorubicin supplemented Microdiets increased bone deformities, decreased mineralization, and lipid peroxidation, whereas Resveratrol and MitoTEMPO supplemented microdiets improved mineralization, decreased bone deformities, and reversed the effects of doxorubicin in vivo and in vitro, using osteoblastic VSa13 cells. Partial Least-Squares Discriminant Analysis highlighted differences between groups on the distribution of skeletal anomalies and mineralization of skeleton elements. Calcium and Phosphorus content was negatively affected in the doxorubicin supplemented group. Doxorubicin reduced the mRNA expression of antioxidant genes, including catalase, glutathione peroxidase 1, superoxide dismutase 1, and hsp90 suggesting that ROS are central for Doxorubicin-induced bone loss. The mRNA expression of antioxidant genes was significantly increased on resveratrol alone or combined treatment. The length of intestinal villi was increased in response to antioxidants and reduced on doxorubicin. Antioxidant supplements effectively prevent bone deformities and mineralization defects, increase antioxidant response and reverse doxorubicin-induced effects on bone anomalies, mineralization, and oxidative stress. A combined treatment of doxorubicin and antioxidants was beneficial in fish larvae and showed the potential for use in preventing Doxorubicin-induced bone impairment.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, FMCB, University of Algarve, 8005-139 Faro, Portugal
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain;
| | - Maria Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800057 or +351-289-800900 (ext. 7057); Fax: +351-289-800069
| |
Collapse
|
28
|
Cell-Based Double-Screening Method to Identify a Reliable Candidate for Osteogenesis-Targeting Compounds. Biomedicines 2022; 10:biomedicines10020426. [PMID: 35203635 PMCID: PMC8962348 DOI: 10.3390/biomedicines10020426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
Small-molecule compounds strongly affecting osteogenesis can form the basis of effective therapeutic strategies in bone regenerative medicine. A cell-based high-throughput screening system might be a powerful tool for identifying osteoblast-targeting candidates; however, this approach is generally limited with using only one molecule as a cell-based sensor that does not always reflect the activation of the osteogenic phenotype. In the present study, we used the MC3T3-E1 cell line stably transfected with the green fluorescent protein (GFP) reporter gene driven by a fragment of type I collagen promoter (Col-1a1GFP-MC3T3-E1) to evaluate a double-screening system to identify osteogenic inducible compounds using a combination of a cell-based reporter assay and detection of alkaline phosphatase (ALP) activity. Col-1a1GFP-MC3T3-E1 cells were cultured in an osteogenic induction medium after library screening of 1280 pharmacologically active compounds (Lopack1280). After 7 days, GFP fluorescence was measured using a microplate reader. After 14 days of osteogenic induction, the cells were stained with ALP. Library screening using the Col-1a1/GFP reporter and ALP staining assay detected three candidates with significant osteogenic induction ability. Furthermore, leflunomide, one of the three detected candidates, significantly promoted new bone formation in vivo. Therefore, this double-screening method could identify candidates for osteogenesis-targeting compounds more reliably than conventional methods.
