1
|
Tiwari A, Hobbs BD, Sharma R, Li J, Kho AT, Amr S, Celedón JC, Weiss ST, Hersh CP, Tantisira KG, McGeachie MJ. Peripheral blood miRNAs are associated with airflow below threshold in children with asthma. Respir Res 2025; 26:38. [PMID: 39856653 PMCID: PMC11763123 DOI: 10.1186/s12931-025-03116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are crucial post-transcriptional regulators involved in inflammatory diseases, such as asthma. Poor lung function and airflow issues in childhood are linked to the development of chronic obstructive pulmonary disease (COPD) in adulthood. METHODS We analyzed small RNA-Seq data from 365 peripheral whole blood samples from the Genetics of Asthma in Costa Rica Study (GACRS) for association with airflow levels measured by FEV1/FVC. Differentially expressed (DE) miRNAs were identified using DESeq2 in R, adjusting for covariates and applying a 10% false discovery rate (FDR). The analysis included 361 samples and 649 miRNAs. The two DE miRNAs were further tested for association with airflow obstruction in a study of adult former smokers with and without COPD. RESULTS We found 1 upregulated and 1 downregulated miRNA in participants with airflow below the threshold compared to those above it. In the adult study, the same miRNAs were upregulated and downregulated in individuals with FEV1/FVC < 0.7 versus those with FEV1/FVC > 0.7, showing suggestive statistical evidence. The target genes of these miRNAs were enriched for PI3K-Akt, Hippo, WNT, MAPK, and focal adhesion pathways. CONCLUSIONS Two differentially expressed miRNAs were associated with airflow levels in children with asthma and airflow obstruction in adults with COPD. This suggests that shared genetic regulatory systems may influence childhood airflow and contribute to adulthood airflow obstruction.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Sami Amr
- Translational Genomics Core, Mass General Brigham Personalized Medicine, Cambridge, MA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Channing Division of Network Medicine, Harvard Medical School, 181 Longwood Avenue, Room 539, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Wang H, Chen Y, Zhang J, Wang N, Tian T. Deletion of BRCC3 ameliorates airway inflammation in asthma by inhibiting the activation of NLRP3 inflammasome. Int Immunopharmacol 2025; 145:113720. [PMID: 39642564 DOI: 10.1016/j.intimp.2024.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
BRCA1/BRCA2-containing complex subunit 3 (BRCC3) serves as a deubiquitinating enzyme contributing to multiple inflammation-related disorders. However, the role of BRCC3 in modulating airway inflammation in asthma has not been investigated. This study aimed to examine the role of BRCC3 in airway inflammation using a mouse model of asthma induced by ovalbumin (OVA). BRCC3 levels were found to be elevated in mice with asthma. BRCC3 knockout (KO) mice demonstrated a notable improvement in pathological changes, accompanied by reduced levels of inflammatory cell infiltration and inflammatory cytokines, compared to wild-type (WT) mice following OVA challenge. The NLRP3 inflammasome was high activated in asthmatic mice, which was restrained by BRCC3 KO, as companied by a decrease in NLRP3, ASC, cleaved Caspase-1, cleaved Gasdermin D (GSDMD), IL-1β, and IL-18. In vitro studies demonstrated BRCC3 levels increased in airway epithelial cells in response to house dust mite (HDM) stimulation, depending on the dose and duration of exposure. Silencing BRCC3 in airway epithelial cells protected against HDM-induced cell injury and inflammation, along with inhibiting the NLRP3 inflammasome and pyroptosis. Conversely, the overexpression of BRCC3 in airway epithelial cells worsened DM-induced cell injury and inflammation while also enhancing the NLRP3 inflammasome and pyroptosis. Further investigations revealed that silencing BRCC3 increased the ubiquitination of NLRP3, whereas overexpressing BRCC3 decreased it. Pharmacological inhibition of the NLRP3 inflammasome diminished the effects of BRCC3 overexpression on the inflammation and pyroptosis induced by HDM in airway epithelial cells. Overall, these findings underscore the importance of BRCC3 in the pathogenesis of asthma. Deletion of BRCC3 alleviates airway inflammation in asthma by impeding the activation of the NLRP3 inflammasome, thus indicating that BRCC3 could serve as a potential target for asthma therapy.
