1
|
Al-Dhahi AS, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Alruwaili M, El-Saber Batiha G. The possible role of neurogenesis activators in temporal lobe epilepsy: State of art and future perspective. Eur J Pharmacol 2025; 998:177646. [PMID: 40258399 DOI: 10.1016/j.ejphar.2025.177646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neurogenesis is a complex process by which the neurons and supporting cells of the central nervous system (CNS) are generated by neural stem cells. Adult hippocampal neurogenesis (AHN) in the human brain is an active process during life and plays a critical role in the regulation of memory, cognition, and mood. It has been shown that epilepsy is linked with dysregulation of AHN. Of note, AHN is very sensitive to the pathological electrical stimuli during epileptic seizures, which result in the induction of neurogenesis in acute epilepsy and inhibition of neurogenesis in chronic epilepsy. Epileptic seizure-induced neurodegeneration activates the mobilization of neural stem cells during neurogenesis to substitute for neural loss in temporal lobe epilepsy (TLE), which is the most refractory type of epilepsy. Moreover, recurrent epileptic seizures in TLE trigger neurogenesis in certain brain regions. However, AHN is a transient acute epileptic seizure that terminated with 1-4 weeks following status epilepticus (SE). Nevertheless, adult AHN is dramatically reduced in chronic epilepsy and associated with the development of cognitive impairment in TLE. These findings indicate that impairment of AHN is linked with the severity of epileptic seizures. Hence, neurogenesis activators may attenuate the pathogenesis of TLE. Therefore, this review aims to discuss and explain the beneficial role of AHN in TLE and how neurogenesis activators could be effective in the management of epilepsy.
Collapse
Affiliation(s)
- Ahmed Salem Al-Dhahi
- Department of Neuroscience, King Fahad Specialist Hospital, Tabuk, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu./ Najaf - Iraq Po. Box (13), Kufa, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Song BX, Vieira E, Gallagher D, Diniz BS, Fischer CE, Flint AJ, Herrmann N, Mah L, Mulsant BH, Rajji TK, Ma C, Lanctôt KL. Blood Angiogenesis Markers and Cognition in Older Adults at Risk for Dementia: Marqueurs sanguins de l'angiogenèse et cognition chez les personnes âgées à risque de démence. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025:7067437251337627. [PMID: 40304622 PMCID: PMC12043659 DOI: 10.1177/07067437251337627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
ObjectiveChanges in angiogenesis have been shown to contribute to cognitive decline and dementia. We aimed to identify angiogenesis blood markers associated with cognitive performance in older adults with mild cognitive impairment (MCI), remitted major depressive disorder (rMDD), or both (rMDD + MCI) who are at risk for dementia.MethodWe analyzed data from participants with MCI, rMDD, or rMDD + MCI in the Prevention of Alzheimer's Dementia with Cognitive Remediation plus Transcranial Direct Current Stimulation in Mild Cognitive Impairment and Depression study. Elastic net regression was used to select variables associated with cognitive performance among 19 angiogenesis markers and 6 covariates. Linear regressions were used to determine which of the selected angiogenesis markers were associated with cognitive performance, controlling for the selected covariates. Significant angiogenesis markers were independently analyzed without other angiogenesis markers, controlling for covariates, with subgroup analyses in those with and without rMDD.ResultsAngiogenin was the only selected marker associated with cognitive performance (β = 0.28, Padj = 0.03, f² = .02) when controlling for other selected markers (endothelial cell-specific molecule 1, e-selectin, interleukin-33 [IL-33], oncostatin M, platelet-derived growth factor-AB, IL-33 receptor, and tissue inhibitor of metalloproteinases-1) and selected covariates (age, education, apolipoprotein E ε4 status, diagnosis, and cardiovascular risk factors). When independently analyzed, angiogenin remained positively associated with cognitive performance (β = 0.21, P = 0.01, f² =.02), controlling for the covariates. In subgroup analyses, angiogenin was also associated with cognition in rMDD and rMDD + MCI participants (β =0.50, SE = 0.14, P < 0.001, f² = 0.08) and in MCI-only participants (β= 0.20, SE = 0.09, P = 0.02, f² = 0.02).ConclusionThe association of angiogenin with cognitive performance highlights a potentially novel biological pathway that could influence cognition in older adults at risk for dementia. Angiogenin may protect against cognitive decline, opening new avenues for innovative preventive, or therapeutic interventions.
