1
|
Que X, Fan J, Chen D, Nie Z, Chen P. Brevilin A Inhibits Prostate Cancer Progression by Decreasing PAX5-Activated SOX4. Mol Biotechnol 2025; 67:2060-2071. [PMID: 38744788 DOI: 10.1007/s12033-024-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Brevilin A possesses inhibitory effects on the development of prostate cancer (PCa); however, the underlying mechanism remains unclear. The present work aims to analyze how Brevilin A regulates PCa cell malignancy. RNA expression of paired box 5 (PAX5) and SRY-box transcription factor 4 (SOX4) was analyzed by quantitative real-time polymerase chain reaction. Protein expression of PAX5, SOX4, and nuclear proliferation marker (Ki67) was detected by western blotting or immunohistochemistry assay. The viability, proliferation, apoptosis, and migratory and invasive abilities of PCa cells were investigated by cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays, respectively. The association between PAX5 and SOX4 was identified by dual-luciferase reporter assay and chromatin immunoprecipitation assay. Xenograft mouse model assay was used to reveal the effect of Brevilin A on tumor tumorigenesis in vivo. PAX5 and SOX4 expression were upregulated in PCa tissues and cells relative to normal prostate tissues and human prostate epithelial cells. Brevilin A treatment inhibited PAX5 protein expression in PCa cells. Additionally, Brevilin A inhibited proliferation, migration and invasion and induced apoptosis of PCa cells, whereas these effects were attenuated after PAX5 overexpression. SOX4 was transcriptionally activated by PAX5, and its introduction partially relieved the inhibitory effects of PAX5 knockdown on PCa cell malignancy. Moreover, Brevilin A delayed tumor formation in vivo. Brevilin A inhibited PCa progression by regulating SOX4 expression in a PAX5-dependent manner, providing a promising anti-tumor drug for PCa.
Collapse
Affiliation(s)
- Xinxiang Que
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China
| | - Jianqun Fan
- Ultrasound Imaging Department, Xiantao First People's Hospital, Xiantao, 433000, Hubei, China
| | - Desheng Chen
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China
| | - Zhen Nie
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China
| | - Peng Chen
- Department of Urology, Xiantao First People's Hospital, No. 29, Mianzhou Avenue, Nancheng New District, Xiantao, 433000, Hubei, China.
| |
Collapse
|
2
|
Niu Y, Meng J, Xue Z, Chen Z. PSMA3-AS1: a promising LncRNA as a diagnostic and prognostic biomarker in human cancers. Gene 2025:149521. [PMID: 40268123 DOI: 10.1016/j.gene.2025.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long non-coding RNAs (lncRNAs) have shown increasing potential as biomarkers and therapeutic targets in cancer. Among them, PSMA3-AS1 has garnered significant attention due to its dysregulated expression in various human malignancies and its involvement in key oncogenic processes. This review offers a comprehensive analysis of PSMA3-AS1, including its expression patterns, molecular mechanisms, and clinical significance across different cancer types. It explores its abnormal expression levels, correlation with clinicopathological characteristics, and roles in promoting cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT). The review delves into the molecular pathways through which PSMA3-AS1 exerts its functions, particularly its interactions with microRNAs. Highlighting its strong potential as both a diagnostic and prognostic biomarker, the study underscores the need for further clinical research to fully harness its therapeutic implications. Ultimately, this review aims to consolidate current knowledge on PSMA3-AS1 in human cancers and encourage continued exploration into its utility in innovative diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Yunxia Niu
- Department of Pathology, Pingliang Traditional Chinese Medicine Hospital, Pingliang, Gansu 744603, China
| | - Jinying Meng
- Department of Surgical Oncology, Pingliang Traditional Chinese Medicine Hospital, Pingliang, Gansu 744603, China.