Collapse
Affiliation(s)
- Hao Wang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Yao Chen
- Department of Pediatrics, Xi'an Zhongda International Hospital, Xi'an, Shaanxi Province 710000, China
| | - Jin Zhang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Ning Wang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Tian Tian
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China.
| |
Collapse
|
3
|
Liu Y, Li J, Wu Z, Wu S, Yang X. Fibroblast Growth Factor 21 Confers Protection Against Asthma Through Inhibition of NLRP3 Inflammasome Activation. Inflammation 2024:10.1007/s10753-024-02222-z. [PMID: 39730972 DOI: 10.1007/s10753-024-02222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model. Levels of FGF21 were observed to be elevated in mice exhibiting asthmatic symptoms. FGF21 knockout (KO) mice exhibited exacerbated asthmatic pathologies, marked by heightened infiltration of inflammatory cells and elevated release of inflammatory cytokine, compared to wild-type (WT) mice with OVA challenge. Adeno-associated virus (AAV)-mediated overexpression of FGF21 significantly reversed asthmatic pathologies in both WT and FGF21 KO mice. Activated NLRP3 inflammasome was observed in WT mice following OVA challenge, and this response was intensified in FGF21 KO mice, manifested by an upregulation of NLRP3, ASC, cleaved Caspase-1, cleaved Gasdermin D (GSDMD), IL-1β, and IL-18. Pharmacological suppression of NLRP3 ameliorated the aggravated asthmatic pathologies observed in FGF21 KO mice after OVA challenge. Overall, the present work underscores the pivotal function of FGF21 in the pathogenesis of asthma and suggests that FGF21 could serve as a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Jingxian Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Zhenyu Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Shiyu Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Xinwei Yang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
4
|
Wang H, Zhang Y, Zhong B, Geng Y, Hao J, Jin Q, Hou W. Cysteine and glycine-rich protein 2 retards platelet-derived growth factor-BB-evoked phenotypic transition of airway smooth muscle cells by decreasing YAP/TAZ activity. Cell Biochem Funct 2024; 42:e3896. [PMID: 38081793 DOI: 10.1002/cbf.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Zhang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhong
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juanjuan Hao
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoyan Jin
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Hou
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Cha J, Choi S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int J Mol Sci 2023; 24:12266. [PMID: 37569643 PMCID: PMC10419280 DOI: 10.3390/ijms241512266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a complex heterogeneous disease caused by gene-environment interactions. Although numerous genome-wide association studies have been conducted, these interactions have not been systemically investigated. We sought to identify genetic factors associated with the asthma phenotype in 66,857 subjects from the Health Examination Study, Cardiovascular Disease Association Study, and Korea Association Resource Study cohorts. We investigated asthma-associated gene-environment (smoking status) interactions at the level of single nucleotide polymorphisms, genes, and gene sets. We identified two potentially novel (SETDB1 and ZNF8) and five previously reported (DM4C, DOCK8, MMP20, MYL7, and ADCY9) genes associated with increased asthma risk. Numerous gene ontology processes, including regulation of T cell differentiation in the thymus (GO:0033081), were significantly enriched for asthma risk. Functional annotation analysis confirmed the causal relationship between five genes (two potentially novel and three previously reported genes) and asthma through genome-wide functional prediction scores (combined annotation-dependent depletion, deleterious annotation of genetic variants using neural networks, and RegulomeDB). Our findings elucidate the genetic architecture of asthma and improve the understanding of its biological mechanisms. However, further studies are necessary for developing preventive treatments based on environmental factors and understanding the immune system mechanisms that contribute to the etiology of asthma.