Collapse
Affiliation(s)
- Bing Xin Song
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Gallagher
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Breno S. Diniz
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- UConn Center on Aging and Department of Psychiatry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Corinne E. Fischer
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Alastair J. Flint
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Linda Mah
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tarek K. Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Clement Ma
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Krista L. Lanctôt
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Alves SS, Rossi L, de Oliveira JAC, Servilha-Menezes G, Grigorio-de-Sant'Ana M, Mazzei RF, Almeida SS, Sebollela A, da Silva Junior RMP, Garcia-Cairasco N. Metformin Improves Spatial Memory and Reduces Seizure Severity in a Rat Model of Epilepsy and Alzheimer's Disease comorbidity via PI3K/Akt Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04844-2. [PMID: 40126600 DOI: 10.1007/s12035-025-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Emerging evidence suggests a bidirectional relationship between Alzheimer's disease (AD) and epilepsy. In our previous studies, we identified a partial AD-like phenotype associated with central insulin resistance in the Wistar audiogenic rat (WAR), a genetic model of epilepsy. We also found that intracerebroventricular administration of streptozotocin, a compound used to model diabetes and AD, exacerbates seizure susceptibility. Given the role of insulin signaling in both AD and epilepsy, we hypothesized that metformin (MET), an anti-diabetic drug known for enhancing insulin sensitivity, could be a potential therapeutic agent for both conditions. Our objective was to investigate MET's effects on brain insulin signaling, seizure activity, and AD-like pathology in WARs. Adult male WARs received oral MET (250 mg/kg) for 21 days. Audiogenic seizures were assessed using the Categorized Severity Index and Racine's scale. Spatial memory was tested with the Morris water maze (MWM), followed by Western blot analysis of hippocampal proteins. MET significantly reduced seizure severity and improved MWM performance. Although MET did not affect insulin receptor levels or activation, it increased phosphoinositide 3-kinase (PI3K), activated Akt, and increased glycogen synthase kinase-3α/β (GSK-3α/β) levels. MET also decreased amyloid β precursor protein (AβPP) levels but did not affect Tau phosphorylation. These results suggest that chronic MET treatment alleviates behaviors related to both AD and epilepsy in WARs and modulates insulin signaling independently of insulin receptor activation. Our findings highlight MET's potential as a therapeutic agent for managing comorbid AD and epilepsy, warranting further investigation into its mechanisms of action.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Letícia Rossi
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Jose Antonio Cortes de Oliveira
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Mariana Grigorio-de-Sant'Ana
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (FFCLRP-USP), Ribeirão Preto, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (FFCLRP-USP), Ribeirão Preto, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
5
|
Tresenrider A, Hooper M, Todd L, Kierney F, Blasdel NA, Trapnell C, Reh TA. A multiplexed, single-cell sequencing screen identifies compounds that increase neurogenic reprogramming of murine Muller glia. eLife 2024; 12:RP92091. [PMID: 39665620 PMCID: PMC11637464 DOI: 10.7554/elife.92091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single-nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Marcus Hooper
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Levi Todd
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Faith Kierney
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Nicolai A Blasdel
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman-Baty Institute for Precision Medicine, University of WashingtonSeattleUnited States
- Allen Discovery Center for Cell Lineage TracingSeattleUnited States
| | - Thomas A Reh
- Department of Biological Structure, University of WashingtonSeattleUnited States
| |
Collapse
|
6
|
Zhang J, Yang X, Wang S, Dong J, Zhang M, Zhang M, Chen L. Metformin carbon dots enhance neurogenesis and neuroprotection in Alzheimer's disease: A potential nanomedicine approach. Mater Today Bio 2024; 29:101347. [PMID: 39850274 PMCID: PMC11754139 DOI: 10.1016/j.mtbio.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline due to neuronal damage and impaired neurogenesis. Preserving neuronal integrity and stimulating neurogenesis are promising therapeutic strategies to combat AD-related cognitive dysfunction. In this study, we synthesized metformin carbon dots (CMCDs) using a hydrothermal method with metformin hydrochloride and citric acid as precursors. Notably, we found that CMCDs were significantly more effective than metformin in promoting the differentiation of neural stem cells (NSCs) into functional neurons under amyloid-beta (Aβ) conditions. Moreover, CMCDs fostered NSCs proliferation, enhanced neurogenesis, reduced Aβ deposition, and inhibited glial cell activation. We also examined neuronal structure by assessing Map2/NF-H/PSD95/SYN expression in the hippocampus, finding that CMCDs robustly strengthened neuronal structure. These results suggest that CMCDs can cognitive dysfunction in AD and promote the proliferation and neurogenesis of NSCs, as well as ameliorate neuronal injury. Hence, CMCDs emerge as promising candidates for AD therapy, demonstrating superior efficacy compared to metformin alone, and offering novel insights into small molecule drug interventions for AD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xuehan Yang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Sushan Wang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jianhua Dong