| | - Zhao Xue
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, China
| | - Zhi Chen
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, China
| |
Collapse
|
3
|
Zhao X, Zhang H, Liu Y, Li L, Wei H. Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction. Hum Mol Genet 2025; 34:492-511. [PMID: 39807637 DOI: 10.1093/hmg/ddae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis. Utilizing cell counting kit-8 (CCK-8) assays, colony formation experiments, wound healing assays, flow cytometry for apoptosis and cell cycle analysis, and Transwell assays, we have confirmed that LINC00115 significantly promotes proliferation, migration, and invasion of AEG cells in vitro. Animal experiments further validate the role of LINC00115 in promoting tumor growth and metastasis in vivo. Additionally, our nuclear-cytoplasmic fractionation experiments and RNA fluorescence in situ hybridization (FISH) reveal that LINC00115, along with its interacting protein KH-Type splicing regulatory protein (KHSRP), predominantly localizes to the cell nucleus. By conducting RNA pull-down assays and mass spectrometry (MS) analysis, we have identified a direct interaction between LINC00115 and KHSRP protein and further determined their binding sites through catRAPID and ENCORI databases. This study provides evidence of LINC00115 as a novel biomarker and potential therapeutic target for AEG and offers a fresh perspective on understanding the molecular mechanisms of AEG metastasis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Gastroenterology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | - Haifeng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | | | - Li Li
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
- Department of Thoracic Surgery, Huaihe Hospital of Henan University/Henan University School of Nursing and Health, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | - Haitao Wei
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| |
Collapse
|
4
|
Anwar AA, Jalan-Sakrikar N, Huebert RC. LncRNAs, RNA Therapeutics, and Emerging Technologies in Liver Pathobiology. Semin Liver Dis 2025; 45:1-14. [PMID: 39603269 DOI: 10.1055/a-2490-1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The field of ribonucleic acid (RNA) biology has revealed an array of noncoding RNA species, particularly long noncoding RNAs (lncRNAs), which play crucial roles in liver disease pathogenesis. This review explores the diverse functions of lncRNAs in liver pathology, including metabolic-associated steatotic liver disease, hepatocellular carcinoma, alcohol-related liver disease, and cholangiopathies such as primary sclerosing cholangitis and cholangiocarcinoma. We highlight key lncRNAs that regulate lipid metabolism, inflammation, fibrosis, and oncogenesis in the liver, demonstrating their diagnostic and therapeutic potential. Emerging RNA-based therapies, such as mRNA therapy, RNA interference, and antisense oligonucleotides, offer approaches to modulate lncRNA activity and address liver disease at a molecular level. Advances in sequencing technologies and bioinformatics pipelines are simultaneously enabling the identification and functional characterization of novel lncRNAs, driving innovation in personalized medicine. In conclusion, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in liver disease and emphasizes the need for further research into their regulatory mechanisms and clinical applications.
Collapse
Affiliation(s)
- Abid A Anwar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| |
Collapse
|
5
|
Zhu B, Lu Y, Kang X, Hui L, Ding Y, Liang L, Yang Z. Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair. Adv Wound Care (New Rochelle) 2025. [PMID: 39878130 DOI: 10.1089/wound.2024.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the AcanCreER;R26LSL-tdTomato-DTR mouse model to explore DSC function across different healing stages. All animal procedures were conducted in accordance with the Animal Research: Reporting of In Vivo Experiments guidelines. Gene set enrichment analysis (GSEA) and temporal clustering (Mfuzz) were employed to reveal dynamic functional shifts. GSEA identified enriched gene sets related to interferon-gamma response, inflammatory response, ultraviolet response, myogenesis, and xenobiotic metabolism. Temporal clustering revealed eight distinct clusters: clusters associated with the early contracting and proliferative phases were linked to metabolic activation and oxidative stress, while clusters from the later remodeling phase emphasized extracellular matrix remodeling and structural reorganization. The dynamic expression of epithelial-mesenchymal transition-related genes and keratins supported DSCs' dual epithelial and mesenchymal traits. Additionally, keratins, collagens, integrins, and actin proteins emerged as promising markers or signature molecules for DSCs. This study reveals DSCs' dual traits during wound repair, providing a basis for therapies to enhance healing.