Collapse
Affiliation(s)
- Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Liao S, Huang Y, Zhang J, Xiong Q, Chi M, Yang L, Zhang J, Li L, Fan Y. Vitamin D promotes epithelial tissue repair and host defense responses against influenza H1N1 virus and Staphylococcus aureus infections. Respir Res 2023; 24:175. [PMID: 37407993 DOI: 10.1186/s12931-023-02477-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Early studies indicated that vitamin D (VD) exerted pleiotropic extra-skeletal effects in the airway, but the definite linkage between VD deficiency and airway host responses remains unclear. METHODS 142 cases of clinical data from Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, were collected to characterize the relationship between VD deficiency and chronic rhinosinusitis (CRS). Based on the clinical observations, 2.5-D airway epithelial organoids cultured at the air-liquid interface (ALI) were used to simulate the effects of VD treatment in the development of airway epithelium and the modulation of the host responses against influenza H1N1 virus (representing viral infections) and Staphylococcus aureus (representing bacterial infections) infections in the airway. The intrinsic mechanisms of VD deficiency underlying epithelial remodeling were mapped by transcriptomic as well as proteomic analyses. RESULTS In this study we observed prevailing VD deficiency among inpatients suffering from CRS, a common disease predominantly characterized by epithelial impairment and remodeling. Relative to control organoids cultured without VD, long-term incubation with VD accelerated basal cell proliferation during nasal epithelial development. Under infectious conditions, VD treatment protected the organoids against influenza H1N1 virus and Staphylococcus aureus invasions by reinforcing the respiratory host defenses, including upregulation of LL37, suppression (or inhibition) of proinflammatory cytokines, strengthening of epithelial integrity, and mucociliary clearance. In silico analysis of transcriptomics and proteomics suggested that VD modulated the epithelial development and remodeling, involving epithelial cell proliferation/differentiation, epithelial-mesenchymal transition (EMT), and cytokine signaling in the immune system, as well as responses to microbe, cell junction organization, and extracellular matrix organization via PTEN signaling, independent of TGF-β signaling. CONCLUSIONS Our findings emphasize the importance of managing VD deficiency in clinical settings for the sake of alleviating pathological epithelial remodeling. Vitamin D promotes epithelial tissue repair and host defense responses against influenza H1N1 and Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Shumin Liao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Thoracic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanhong Huang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinxiu Zhang
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qinglan Xiong
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mengshi Chi
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Junhang Zhang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yunping Fan
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
7
|
Yu T, Yu Y, Ma Y, Chen G. Inhibition of CREB promotes glucocorticoids action on airway inflammation in pediatric asthma by promoting ferroptosis of eosinophils. Allergol Immunopathol (Madr) 2023; 51:164-174. [PMID: 37422794 DOI: 10.15586/aei.v51i4.873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Pediatric asthma is a common chronic disease of childhood with airway inflammation. Cyclic adenosine monophosphate response element binding protein (CREB) plays a significant role in the transcription of proinflammatory genes, but its role in pediatric asthma has remained unclear. Herein, we investigated the functions of CREB in pediatric asthma. METHODS Eosinophils were purified from the peripheral blood of interleukin 5 (IL5) transgenic (IL5T) neonatal mice. The contents of CREB, long-chain fatty-acid-CoA ligase 4, transferrin receptor protein 1, ferritin heavy chain 1, and glutathione peroxidase 4 in eosinophils were examined by Western blot analysis. The viability of eosinophils, and the mean fluorescence intensity of Siglec F, C-C motif chemokine receptor 3 (CCR3), and reactive oxygen species were examined by flow cytometry. The concentration of iron in eosinophils was assessed by a commercial kit. The contents of malondialdehyde, glutathione, glutathione peroxidase, IL-5, and IL-4 were discovered by enzyme-linked-immunosorbent serologic assay. The C57BL/6 mice were randomly divided into four groups: sham, ovalbumin (OVA), OVA+Ad-shNC, and OVA+Ad-shCREB. The bronchial and alveolar structures were evaluated by hematoxylin and eosin staining. Leukocytes and eosinophils in the blood were measured using a HEMAVET 950. RESULTS The abundance of CREB in eosinophils was enhanced by CREB overexpression vector transfection, but reduced by short hairpin (sh)CREB transfection. Downregulation of CREB triggered the cell death of eosinophils. Knockdown of CREB could obviously contribute to ferroptosis of eosinophils. In addition, downregulation of CREB facilitated dexamethasone (DXMS, a type of glucocorticoid)-induced eosinophils death. Moreover, we established an asthma mouse model by OVA treatment. The CREB was upregulated in OVA group mice, but Ad-shCREB treatment obviously downregulated CREB level. Downregulation of CREB diminished OVA-induced asthmatic airway inflammation by reducing the number of inflammatory cells and the levels of proinflammatory factors. Downregulated CREB enhanced the anti-inflammatory effect of DXMS in OVA-induced mice. CONCLUSION Inhibition of CREB promoted the effect of glucocorticoids on airway inflammation in pediatric asthma through promoting ferroptosis of eosinophils.