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meishuang Zhang
- School of Nursing, Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- School of Nursing, Jilin University, Changchun, 130021, China
| |
Collapse
|
7
|
Yang Y, Lu X, Liu N, Ma S, Zhang H, Zhang Z, Yang K, Jiang M, Zheng Z, Qiao Y, Hu Q, Huang Y, Zhang Y, Xiong M, Liu L, Jiang X, Reddy P, Dong X, Xu F, Wang Q, Zhao Q, Lei J, Sun S, Jing Y, Li J, Cai Y, Fan Y, Yan K, Jing Y, Haghani A, Xing M, Zhang X, Zhu G, Song W, Horvath S, Rodriguez Esteban C, Song M, Wang S, Zhao G, Li W, Izpisua Belmonte JC, Qu J, Zhang W, Liu GH. Metformin decelerates aging clock in male monkeys. Cell 2024; 187:6358-6378.e29. [PMID: 39270656 DOI: 10.1016/j.cell.2024.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomolgus monkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of physiological, imaging, histological, and molecular evaluations, substantiating metformin's influence on delaying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics, DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and applied these to gauge metformin's effects on aging. The results highlighted a significant slowing of aging indicators, notably a roughly 6-year regression in brain aging. Metformin exerts a substantial neuroprotective effect, preserving brain structure and enhancing cognitive ability. The geroprotective effects on primate neurons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities. Our research pioneers the systemic reduction of multi-dimensional biological age in primates through metformin, paving the way for advancing pharmaceutical strategies against human aging.
Collapse
Affiliation(s)
- Yuanhan Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Lu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhiyi Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kuan Yang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zikai Zheng
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yicheng Qiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinchao Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510060, China
| | - Ying Huang
- Chongqing Fifth People's Hospital, Chongqing 400060, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Muzhao Xiong
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pradeep Reddy
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Xueda Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanshu Xu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jinghui Lei
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Shuhui Sun
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Jing
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaowen Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yaobin Jing
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Amin Haghani
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Mengen Xing
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Steve Horvath
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | | | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; National Medical Center for Neurological Diseases, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
8
|
Su C, Hou Y, Xu J, Xu Z, Zhou M, Ke A, Li H, Xu J, Brendel M, Maasch JRMA, Bai Z, Zhang H, Zhu Y, Cincotta MC, Shi X, Henchcliffe C, Leverenz JB, Cummings J, Okun MS, Bian J, Cheng F, Wang F. Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data. NPJ Digit Med 2024; 7:184. [PMID: 38982243 PMCID: PMC11233682 DOI: 10.1038/s41746-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (≥5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/α-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
Collapse
Grants
- R21 AG083003 NIA NIH HHS
- R01 AG082118 NIA NIH HHS
- R56 AG074001 NIA NIH HHS
- R01AG076448 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1AG072449 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- MJFF-023081 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01AG080991 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P30 AG072959 NIA NIH HHS
- 3R01AG066707-01S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R21AG083003 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG066707 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35 AG071476 NIA NIH HHS
- RF1 AG082211 NIA NIH HHS
- R56AG074001 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG082118 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R25 AG083721 NIA NIH HHS
- RF1AG082211 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 NS093334 NINDS NIH HHS
- AG083721-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1NS133812 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20GM109025 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 NS133812 NINDS NIH HHS
- R35AG71476 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AG073323 NIA NIH HHS
- R01 AG066707 NIA NIH HHS
- R01AG053798 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG076234 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 AG076448 NIA NIH HHS
- R01 AG080991 NIA NIH HHS
- R01 AG076234 NIA NIH HHS
- U01NS093334 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20 GM109025 NIGMS NIH HHS
- P30AG072959 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 AG072449 NIA NIH HHS
- R01 AG053798 NIA NIH HHS
- 3R01AG066707-02S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01AG073323 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- ALZDISCOVERY-1051936 Alzheimer's Association