Collapse
|
29
|
Screening of potential hub genes in pulmonary thromboembolism. Exp Ther Med 2021; 23:18. [PMID: 34815770 PMCID: PMC8593918 DOI: 10.3892/etm.2021.10940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
Pulmonary thromboembolism (PTE) is a fatal clinical syndrome that usually occurs in elderly individuals. The present study aimed to identify functional and key genes involved in the early diagnosis of PTE using bioinformatics analysis. The GSE84738 dataset was retrieved from the Gene Expression Omnibus database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were subsequently performed. In addition, Cytoscape software v.3.7.2 was used to construct a protein-protein interaction (PPI) network. Serum samples from patients with PTE and healthy individuals were collected and the expression levels of Toll-like receptor (TLR)4, TLR2, IL-1β, JUN, prostaglandin-endoperoxide synthase 2 (PTGS2), osteopontin (SPP1) and endothelin-1 (ET-1) were analyzed by reverse transcription-quantitative PCR. A total of 160 upregulated and 159 downregulated differentially expressed genes were identified between patients with PTE and healthy individuals. TNF, IL-1β, JUN, TLR4, PTGS2, vascular cell adhesion molecule 1, SPP1, ryanodine receptor 2, TLR2 and ET-1 were considered as hub genes, which are defined as the genes with the highest degree of interaction in the enrichment and PPI network analyses. The top 10 common genes with the highest degree in the PPI network and the top 10 genes in modules 1 and 2 were TLR4, TLR2, IL-1β, JUN, PTGS2, SPP1 and ET-1. Taken together, the present study suggested that TLR4, TLR2, IL-1β and SPP1 were enriched in patients with PTE, thus providing novel potential biomarkers for the diagnosis of PTE.
Collapse
|
30
|
Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021; 13:3673. [PMID: 34835928 PMCID: PMC8619229 DOI: 10.3390/nu13113673] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Magdalena Czemplik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| |
Collapse
|
31
|
Maleki Dana P, Sadoughi F, Mansournia MA, Mirzaei H, Asemi Z, Yousefi B. Targeting Wnt signaling pathway by polyphenols: implication for aging and age-related diseases. Biogerontology 2021; 22:479-494. [PMID: 34480268 DOI: 10.1007/s10522-021-09934-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Age is an important risk factor for different diseases. The same mechanisms that promote aging are involved in the development and progression of age-associated diseases. Polyphenols are organic compounds found in fruits and vegetables. Due to their beneficial properties (e.g. antioxidant and anti-inflammatory), polyphenols have been extensively used for treating chronic diseases. To exert their functions, polyphenols target various molecular mechanisms and signaling pathways, such as mTOR, NF-κB, and Wnt/β-catenin. Wnt signaling is a critical pathway for developmental processes. Besides, dysregulation of this signaling pathway has been observed in various diseases. Several investigations have been conducted on Wnt inhibitors at pre-clinical stages, showing promising results. Herein, we review the studies dealing with the role of polyphenols in targeting the Wnt signaling pathways in aging processes and age-associated diseases, including cancer, diabetes, Alzheimer's disease, osteoporosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
32
|
Li Q, Yang G, Xu H, Tang S, Lee WYW. Effects of resveratrol supplementation on bone quality: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Med Ther 2021; 21:214. [PMID: 34420523 PMCID: PMC8380387 DOI: 10.1186/s12906-021-03381-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The results from clinical trials have revealed that the effects of resveratrol supplementation on bone mineral density (BMD) and bone biomarkers are inconsistent. Our objective was to determine the effects of resveratrol supplementation on BMD and serum bone biomarkers. METHODS PubMed, Cochrane library, EMBASE, Web of science and Scopus were searched up to August 24, 2020. Two reviewers independently performed the articles search and screen according to defined selection criteria. The study quality of the randomized controlled trials (RCTs) was evaluated with the Cochrane scoring system. Heterogeneity among studies was examined by Cochrane Q test. Retrieved data were pooled after mean differences (MD) were computed between two groups for BMD and serum biomarkers. Subgroup analyses were performed to evaluate a potential difference in terms of dose of resveratrol and intervention duration. Sensitivity analysis was executed by omitting studies with imputed values in order to evaluate the influence of these studies on the overall results. RESULTS Ten eligible studies involving 698 subjects were included in this meta-analysis with 401 participants receiving resveratrol and 297 receiving placebo. Supplementation of resveratrol had no statistically significant effects on areal bone mineral density (aBMD) at lumbar spine (MD: -0.02, 95% CI: - 0.05, 0.01, p = 0.26, I2 = 6%), total hip BMD (MD: -0.01, 95% CI: - 0.04, 0.02, p = 0.65, I2 = 0%), and whole body BMD (MD: 0.00, 95% CI: - 0.02, 0.02, p = 0.74, I2 = 0%). Supplementation of resveratrol also did not result in significant change in bone serum markers, including serum alkaline phosphatase (ALP), bone alkaline phosphatase (BAP), osteocalcin (OCN), procollagen I N-terminal propeptide (PINP), C-terminal telopeptide of type I collagen (CTX) and parathyroid hormone (PTH). Subgroup analysis showed the effect of resveratrol supplementation on BMD and serum bone markers were similar in trails of different doses, intervention duration, and pathological conditions of the participants. CONCLUSION Resveratrol supplementation did not show any significant effect on BMD or serum bone markers with the current evidence. Further investigation with more well-organized multicentre randomized trial is warranted.