Collapse
Affiliation(s)
- Tong Yu
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Yu
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingyu Ma
- Key Laboratory of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoqing Chen
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China;
| |
Collapse
|
8
|
Guerrero SC, Panettieri RA, Rastogi D. Mechanistic Links Between Obesity and Airway Pathobiology Inform Therapies for Obesity-Related Asthma. Paediatr Drugs 2023; 25:283-299. [PMID: 36656428 PMCID: PMC11071627 DOI: 10.1007/s40272-022-00554-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 01/20/2023]
Abstract
Obesity-related asthma is associated with a high disease burden and a poor response to existent asthma therapies, suggesting that it is a distinct asthma phenotype. The proposed mechanisms that contribute to obesity-related asthma include the effects of the mechanical load of obesity, adipokine perturbations, and immune dysregulation. Each of these influences airway smooth muscle function. Mechanical fat load alters airway smooth muscle stretch affecting airway wall geometry, airway smooth muscle contractility, and agonist delivery; weight loss strategies, including medically induced weight loss, counter these effects. Among the metabolic disturbances, insulin resistance and free fatty acid receptor activation influence distinct signaling pathways in the airway smooth muscle downstream of both the M2 muscarinic receptor and the β2 adrenergic receptor, such as phospholipase C and the extracellular signal-regulated kinase signaling cascade. Medications that decrease insulin resistance and dyslipidemia are associated with a lower asthma disease burden. Leptin resistance is best understood to modulate muscarinic receptors via the neural pathways but there are no specific therapies for leptin resistance. From the immune perspective, monocytes and T helper cells are involved in systemic pro-inflammatory profiles driven by obesity, notably associated with elevated levels of interleukin-6. Clinical trials on tocilizumab, an anti-interleukin antibody, are ongoing for obesity-related asthma. This armamentarium of therapies is distinct from standard asthma medications, and once investigated for its efficacy and safety among children, will serve as a novel therapeutic intervention for pediatric obesity-related asthma. Irrespective of the directionality of the association between asthma and obesity, airway-specific mechanistic studies are needed to identify additional novel therapeutic targets for obesity-related asthma.
Collapse
Affiliation(s)
- Silvia Cabrera Guerrero
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deepa Rastogi
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
9
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
10
|
MiR-328-3p promotes TGF-β1-induced proliferation, migration, and inflammation of airway smooth muscle cells by regulating the PTEN/Akt pathway. Allergol Immunopathol (Madr) 2023; 51:151-159. [PMID: 36916101 DOI: 10.15586/aei.v51i2.767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND Recent studies have shown that the up-regulation of microRNA miR-328-3p expression increases seasonal allergy and asthma symptoms in children, but the specific mechanism remains unclear. Therefore, the aim of this study was to explore the role and mechanism of -miR-328-3p in transforming growth factor (TGF)-β1-induced airway smooth muscle cells (ASMCs). METHODS The effect of TGF-β1 on the expression of miR-328-3p in ASMCs was examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cells proliferation, migration, and inflammatory factors in TGF-β1-induced ASMCs were measured by cell counting kit-8 (CCK-8), transwell, and enzyme-linked immunosorbent assay (ELISA), respectively. Besides, TargetScan was used to predict phosphatase and tensin homolog (PTEN), the downstream target of miR-328-3p; double-luciferase reporter assay, western blot, and qRT-PCR were used to verify the targeting relationship between miR-328-3p and PTEN; western blot was also used to examine the effects of PTEN and miR-328-3p knockdown on the expression levels of PTEN, Akt, and p-Akt proteins. RESULTS The expression of miR-328-3p was up-regulated in TGF-β1-induced ASMCs. Knockdown of miR-328-3p significantly inhibited proliferation, migration, and inflammation of ASMCs induced by TGF-β1 and decreased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. The dual--luciferase reporter assay results confirmed that PTEN was a target gene of miR-328-3p. Moreover, inhibition of PTEN expression reversed the inhibitory effect of low miR-328-3p expression on -TGF-β1-induced ASMC's proliferation, migration, and inflammation. In comparison to the knockdown of miR-328-3p alone, the simultaneous knockdown of miR-328-3p with PTEN decreased PTEN protein expression levels and increased p-Akt/Akt ratio in TGF-β1-induced ASMCs. CONCLUSION Through regulating the expression of PTEN and the activity of Akt signaling pathway, miR-328-3p promotes TGF-β1-induced proliferation, migration, and inflammation of ASMCs.