Collapse
Affiliation(s)
- Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yu Hou
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Manqi Zhou
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Alison Ke
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Haoyang Li
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jie Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Matthew Brendel
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline R M A Maasch
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computer Science, Cornell Tech, Cornell University, New York, NY, USA
| | - Zilong Bai
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Haotan Zhang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Zhu
- Department of Computer Science, University of Texas at Arlington, Arlington, TX, USA
| | - Molly C Cincotta
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Claire Henchcliffe
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Vizuete AFK, Fróes F, Seady M, Hansen F, Ligabue-Braun R, Gonçalves CA, Souza DO. A Mechanism of Action of Metformin in the Brain: Prevention of Methylglyoxal-Induced Glutamatergic Impairment in Acute Hippocampal Slices. Mol Neurobiol 2024; 61:3223-3239. [PMID: 37980327 DOI: 10.1007/s12035-023-03774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1β synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre, 90050-130, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo O Souza
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
10
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
Tresenrider A, Hooper M, Todd L, Kierney F, Blasdel N, Trapnell C, Reh TA. A multiplexed, single-cell sequencing screen identifies compounds that increase neurogenic reprogramming of murine Muller glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559569. [PMID: 37808650 PMCID: PMC10557658 DOI: 10.1101/2023.09.26.559569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marcus Hooper
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Faith Kierney
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Sood A, Capuano AW, Wilson RS, Barnes LL, Kapasi A, Bennett DA, Arvanitakis Z. Metformin, age-related cognitive decline, and brain pathology. Neurobiol Aging 2024; 133:99-106. [PMID: 37931533 PMCID: PMC10841359 DOI: 10.1016/j.neurobiolaging.2023.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
The objective of this study was to evaluate the relation of metformin with change in cognition and brain pathology. During a mean of 8 years (SD = 5.5) of annual follow-up visits, 262/3029 participants were using metformin at any time during the study. Using a linear-mixed effect model adjusted for age, sex, and education, metformin users had slower decline on a score of global cognition compared to non-users (estimate = 0.017, SE = 0.007, p = 0.027). Analyses of cognitive domains showed a slower decline in episodic memory and semantic memory specifically. In sensitivity analysis, when examining any diabetes medication use vs none, no association was observed of any diabetes medication use with cognitive function. In the autopsy subset of 1584 participants, there was no difference in the level of Alzheimer's disease (AD) pathology or the presence of infarcts (of any size or location) between groups of metformin users vs non-users. However, in additional analyses, metformin users had higher odds of subcortical infarcts, and lower odds of atherosclerosis and arteriosclerosis.
Collapse
Affiliation(s)
- Ajay Sood
- Rush Alzheimer's Disease Center, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Song F, Lee WD, Marmo T, Ji X, Song C, Liao X, Seeley R, Yao L, Liu H, Long F. Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice. eLife 2023; 12:e85714. [PMID: 37144869 PMCID: PMC10198725 DOI: 10.7554/elife.85714] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 05/06/2023] Open
Abstract
Skeletal fragility is associated with type 2 diabetes mellitus (T2D), but the underlying mechanism is not well understood. Here, in a mouse model for youth-onset T2D, we show that both trabecular and cortical bone mass is reduced due to diminished osteoblast activity. Stable isotope tracing in vivo with 13C-glucose demonstrates that both glycolysis and glucose fueling of the TCA cycle are impaired in diabetic bones. Similarly, Seahorse assays show suppression of both glycolysis and oxidative phosphorylation by diabetes in bone marrow mesenchymal cells as a whole, whereas single-cell RNA sequencing reveals distinct modes of metabolic dysregulation among the subpopulations. Metformin not only promotes glycolysis and osteoblast differentiation in vitro, but also improves bone mass in diabetic mice. Finally, osteoblast-specific overexpression of either Hif1a, a general inducer of glycolysis, or Pfkfb3 which stimulates a specific step in glycolysis, averts bone loss in T2D mice. The study identifies osteoblast-intrinsic defects in glucose metabolism as an underlying cause of diabetic osteopenia, which may be targeted therapeutically.
Collapse
Affiliation(s)
- Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Haoran Liu
- Department of Computer Science, New Jersey Institute of TechnologyNewarkUnited States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Deaprtment of Orthopedic Surgery, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
15
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
16
|
Liu J, Zhang M, Deng D, Zhu X. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials. Arch Pharm Res 2023; 46:389-407. [PMID: 36964307 DOI: 10.1007/s12272-023-01445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.