Collapse
Affiliation(s)
- Qiangqiang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.,SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Guangpu Yang
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Wayne Yuk-Wai Lee
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Cai P, Lu Y, Yin Z, Wang X, Zhou X, Li Z. Baicalein ameliorates osteoporosis via AKT/FOXO1 signaling. Aging (Albany NY) 2021; 13:17370-17379. [PMID: 34198266 PMCID: PMC8312461 DOI: 10.18632/aging.203227] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
In this study, we used bioinformatics and an in vitro cellular model of glucocorticoid-induced osteoporosis to investigate mechanisms underlying the beneficial effects of baicalein (BN) against osteoporosis. STITCH database analysis revealed 30 BN-targeted genes, including AKT1, CCND1, MTOR, and PTEN. Functional enrichment analysis demonstrated that BN-targeted genes were enriched in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. MIRWALK2.0 database analysis identified 110 enriched KEGG pathways related to osteoporosis. A Venn diagram demonstrated that 26 KEGG pathways were common between osteoporosis and BN-targeted genes. The top 5 common KEGG pathways were prostate cancer, bladder cancer, glioma, pathways in cancer, and melanoma. BN-targeted genes in the top 5 shared KEGG pathways were involved in PI3K-AKT, MAPK, p53, ErbB, and mTOR signaling pathways. In addition, glucocorticoid-induced osteoporosis in MC3T3-E1 cells was partially reversed by BN through inhibition of AKT, which, by upregulating FOXO1, enhanced expression of bone turnover markers (ALP, OCN, Runx2, and Col 1) and extracellular matrix mineralization. These findings demonstrate that BN suppresses osteoporosis via an AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Pan Cai
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yan Lu
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaoxiao Zhou
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhuokai Li
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
34
|
Zheng HL, Xu WN, Zhou WS, Yang RZ, Chen PB, Liu T, Jiang LS, Jiang SD. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis 2021; 12:497. [PMID: 33993186 PMCID: PMC8124066 DOI: 10.1038/s41419-021-03784-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Bone health requires adequate bone mass, which is maintained by a critical balance between bone resorption and formation. In our study, we identified beraprost as a pivotal regulator of bone formation and resorption. The administration of beraprost promoted differentiation of mouse bone mesenchymal stem cells (M-BMSCs) through the PI3K–AKT pathway. In co-culture, osteoblasts stimulated with beraprost inhibited osteoclastogenesis in a rankl-dependent manner. Bone mass of p53 knockout mice remained stable, regardless of the administration of beraprost, indicating that p53 plays a vital role in the bone mass regulation by beraprost. Mechanistic in vitro studies showed that p53 binds to the promoter region of neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) to promote its transcription. As a ubiquitinating enzyme, Nedd4 binds to runt-related transcription factor 2 (Runx2), which results in its ubiquitination and subsequent degradation. These data indicate that the p53–Nedd4–Runx2 axis is an effective regulator of bone formation and highlight the potential of beraprost as a therapeutic drug for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Wen-Ning Xu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Run-Ze Yang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Peng-Bo Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Tao Liu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China.