Collapse
|
11
|
Promising Therapeutic Functions of Bone Marrow Mesenchymal Stem Cells Derived-Exosome in Asthma. Can Respir J 2022; 2022:1485719. [PMID: 36582191 PMCID: PMC9794440 DOI: 10.1155/2022/1485719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Asthma is a chronic inflammatory disturbance of the airways in which many cells and cellular elements are involved. Wheezing, breathlessness, chest tightness, and coughing, especially at night or in the early morning, are typical symptoms of asthma. At present, inhaled corticosteroid (ICS) and long-acting β-agonists (LABAs) are standard treatments for regular management. Oral corticosteroids (OCSs) were recommended for controlling asthma exacerbation but only for a short-term treatment because of the side effects on organs. Biologic therapies have achieved exciting and notable effects in clinical treatment but are not applicable for all phenotypes of asthma. At present, some new approaches are under exploration to lessen side effects and improve curative effects. Studies have revealed that bone marrow mesenchymal stem cells (BMMSCs) hold various curative effects in asthma and may benefit in the long term with high safety. Extracellular vesicles (EVs) enriched in body fluid were characterized as subcomponents of extracellular vesicles and delivered carriers combined with genetic messages in vivo. The therapeutic potential of exosomes has become a research hotspot in many diseases. BMMSC-derived exosomes were considered as the dominant part of BMMSCs in cell-to-cell communications and playing curative effects. Points also hold that BMMSC-Exo could interfere with airway inflammation and airway remolding in asthma via modulating the immune response, regulating gene expression, adjusting the phenotype of macrophage, etc. However, BMMSC-Exo still lacked more clinical trials for evaluating the effects on asthma, and the technology of extraction and purification still needs to be improved for wide use. This review aims to draw the relationship among asthma, BMMSC, and exosome, which may provide innovate ideas for treatment of asthma, and arouse attention about the curative potential of BMMSC-Exo.
Collapse
|
12
|
Li H, Yang T, Chen T, Liu Y, Pang Y, Yang L. BRD7 restrains TNF-α-induced proliferation and migration of airway smooth muscle cells by inhibiting notch signaling. Exp Lung Res 2022; 48:199-212. [PMID: 35943053 DOI: 10.1080/01902148.2022.2107730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: Bromodomain-containing protein 7 (BRD7) is a key component of the switch/sucrose non-fermentable complex that participates in chromatin remodeling and transcriptional regulation. Although the emerging role of BRD7 in the pathophysiology of various diseases has been observed, its role in asthma remains unknown. Here, we assessed the function of BRD7 as a mediator of airway remodeling in asthma using an in vitro model. Methods: Airway smooth muscle cells (ASMCs) were challenged with tumor necrosis factor-α (TNF-α) to establish an in vitro airway remodeling model. Protein levels were examined using western blotting. Cell proliferation was measured using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell migration was assessed using a transwell migration assay. Results: Exposure to TNF-α dramatically decreased BRD7 levels in ASMCs. BRD7 remarkably decreased TNF-α-induced proliferation and migration of ASMCs. In contrast, ASMCs with BRD7 deficiency were more sensitive to TNF-α-induced pro-proliferative and pro-migratory effects. Mechanistically, BRD7 could repress the expression of Notch1 and block the Notch pathway in TNF-α-challenged cells. Notably, reactivation of Notch signaling substantially reversed the BRD7 overexpression-mediated effects, whereas restraining Notch signaling abolished BRD7-depletion-mediated effects on TNF-α-challenged cells. Conclusions: BRD7 inhibits the proliferation and migration of ASMCs elicited by TNF-α by downregulating the Notch pathway. This study indicates that BRD7 may exert a suppressive effect on airway remodeling during asthma.