Collapse
Affiliation(s)
- Jianhong Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
| | - Dan Deng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
17
|
Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L, Prestia F, Pietraforte D, Perluigi M, Di Domenico F, Vacca RA, De Filippis B. Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 2023; 224:109350. [PMID: 36442649 DOI: 10.1016/j.neuropharm.2022.109350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | | | - Livia Di Crescenzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Francesca Prestia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
18
|
Song F, Lee WD, Marmo T, Ji X, Song C, Liao X, Seeley R, Yao L, Liu H, Long F. Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524248. [PMID: 36711657 PMCID: PMC9882117 DOI: 10.1101/2023.01.16.524248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Skeletal fragility is associated with type 2 diabetes mellitus (T2D), but the underlying mechanism is not well understood. Here, in a mouse model for youth-onset T2D, we show that both trabecular and cortical bone mass are reduced due to diminished osteoblast activity. Stable isotope tracing in vivo with 13 C-glucose demonstrates that both glycolysis and glucose fueling of the TCA cycle are impaired in diabetic bones. Similarly, Seahorse assays show suppression of both glycolysis and oxidative phosphorylation by diabetes in bone marrow mesenchymal cells as a whole, whereas single-cell RNA sequencing reveals distinct modes of metabolic dysregulation among the subpopulations. Metformin not only promotes glycolysis and osteoblast differentiation in vitro, but also improves bone mass in diabetic mice. Finally, targeted overexpression of Hif1a or Pfkfb3 in osteoblasts of T2D mice averts bone loss. The study identifies osteoblast-intrinsic defects in glucose metabolism as an underlying cause of diabetic osteopenia, which may be targeted therapeutically.
Collapse
Affiliation(s)
- Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Rebbeca Seeley
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Haoran Liu
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
20
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
21
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
22
|
Nguyen LH, Xu Y, Mahadeo T, Zhang L, Lin TV, Born HA, Anderson AE, Bordey A. Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy. Brain 2022; 145:1310-1325. [PMID: 34849602 PMCID: PMC9128821 DOI: 10.1093/brain/awab390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperactivation of the mTOR pathway during foetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR signalling in the formation of focal malformation of cortical development and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics because these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient focal malformation of cortical development tissue and in a mouse model of focal malformation of cortical development. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by focal malformation of cortical development in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern and aberrant expression of HCN4 ion channels. Further, 4E-BP1 expression in juvenile focal malformation of cortical development mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat focal malformation of cortical development-related epilepsy during childhood with potentially long-lasting effects in adults.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Travorn Mahadeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tiffany V Lin
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heather A Born
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne E Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
23
|
Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel G, Barzilai N. Geroscience-guided repurposing of FDA-approved drugs to target aging: A proposed process and prioritization. Aging Cell 2022; 21:e13596. [PMID: 35343051 PMCID: PMC9009114 DOI: 10.1111/acel.13596] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
Common chronic diseases represent the greatest driver of rising healthcare costs, as well as declining function, independence, and quality of life. Geroscience-guided approaches seek to delay the onset and progression of multiple chronic conditions by targeting fundamental biological pathways of aging. This approach is more likely to improve overall health and function in old age than treating individual diseases, by addressing aging the largest and mostly ignored risk factor for the leading causes of morbidity in older adults. Nevertheless, challenges in repurposing existing and moving newly discovered interventions from the bench to clinical care have impeded the progress of this potentially transformational paradigm shift. In this article, we propose the creation of a standardized process for evaluating FDA-approved medications for their geroscience potential. Criteria for systematically evaluating the existing literature that spans from animal models to human studies will permit the prioritization of efforts and financial investments for translating geroscience and allow immediate progress on the design of the next Targeting Aging with MEtformin (TAME)-like study involving such candidate gerotherapeutics.