Collapse
Affiliation(s)
- Bing Zhu
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Yaojun Lu
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Xinyue Kang
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Lihua Hui
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Yongkang Ding
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Lu Liang
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Zhigang Yang
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| |
Collapse
|
6
|
Yan H, Jiang N, Li X, Lin C, Wang F, Zhang J, Chen L, Li D. Exosomal lncRNAs as diagnostic and therapeutic targets in multiple myeloma. Front Oncol 2025; 14:1522491. [PMID: 39886670 PMCID: PMC11779718 DOI: 10.3389/fonc.2024.1522491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Multiple Myeloma (MM) is the second most common malignancy of the hematopoietic system, accounting for approximately 10% of all hematological malignancies, and currently, there is no complete cure. Existing research indicates that exosomal long non-coding RNAs (lncRNAs) play a crucial regulatory role in the initiation and progression of tumors, involving various interactions such as lncRNA-miRNA, lncRNA-mRNA, and lncRNA-RNA binding proteins (RBP). Despite the significant clinical application potential of exosomal lncRNAs, research in this area still faces challenges due to their low abundance and technical limitations. To our knowledge, this review is the first to comprehensively integrate and elucidate the three mechanisms of action of exosomal lncRNAs in MM, and to propose potential therapeutic targets and clinical cases based on these mechanisms. We highlight the latest advancements in the potential of exosomal lncRNAs as biomarkers and therapeutic targets, offering not only a comprehensive analysis of the role of exosomal lncRNAs in MM but also new perspectives and methods for future clinical diagnosis and treatment of multiple myeloma.
Collapse
Affiliation(s)
- Hong Yan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Nan Jiang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoying Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chenyang Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fang Wang
- School of Dental Medicine, Dalian University, Dalian, Liaoning, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijuan Chen
- Department of Hematopathology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Andrade R, Ribeiro IP, Carreira IM, Tralhão JG. The Diagnostic and Prognostic Potentials of Non-Coding RNA in Cholangiocarcinoma. Int J Mol Sci 2024; 25:6002. [PMID: 38892191 PMCID: PMC11172565 DOI: 10.3390/ijms25116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare biliary tract tumor with high malignancy. CCA is the second most common primary hepatobiliary cancer after hepatocarcinoma. Despite its rarity, the incidence of CCA is steadily increasing globally. Most patients with CCA are asymptomatic in the early stages, resulting in a late-stage diagnosis and poor prognosis. Finding reliable biomarkers is essential to improve CCA's early diagnosis and survival rate. Non-coding RNAs (ncRNAs) are non-protein coding RNAs produced by genomic transcription. This includes microRNAs, long non-coding RNAs, and circular RNAs. ncRNAs have multiple functions in regulating gene expression and are crucial for maintaining normal cell function and developing diseases. Many studies have shown that aberrantly expressed ncRNAs can regulate the occurrence and development of CCA. ncRNAs can be easily extracted and detected through tumor tissue and liquid biopsies, representing a potential tool for diagnosing and prognosis CCA. This review will provide a detailed update on the diagnostic and prognostic potentials of lncRNAs and cirRNAs as biomarkers in CCA.