Collapse
Affiliation(s)
- Hong Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Tian Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Tianjun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ya Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yamei Pang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Lan Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
13
|
Takasawa S, Makino M, Uchiyama T, Yamauchi A, Sakuramoto-Tsuchida S, Itaya-Hironaka A, Takeda Y, Asai K, Shobatake R, Ota H. Downregulation of the Cd38-Cyclic ADP-Ribose Signaling in Cardiomyocytes by Intermittent Hypoxia via Pten Upregulation. Int J Mol Sci 2022; 23:ijms23158782. [PMID: 35955916 PMCID: PMC9368863 DOI: 10.3390/ijms23158782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia, IH), and it is a risk factor for cardiovascular disease (CVD) and insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of the components of Cd38-cyclic ADP-ribose (cADPR) signaling. We found that the mRNA levels of cluster of differentiation 38 (Cd38), type 2 ryanodine receptor (Ryr2), and FK506-binding protein 12.6 (Fkbp12.6) in H9c2 and P19.CL6 cardiomyocytes were significantly decreased by IH, whereas the promoter activities of these genes were not decreased. By contrast, the expression of phosphatase and tensin homolog deleted from chromosome 10 (Pten) was upregulated in IH-treated cells. The small interfering RNA for Pten (siPten) and a non-specific control RNA were introduced into the H9c2 cells. The IH-induced downregulation of Cd38, Ryr2, and Fkbp12.6 was abolished by the introduction of the siPten, but not by the control RNA. These results indicate that IH stress upregulated the Pten in cardiomyocytes, resulting in the decreased mRNA levels of Cd38, Ryr2, and Fkbp12.6, leading to the inhibition of cardiomyocyte functions in SAS patients.
Collapse
Affiliation(s)
- Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Correspondence: ; Tel.: +81-74-422-3051 (ext. 2227); Fax: +81-744-24-9525
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Diagnostic Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | | | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yoshinori Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Keito Asai
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| |
Collapse
|
14
|
Cai B, Yang L, Do Jung Y, Zhang Y, Liu X, Zhao P, Li J. PTEN: An Emerging Potential Target for Therapeutic Intervention in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4512503. [PMID: 35814272 PMCID: PMC9262564 DOI: 10.1155/2022/4512503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a potent tumor suppressor that regulates several key cellular processes, including proliferation, survival, genomic integrity, migration, and invasion, via PI3K-dependent and independent mechanisms. A subtle decrease in PTEN levels or catalytic activity is implicated not only in cancer but also in a wide spectrum of other diseases, including various respiratory diseases. A systemic overview of the advances in the molecular and cellular mechanisms of PTEN involved in the initiation and progression of respiratory diseases may offer novel targets for the development of effective therapeutics for the treatment of respiratory diseases. In the present review, we highlight the novel findings emerging from current research on the role of PTEN expression and regulation in airway pathological conditions such as asthma/allergic airway inflammation, pulmonary hypertension (PAH), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and other acute lung injuries (ALI). Moreover, we discuss the clinical implications of PTEN alteration and recently suggested therapeutic possibilities for restoration of PTEN expression and function in respiratory diseases.