Collapse
Affiliation(s)
- Ameya S. Kulkarni
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Present address:
AbbVie Inc.North ChicagoIL60064USA.
| | - Sandra Aleksic
- Department of Medicine (Endocrinology and Geriatrics)Albert Einstein College of MedicineBronxNew YorkUSA
| | - David M. Berger
- Department of Medicine (Hospital Medicine)Montefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Felipe Sierra
- Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - George A. Kuchel
- UConn Center on AgingUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
24
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
25
|
Sanati M, Aminyavari S, Afshari AR, Sahebkar A. Mechanistic insight into the role of metformin in Alzheimer's disease. Life Sci 2022; 291:120299. [PMID: 34999113 DOI: 10.1016/j.lfs.2021.120299] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a type of dementia, is characterized by progressive memory decline and cognition impairment. Despite the considerable body of evidence regarding AD pathophysiology, current therapies merely slow down the disease progression, and a comprehensive therapeutic approach is unavailable. Accordingly, finding an efficient multifunctional remedy is necessary to blunt the increasing rate of AD incidence in the upcoming years. AD shares pathophysiological similarities (e.g., impairment of cognitive functions, insulin sensitivity, and brain glucose metabolism) with noninsulin-dependent diabetes mellitus (NIDDM), which offers the utilization of metformin, a biguanide hypoglycemic agent, as an alternative therapeutic approach in AD therapy. Emerging evidence has revealed the impact of metformin in patients suffering from AD. It has been described that metformin employs multiple mechanisms to improve cognition and memory impairment in pre-clinical AD models, including reduction of hippocampal amyloid-beta (Aβ) plaque and neurofibrillary tangles (NFTs) load, suppression of inflammation, amelioration of mitochondrial dysfunction and oxidative stress, restriction of apoptotic neuronal death, and induction of neurogenesis. This review discusses the pre-clinical evidence, which may shed light on the role of metformin in AD and provide a more comprehensive mechanistic insight for future studies in this area of research.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Salmina AB, Malinovskaya NA, Morgun AV, Khilazheva ED, Uspenskaya YA, Illarioshkin SN. Reproducibility of developmental neuroplasticity in in vitro brain tissue models. Rev Neurosci 2022; 33:531-554. [PMID: 34983132 DOI: 10.1515/revneuro-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow, 125367, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Andrey V Morgun
- Department of Ambulatory Pediatrics, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Sergey N Illarioshkin
- Department of Brain Studies, Research Center of Neurology, Volokolamskoe Highway, 80, Moscow 125367, Russia
| |
Collapse
|
27
|
Binyamin O, Frid K, Keller G, Saada A, Gabizon R. Comparing anti-aging hallmark activities of Metformin and Nano-PSO in a mouse model of genetic Creutzfeldt-Jakob Disease. Neurobiol Aging 2021; 110:77-87. [PMID: 34875507 DOI: 10.1016/j.neurobiolaging.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023]
Abstract
Advanced age is the main risk factor for the manifestation of late onset neurodegenerative diseases. Metformin, an anti-diabetic drug, was shown to extend longevity, and to ameliorate the activity of recognized aging hallmarks. Here, we compared the clinical, pathologic and biochemical effects of Metformin to those of Nano-PSO (Granagard), a brain targeted anti-oxidant shown by us to delay disease advance in transgenic mice mimicking for genetic Creutzfeldt Jacob disease (CJD) linked to the E200KPrP mutation. We demonstrate that both Metformin and Nano-PSO reduced aging hallmarks activities such as activated AMPK, the main energy sensor of cells as well as Nrf2 and COX IV1, regulators of oxidation, and mitochondrial activity. Both compounds reduced inflammation and increased stem cells production, however did not decrease PrP accumulation. As opposed to Nano-PSO, Metformin neither delayed clinical disease advance in these mice nor reduced the accumulation of sulfated glycosaminoglycans, a pathologic feature of prion disease. We conclude that elevation of anti-aging markers may not be sufficient to delay the fatal advance of genetic CJD.