Collapse
Affiliation(s)
- Rita Andrade
- Surgery Department, Centro Hospitalar e Universitario de Coimbra EPE (CHUC), 3000-075 Coimbra, Portugal;
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Marques Carreira
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José Guilherme Tralhão
- Surgery Department, Centro Hospitalar e Universitario de Coimbra EPE (CHUC), 3000-075 Coimbra, Portugal;
- Clinical Academic Center of Coimbra, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (CBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
8
|
Bai J, Zhao Y, Shi K, Fan Y, Ha Y, Chen Y, Luo B, Lu Y, Jie W, Shen Z. HIF-1α-mediated LAMC1 overexpression is an unfavorable predictor of prognosis for glioma patients: evidence from pan-cancer analysis and validation experiments. J Transl Med 2024; 22:391. [PMID: 38678297 PMCID: PMC11056071 DOI: 10.1186/s12967-024-05218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Laminin subunit gamma-1 (LAMC1) is a major extracellular matrix molecule involved in the tumor microenvironment. Knowledge of the biological features and clinical relevance of LAMC1 in cancers remains limited. METHODS We conducted comprehensive bioinformatics analysis of LAMC1 gene expression and clinical relevance in pan-cancer datasets of public databases and validated LAMC1 expression in glioma tissues and cell lines. The association and regulatory mechanism between hypoxia inducible factor-1α (HIF-1α) and LAMC1 expression were explored. RESULTS LAMC1 expression in most cancers in The Cancer Genome Atlas (TCGA) including glioma was significantly higher than that in normal tissues, which had a poor prognosis and were related to various clinicopathological features. Data from the Chinese Glioma Genome Atlas also showed high expression of LAMC1 in glioma associated with poor prognoses. In clinical glioma tissues, LAMC1 protein was highly expressed and correlated to poor overall survival. LAMC1 knockdown in Hs683 glioma cells attenuated cell proliferation, migration, and invasion, while overexpression of LAMC1 in U251 cells leads to the opposite trend. Most TCGA solid cancers including glioma showed enhancement of HIF-1α expression. High HIF-1α expression leads to adverse prognosis in gliomas, besides, HIF-1α expression was positively related to LAMC1. Mechanistically, HIF-1α directly upregulated LAMC1 promotor activity. Hypoxia (2% O2)-treated Hs683 and U251 cells exhibited upregulated HIF-1α and LAMC1 expression, which was significantly attenuated by HIF-1α inhibitor YC-1 and accompanied by attenuated cell proliferation and invasion. CONCLUSIONS High expression of LAMC1 in some solid tumors including gliomas suggests a poor prognosis. The hypoxic microenvironment in gliomas activates the HIF-1α/LAMC1 signaling, thereby promoting tumor progression. Targeted intervention on the HIF-1α/LAMC1 signaling attenuates cell growth and invasion, suggesting a new strategy for glioma treatment.
Collapse
Affiliation(s)
- Jianrong Bai
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yangyang Zhao
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, China
| | - Kaijia Shi
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
| | - Yonghao Fan
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
| | - Yanping Ha
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yan Chen
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China
| | - Botao Luo
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yanda Lu
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China.
| | - Wei Jie
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China.
- Department of Oncology of the First Affiliated Hospital & Cancer Institute, Hainan Medical University, Haikou, 570102, China.
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, China.
| | - Zhihua Shen
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
9
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Current and Future Therapeutic Targets for Directed Molecular Therapies in Cholangiocarcinoma. Cancers (Basel) 2024; 16:1690. [PMID: 38730642 PMCID: PMC11083102 DOI: 10.3390/cancers16091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data, clinical trials (MEDLINE; ncbi.pubmed.com), congress contributions (asco.org; esmo.org), and active recruiting clinical trains (clinicaltrial.gov) on targeted therapies in cholangiocarcinoma. Palliative treatment regimens were analyzed as well as preoperative and perioperative treatment options. We summarized the current knowledge for each mutation and molecular pathway that is or has been under clinical evaluation and discussed the results on the background of current treatment guidelines. We established and recommended targeted treatment options that already exist for second-line settings, including IDH-, BRAF-, and NTRK-mutated tumors, as well as for FGFR2 fusion, HER2/neu-overexpression, and microsatellite instable tumors. Other options for targeted treatment include EGFR- or VEGF-dependent pathways, which are known to be overexpressed or dysregulated in this cancer type and are currently under clinical investigation. Targeted therapy in CCA is a hallmark of individualized medicine as these therapies aim to specifically block pathways that promote cancer cell growth and survival, leading to tumor shrinkage and improved patient outcomes based on the molecular profile of the tumor.