Collapse
Affiliation(s)
- Bangrong Cai
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liu Yang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinguang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
- Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
15
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
16
|
Hurrell BP, Helou DG, Shafiei-Jahani P, Howard E, Painter JD, Quach C, Akbari O. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J Allergy Clin Immunol 2022; 149:1628-1642.e10. [PMID: 34673048 PMCID: PMC9013728 DOI: 10.1016/j.jaci.2021.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cannabinoids modulate the activation of immune cells and physiologic processes in the lungs. Group 2 innate lymphoid cells (ILC2s) are central players in type 2 asthma, but how cannabinoids modulate ILC2 activation remains to be elucidated. OBJECTIVE Our goal was to investigate the effects of cannabinoids on ILC2s and their role in asthma. METHODS A combination of cannabinoid receptor (CB)2 knockout (KO) mice, CB2 antagonist and agonist were used in the mouse models of IL-33, IL-25, and Alternaria alternata ILC2-dependent airway inflammation. RNA sequencing was performed to assess transcriptomic changes in ILC2s, and humanized mice were used to assess the role of CB2 signaling in human ILC2s. RESULTS We provide evidence that CB2 signaling in ILC2s is important for the development of ILC2-driven airway inflammation in both mice and human. We showed that both naive and activated murine pulmonary ILC2s express CB2. CB2 signaling did not affect ILC2 homeostasis at steady state, but strikingly it stimulated ILC2 proliferation and function upon activation. As a result, ILC2s lacking CB2 induced lower lung inflammation, as we made similar observations using a CB2 antagonist. Conversely, CB2 agonism remarkably exacerbated ILC2-driven airway hyperreactivity and lung inflammation. Mechanistically, transcriptomic and protein analysis revealed that CB2 signaling induced cyclic adenosine monophosphate-response element binding protein (CREB) phosphorylation in ILC2s. Human ILC2s expressed CB2, as CB2 antagonism and agonism showed opposing effects on ILC2 effector function and development of airway hyperreactivity in humanized mice. CONCLUSION Collectively, our results define CB2 signaling in ILC2s as an important modulator of airway inflammation.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
17
|
Zhang C, Gao J, Zhu S. Hypoxia-inducible factor-1α promotes proliferation of airway smooth muscle cells through miRNA-103-mediated signaling pathway under hypoxia. In Vitro Cell Dev Biol Anim 2021; 57:944-952. [PMID: 34888746 DOI: 10.1007/s11626-021-00607-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/06/2021] [Indexed: 10/19/2022]
Abstract
The hypoxia-inducible factor-1α (HIF-1α) activated during asthma development plays a causative role in the abnormal proliferation of airway smooth muscle (ASM) cells and consequential airway remodeling. Although the underlying mechanisms of HIF-1α activity have not been fully revealed, HIF-1α-regulated miRNA signaling is considered important for disrupted differentiation and proliferation of local cells in various tissues under inflammation. We aimed to identify the key miRNA signaling involved in HIF-1α regulation of the proliferation of ASM cells. This study was based on primary ASM cells isolated from adult male rats. Three percent O2 and 21% O2 were set as hypoxic and normoxic condition for ASM cell treatment, respectively. Knockdown of HIF-1α was performed through transfection of pSUPER-shHIF-1α plasmid. Overexpression and knockdown of miRNA-103 were performed through transfection of miRNA-103 mimic or inhibitor, respectively. Levels of HIF-1α, PTEN, and PCNA were determined with Western blot and RT-qPCR. Hypoxia increased HIF-1α and miRNA-103 expression and proliferation in ASM cells. Knockdown of HIF-1α suppressed hypoxia-induced upregulation of proliferation and miRNA-103 expression in ASM cells. Knockdown of miRNA-103 displayed similar effects as knockdown of HIF-1α in ASM cells under hypoxia, while overexpression of miRNA-103 played the opposite role. Additionally, increased or decreased expression of PTEN was also detected when HIF-1α/miRNA-103 was knocked down under hypoxia or miRNA-103 was overexpressed under normoxia, respectively. Our results suggest that HIF-1α promotes the proliferation of ASM cells via upregulating miRNA-103 expression under hypoxia, and PTEN is involved in the miRNA-103-mediated signaling pathway.