Collapse
Affiliation(s)
- Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Keller
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ann Saada
- Department of Genetic and Metabolic Diseases, Hadassah Medical Center, Jerusalem Israel, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
28
|
Kim JK, Shin KK, Kim H, Hong YH, Choi W, Kwak YS, Han CK, Hyun SH, Cho JY. Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J Ginseng Res 2021; 45:717-725. [PMID: 34764726 PMCID: PMC8569327 DOI: 10.1016/j.jgr.2021.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. METHODS The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. RESULTS KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. CONCLUSION The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
29
|
Poor SR, Ettcheto M, Cano A, Sanchez-Lopez E, Manzine PR, Olloquequi J, Camins A, Javan M. Metformin a Potential Pharmacological Strategy in Late Onset Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2021; 14:ph14090890. [PMID: 34577590 PMCID: PMC8465337 DOI: 10.3390/ph14090890] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating brain disorders. Currently, there are no effective treatments to stop the disease progression and it is becoming a major public health concern. Several risk factors are involved in the progression of AD, modifying neuronal circuits and brain cognition, and eventually leading to neuronal death. Among them, obesity and type 2 diabetes mellitus (T2DM) have attracted increasing attention, since brain insulin resistance can contribute to neurodegeneration. Consequently, AD has been referred to "type 3 diabetes" and antidiabetic medications such as intranasal insulin, glitazones, metformin or liraglutide are being tested as possible alternatives. Metformin, a first line antihyperglycemic medication, is a 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator hypothesized to act as a geroprotective agent. However, studies on its association with age-related cognitive decline have shown controversial results with positive and negative findings. In spite of this, metformin shows positive benefits such as anti-inflammatory effects, accelerated neurogenesis, strengthened memory, and prolonged life expectancy. Moreover, it has been recently demonstrated that metformin enhances synaptophysin, sirtuin-1, AMPK, and brain-derived neuronal factor (BDNF) immunoreactivity, which are essential markers of plasticity. The present review discusses the numerous studies which have explored (1) the neuropathological hallmarks of AD, (2) association of type 2 diabetes with AD, and (3) the potential therapeutic effects of metformin on AD and preclinical models.
Collapse
Affiliation(s)
- Saghar Rabiei Poor
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sanchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Patricia Regina Manzine
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
- Correspondence: (A.C.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (A.C.); (M.J.)
| |
Collapse
|
30
|
Rojas-Vázquez S, Blasco-Chamarro L, López-Fabuel I, Martínez-Máñez R, Fariñas I. Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Front Neurosci 2021; 15:666881. [PMID: 33958987 PMCID: PMC8093510 DOI: 10.3389/fnins.2021.666881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-mediated signals derived from vascular elements. Furthermore, studies of parabiosis indicate that NSCs are also exposed to blood-borne factors, sensing and responding to the systemic circulation. Both structural and functional alterations occur in vasculature with age at the cellular level that can affect the proper extrinsic regulation of NSCs. Additionally, blood exchange experiments in heterochronic parabionts have revealed that age-associated changes in blood composition also contribute to adult neurogenesis impairment in the elderly. Although the mechanisms of vascular- or blood-derived signaling in aging are still not fully understood, a general feature of organismal aging is the accumulation of senescent cells, which act as sources of inflammatory and other detrimental signals that can negatively impact on neighboring cells. This review focuses on the interactions between vascular senescence, circulating pro-senescence factors and the decrease in NSC potential during aging. Understanding the mechanisms of NSC dynamics in the aging brain could lead to new therapeutic approaches, potentially include senolysis, to target age-dependent brain decline.
Collapse
Affiliation(s)
- Sara Rojas-Vázquez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
| | - Laura Blasco-Chamarro
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene López-Fabuel
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
31
|
Ren Y, Luo H. Metformin: The next angiogenesis panacea? SAGE Open Med 2021; 9:20503121211001641. [PMID: 33796300 PMCID: PMC7970164 DOI: 10.1177/20503121211001641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis, the development of new blood vessels from existing ones, is
a critical process in wound healing and skeletal muscle hypertrophy.
It also leads to pathological conditions such as retinopathy and tumor
genesis. Metformin, the first-line treatment for type 2 diabetic
mellitus, has a specific regulatory effect on the process of
angiogenesis. Anti-angiogenesis can inhibit the occurrence and
metastasis of tumors and alleviate patients’ symptoms with polycystic
ovary syndrome. Moreover, promoting angiogenesis effect can accelerate
wound healing and promote stroke recovery and limb ischemia
reconstruction. This review reorganizes metformin in angiogenesis, and
the underlying mechanism in alleviating disease to bring some
inspiration to relevant researchers.