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Li Y, Fu Q, Fang J, Xu Z, Zhang C, Tan L, Liao X, Wu Y. Analysis of ceRNA Network and Identification of Potential Treatment Target and Biomarkers of Endothelial Cell Injury in Sepsis. Genet Test Mol Biomarkers 2024; 28:133-143. [PMID: 38501698 DOI: 10.1089/gtmb.2023.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background: Sepsis is a complex clinical syndrome caused by a dysregulated host immune response to infection. This study aimed to identify a competing endogenous RNA (ceRNA) network that can greatly contribute to understanding the pathophysiological process of sepsis and determining sepsis biomarkers. Methods: The GSE100159, GSE65682, GSE167363, and GSE94717 datasets were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene coexpression network analysis was performed to find modules possibly involved in sepsis. A long noncoding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network was constructed based on the findings. Single-cell analysis was performed. Human umbilical vein endothelial cells were treated with lipopolysaccharide (LPS) to create an in vitro model of sepsis for network verification. Reverse transcription-polymerase chain reaction, fluorescence in situ hybridization, and luciferase reporter genes were used to verify the bioinformatic analysis. Result: By integrating data from three GEO datasets, we successfully constructed a ceRNA network containing 18 lncRNAs, 7 miRNAs, and 94 mRNAs based on the ceRNA hypothesis. The lncRNA ZFAS1 was found to be highly expressed in LPS-stimulated endothelial cells and may thus play a role in endothelial cell injury. Univariate and multivariate Cox analyses showed that only SLC26A6 was an independent predictor of prognosis in sepsis. Overall, our findings indicated that the ZFAS1/hsa-miR-449c-5p/SLC26A6 ceRNA regulatory axis may play a role in the progression of sepsis. Conclusion: The sepsis ceRNA network, especially the ZFAS1/hsa-miR-449c-5p/SLC26A6 regulatory axis, is expected to reveal potential biomarkers and therapeutic targets for sepsis management.
Collapse
Affiliation(s)
- Yulin Li
- The Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qinghui Fu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Junjun Fang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhipeng Xu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chunhu Zhang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Longwei Tan
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Liao
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yao Wu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Shobeiri P, Arabzadeh Bahri R, Khadembashiri MM, Khadembashiri MA, Maleki S, Eslami M, Khalili Dehkordi M, Behnoush AH, Rezaei N. Role of long non-coding RNAs in cholangiocarcinoma: A systematic review and meta-analysis. Cancer Rep (Hoboken) 2024; 7:e2029. [PMID: 38517409 PMCID: PMC10959185 DOI: 10.1002/cnr2.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), as a rare malignancy of the biliary tree, has a poor prognosis most of the time. CCA is highly epigenetically regulated and several long non-coding RNAs (lncRNA) have been investigated to have a diagnostic and prognostic role in CCA. The current study aimed to assess the studies finding relevant lncRNAs in CCA systematically. METHODS International databases, including PubMed, Cochrane Library, and Embase, were comprehensively searched in order to identify studies investigating any lncRNA in CCA. After screening by title/abstract and full-text, necessary data were extracted. Random-effect meta-analysis was performed for pooling the areas under the curve (AUCs), specificity, and sensitivity of lncRNAs for the diagnosis of CCA. RESULTS A total of 33 studies were chosen to be included in the final analysis, comprised of 2677 patients. Meta-analysis of AUCs for evaluation of CCA resulted in pooled AUC of 0.79 (95% CI: 0.75-0.82; I2 = 69.11, p < .01). Additionally, overall sensitivity of 0.80 (95% CI 0.75-0.84) and specificity of 0.77 (95% CI: 0.68-0.84) were observed. Measurement of lncRANs in the assessment of CCA also improved overall survival significantly (effect size 1.61, 95% CI: 1.39-1.82). A similar result was found for progression-free survival (effect size 1.57, 95% CI: 1.20-1.93). CONCLUSION Based on our findings, lncRNAs showed promising results as biomarkers in the diagnosis of CCA since they had acceptable sensitivity and specificity, in addition to the fact that improved survival in this poor prognosis cancer. Further studies might be needed to address this issue and find the best clinically useful lncRNA.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of medicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), TehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Razman Arabzadeh Bahri