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China.
| |
Collapse
|
35
|
Qian L, Xia Z, Zhang M, Han Q, Hu D, Qi S, Xing D, Chen Y, Zhao X. Integrated Bioinformatics-Based Identification of Potential Diagnostic Biomarkers Associated with Diabetic Foot Ulcer Development. J Diabetes Res 2021; 2021:5445349. [PMID: 34513999 PMCID: PMC8426639 DOI: 10.1155/2021/5445349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
The present study was designed to detect possible biomarkers associated with diabetic foot ulcer (DFU) incidence in an effort to develop novel treatments for this condition. The GSE7014 and GSE29221 gene expression datasets were downloaded from the Gene Expression Omnibus (GEO) database, after which differentially expressed genes (DEGs) were identified between DFU and healthy samples. These DEGs were then arranged into a protein-protein interaction (PPI) network, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) term enrichment analyses were performed to explore the functional roles of these genes. In total, 1192 DEGs were identified in the GSE7014 dataset (900 upregulated, 292 downregulated), while 1177 were identified in the GSE29221 dataset (257 upregulated, 919 downregulated). GO analyses revealed these DEGs to be significantly enriched in biological processes including sarcomere organization, muscle filament sliding, and the regulation of cardiac conduction, molecular functions including structural constituent of muscle, protein binding, and calcium ion binding, and cellular components including Z disc, myosin filament, and M band. These DEGs were also enriched in the adrenergic signaling in cardiomyoctes, dilated cardiomyopathy, and tight junction KEGG pathways. Together, the findings of these bioinformatics analyses thus identified key hub genes associated with DFU development.
Collapse
Affiliation(s)
- Long Qian
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Zhipeng Xia
- Department of Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
| | - Ming Zhang
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Qiong Han
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Die Hu
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Sha Qi
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Danmou Xing
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Yan Chen
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Xin Zhao
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| |
Collapse
|
36
|
Qi S, Han Q, Xing D, Qian L, Yu X, Ren D, Wang H, Chen Q. Functional Analysis of Estrogen Receptor 1 in Diabetic Wound Healing: A Knockdown Cell-Based and Bioinformatic Study. Med Sci Monit 2020; 26:e928788. [PMID: 33338031 PMCID: PMC7754692 DOI: 10.12659/msm.928788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Diabetic wound (DW) treatment is a serious challenge for clinicians, and the underlying mechanisms of DWs remain elusive. We sought to identify the critical genes in the development of DWs and provide potential targets for DW therapies. Material/Methods Datasets of GSE38396 from the Gene Expression Omnibus (GEO) database were reviewed. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology term analyses were carried out, and Cytoscape software (Cytoscape 3.7.2) was used to construct the protein interaction network. Serum samples from patients with diabetes and control participants were collected, and the expression of estrogen receptor 1 (ESR1) was measured by quantitative reverse-transcription polymerase chain reaction. In addition, the function of ESR1 in human skin fibroblasts was investigated in vitro. Results Eight samples were analyzed using the Morpheus online tool, which identified 637 upregulated and 448 downregulated differentially expressed genes. The top 5 KEGG pathways of upregulated differentially expressed genes were associated with sphingolipid metabolism, estrogen signaling, ECM-receptor interaction, MAPK signaling, and PI3K-Akt signaling. The hub genes for DWs were JUN, ESR1, CD44, SMARCA4, MMP2, BMP4, GSK3B, WDR5, PTK2, and PTGS2. JUN, MMP2, and ESR1 were the upregulated hub genes, and ESR1 was found to be consistently enriched in DW patients. Inhibition of ESR1 had a stimulative role in human skin fibroblasts. Conclusions ESR1 was identified as a crucial gene in the development of DWs, which suggests potential therapeutic targets for DW healing.
Collapse
Affiliation(s)
- Sha Qi
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qiong Han
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Danmou Xing
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Long Qian
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiang Yu
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dong Ren
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Huan Wang
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Quan Chen
- Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|