Collapse
Affiliation(s)
- Yu Ren
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Hua Luo
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
32
|
Wu Y, Zhu J, Liu H, Liu H. Licochalcone A improves the cognitive ability of mice by regulating T- and B-cell proliferation. Aging (Albany NY) 2021; 13:8895-8915. [PMID: 33714945 PMCID: PMC8034954 DOI: 10.18632/aging.202704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Licochalcone A (LA), a flavonoid found in licorice, has anticancer, antioxidant, anti-inflammatory, and neuroprotective properties. Here, we explored the effect of injecting LA into the tail vein of middle-aged C57BL/6 mice on their cognitive ability as measured by the Morris water maze (MWM) test and cerebral blood flow (CBF). The related mechanisms were assessed via RNA-seq, and T (CD3e+) and B (CD45R/B220+) cells in the spleen and whole blood were quantified via flow cytometry. LA improved the cognitive ability, according to the MWM test results, and upregulated the CBF level of treated mice. The RNA-seq results indicate that LA affected the interleukin (IL)-17 signaling pathway, which is related to T- and B-cell proliferation, and the flow cytometry data suggest that LA promoted T- and B-cell proliferation in the spleen and whole blood. We also performed immune reconstruction via a tail vein injection of lymphocytes into B-NDG (NOD-PrkdcscidIl2rgtm1/Bcge) mice before treating them with LA. We tested cognitive ability by subjecting these animals to new object recognition tests and quantified the splenic and whole blood T and B cells. Cognitive ability improved after immune reconstruction and LA treatment, and LA promoted T- and B-cell proliferation in the spleen and whole blood. This study demonstrates that LA, by activating the IL-17 signaling pathway, promotes T- and B-cell proliferation in the spleen and whole blood of mice and improves cognitive ability. Thus, LA may have immune-modulating therapeutic potential for improving cognition.
Collapse
Affiliation(s)
- Yating Wu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830016, Xinjiang, China
| | - Hailiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
33
|
The Stimulation of Neurogenesis Improves the Cognitive Status of Aging Rats Subjected to Gestational and Perinatal Deficiency of B9-12 Vitamins. Int J Mol Sci 2020; 21:ijms21218008. [PMID: 33126444 PMCID: PMC7662762 DOI: 10.3390/ijms21218008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
A deficiency in B-vitamins is known to lead to persistent developmental defects in various organs during early life. The nervous system is particularly affected with functional retardation in infants and young adults. In addition, even if in some cases no damage appears evident in the beginning of life, correlations have been shown between B-vitamin metabolism and neurodegenerative diseases. However, despite the usual treatment based on B-vitamin injections, the neurological outcomes remain poorly rescued in the majority of cases, compared with physiological functions. In this study, we explored whether a neonatal stimulation of neurogenesis could compensate atrophy of specific brain areas such as the hippocampus, in the case of B-vitamin deficiency. Using a physiological mild transient hypoxia within the first 24 h after birth, rat-pups, submitted or not to neonatal B-vitamin deficiency, were followed until 330-days-of-age for their cognitive capacities and their hippocampus status. Our results showed a gender effect since females were more affected than males by the deficiency, showing a persistent low body weight and poor cognitive performance to exit a maze. Nevertheless, the neonatal stimulation of neurogenesis with hypoxia rescued the maze performance during adulthood without modifying physiological markers, such as body weight and circulating homocysteine. Our findings were reinforced by an increase of several markers at 330-days-of-age in hypoxic animals, such as Ammon’s Horn 1hippocampus (CA1) thickness and the expression of key actors of synaptic dynamic, such as the NMDA-receptor-1 (NMDAR1) and the post-synaptic-density-95 (PSD-95). We have not focused our conclusion on the neonatal hypoxia as a putative treatment, but we have discussed that, in the case of neurologic retardation associated with a reduced B-vitamin status, stimulation of the latent neurogenesis in infants could ameliorate their quality of life during their lifespan.
Collapse
|
34
|
Metformin Enhances Excitatory Synaptic Transmission onto Hippocampal CA1 Pyramidal Neurons. Brain Sci 2020; 10:brainsci10100706. [PMID: 33020379 PMCID: PMC7601223 DOI: 10.3390/brainsci10100706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin (Met) is a first-line drug for type 2 diabetes mellitus (T2DM). Numerous studies have shown that Met exerts beneficial effects on a variety of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). However, it is still largely unclear how Met acts on neurons. Here, by treating acute hippocampal slices with Met (1 μM and 10 μM) and recording synaptic transmission as well as neuronal excitability of CA1 pyramidal neurons, we found that Met treatments significantly increased the frequency of miniature excitatory postsynaptic currents (mEPSCs), but not amplitude. Neither frequency nor amplitude of miniature inhibitory postsynaptic currents (mIPSCs) were changed with Met treatments. Analysis of paired-pulse ratios (PPR) demonstrates that enhanced presynaptic glutamate release from terminals innervating CA1 hippocampal pyramidal neurons, while excitability of CA1 pyramidal neurons was not altered. Our results suggest that Met preferentially increases glutamatergic rather than GABAergic transmission in hippocampal CA1, providing a new insight on how Met acts on neurons.
Collapse
|