Collapse
Affiliation(s)
- Cantang Zhang
- Department of Respiration, The Affiliated Hospital of Xuzhou Medical University, 89 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Jin Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuyang Zhu
- Department of Respiration, The Affiliated Hospital of Xuzhou Medical University, 89 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
18
|
Gao P, Ding Y, Yin B, Gu H. Long noncoding RNA LINC-PINT retards the abnormal growth of airway smooth muscle cells via regulating the microRNA-26a-5p/PTEN axis in asthma. Int Immunopharmacol 2021; 99:107997. [PMID: 34315115 DOI: 10.1016/j.intimp.2021.107997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Asthma is a chronic respiratory disease worldwide. This study aimed to explore the functions of the long noncoding RNA LINC-PINT (LINC-PINT) in asthma and to determine its underlying molecular mechanisms. METHODS Rat asthma model was established with ovalbumin sensitization and challenge. The serum level of IgE, airway hyperresponsiveness (AHR), airway inflammation, and pathological changes of lung were evaluated. Airway smooth muscle cells (ASMCs) were stimulated with platelet-derived growth factor-BB (PDGF-BB) to mimic the asthma-like condition at cellular level. QRT-PCR was performed to detect the expression of LINC-PINT, microRNA-26a-5p (miR-26a-5p), and PTEN. MTT and transwell assays were performed to measure the viability and migration of ASMCs. The protein expression of airway remodelling marker MMP-1 and MMP-9 was measured by western blot. The interactions among LINC-PINT, miR-26a-5p, and PTEN were determined by dual-luciferase reporter assay. RESULTS The expression of LINC-PINT and PTEN was decreased, while miR-26a-5p expression was increased in PDGF-BB-stimulated ASMCs. In vivo, overexpression of LINC-PINT decreased the serum level of IgE, AHR, airway inflammation, and pathological changes of lung in asthma rat model. In vitro, up-regulation of LINC-PINT decreased the viability, migration, and MMP-1 and MMP-9 protein expression in PDGF-BB-stimulated ASMCs. Dual-luciferase reporter assay determined that LINC-PINT targeted miR-26a-5p, and miR-26a-5p targeted PTEN in ASMCs. Feedback approaches confirmed that miR-26a-5p up-regulation or PTEN down-regulation reversed the suppressive effect of LINC-PINT overexpression on the abnormal growth of ASMCs. CONCLUSIONS LINC-PINT overexpression retarded the abnormal growth of ASMCs by regulating the miR-26a-5p/PTEN axis, offering a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Pei Gao
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China
| | - Ying Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China
| | - Bingru Yin
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China
| | - Haoxiang Gu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai City 200040, China.
| |
Collapse
|
19
|
Wang W, Guo J, Wang Y. MicroRNA-30b-5p promotes the proliferation and migration of human airway smooth muscle cells induced by platelet-derived growth factor by targeting phosphatase and tensin homolog deleted on chromosome ten. Bioengineered 2021; 12:3662-3673. [PMID: 34251961 PMCID: PMC8806833 DOI: 10.1080/21655979.2021.1950401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dysfunction of airway smooth muscle (ASM) cells is crucial in asthma pathogenesis. Here, microRNA-30b-5p (miR-30b-5p)’s function and mechanism in ASM cells’ multiplication and migration were investigated. Microarray was utilized for identifying the differentially expressed miRNAs in the bronchial epithelial cells of the asthma patients and healthy controls. Platelet-derived growth factor (PDGF) was employed to treat ASM cells to establish an in-vitro asthma model. Quantitative real-time PCR (qRT-PCR) was conducted for detecting the expressions of miR-30b-5p and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2ʹ-deoxyuridine (BrdU) assays were used for examining cell multiplication; Transwell assay was performed for detecting cell migration; cell cycle was analyzed through flow cytometry. The targeted relationship between PTEN and miR-30b-5p was verified using a dual-luciferase reporter gene assay. Western blot was used for detecting the expressions of phosphorylated (p)-phosphatidylinositol 3-kinase (PI3K), PTEN, PI3K, protein kinase B (AKT) and p-AKT in ASM cells. We demonstrated that, miR-30b-5p expression in the bronchial epithelial cells of asthmatic patients was up-regulated. It was also increased in PDGF-stimulated ASM cells. Transfection of miR-30b-5p mimics facilitated ASM cells’ multiplication, migration and cycle progression, while inhibiting miR-30b-5p had the opposite effect. Furthermore, miR-30b-5p could target PTEN to repress PTEN expression. PTEN overexpression attenuated the effect of miR-30b-5p on ASM cells. Moreover, miR-30b-5p overexpression facilitated the expression of p-PI3K and p-AKT in PDGF-stimulated ASM cells. Collectively, miR-30b-5p activates the PI3K/AKT pathway by targeting PTEN to facilitate PDGF-induced dysfunction of ASM cells.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Jian Guo
- Department of Neonatology, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Yan Wang
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| |
Collapse
|