- School of medicineTehran University of Medical SciencesTehranIran
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Mohamad Mehdi Khadembashiri
- Neuromusculoskeletal Research CenterIran University of Medical SciencesTehranIran
- Student Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Mohamad Amin Khadembashiri
- Neuromusculoskeletal Research CenterIran University of Medical SciencesTehranIran
- Student Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Saba Maleki
- School of MedicineGuilan University of Medical SciencesRashtIran
| | - Mohammad Eslami
- Student Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | | | - Amir Hossein Behnoush
- School of medicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), TehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Syllaios A, Gazouli M, Vailas M, Mylonas KS, Sakellariou S, Sougioultzis S, Karavokyros I, Liakakos T, Schizas D. The Expression Patterns and Implications of MALAT1, MANCR, PSMA3-AS1 and miR-101 in Esophageal Adenocarcinoma. Int J Mol Sci 2023; 25:98. [PMID: 38203269 PMCID: PMC10778904 DOI: 10.3390/ijms25010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a malignant tumor with poorly understood molecular mechanisms. This study endeavors to elucidate how the long non-coding RNAs (lncRNAs) MALAT1, MANCR and PSMA3-AS1, as well as the microRNA miR-101, exhibit specific expression patterns in the pathogenesis and prognosis of EAC. A total of 50 EAC tissue samples (tumors and lymph nodes) and a control group comprising 26 healthy individuals were recruited. The samples underwent quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The relative expression levels of MALAT1, MANCR, PSMA3-AS1, and miR-101 were ascertained and correlated with various clinicopathological parameters including TNM staging, tumor characteristics (size and grade of the tumor) lymphatic invasion, disease-free (DFS) and overall survival (OS) of EAC patients. Quantitative analyses revealed that MALAT1 and MANCR were significantly upregulated in EAC tumors and positive lymph nodes when compared to control tissues (p < 0.05). Such dysregulations correlated positively with advanced lymphatic metastases and a higher N stage. DFS in the subgroup of patients with negative lymph nodes was higher in the setting of low-MANCR-expression patients compared to patients with high MANCR expression (p = 0.02). Conversely, miR-101 displayed a significant downregulation in EAC tumors and positive lymph nodes (p < 0.05), and correlated negatively with advanced tumor stage, lymphatic invasion and the grade of the tumor (p = 0.006). Also, patients with low miR-101 expression showed a tendency towards inferior overall survival. PSMA3-AS1 did not demonstrate statistically significant alterations (p > 0.05). This study reveals MALAT1, MANCR, and miR-101 as putative molecular markers for prognostic evaluation in EAC and suggests their involvement in EAC progression.
Collapse
Affiliation(s)
- Athanasios Syllaios
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Michail Vailas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | | | - Stratigoula Sakellariou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Stavros Sougioultzis
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University Athens, 115 27 Athens, Greece;
| | - Ioannis Karavokyros
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Theodoros Liakakos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (M.V.); (I.K.); (T.L.); (D.S.)
| |
Collapse
|
13
|
Kan L, Yang M, Zhang H. Long noncoding RNA PSMA3-AS1 functions as a competing endogenous RNA to promote gastric cancer progression by regulating the miR-329-3p/ALDOA axis. Biol Direct 2023; 18:36. [PMID: 37403106 PMCID: PMC10318671 DOI: 10.1186/s13062-023-00392-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
LncRNA PSMA3-AS1 functions as an oncogene in several cancers, including ovarian cancer, lung cancer, and colorectal cancer. However, its role in gastric cancer (GC) progression remains unclear. In this study, the levels of PSMA3-AS1, miR-329-3p, and aldolase A (ALDOA) in 20 paired human GC tissues and adjacent nontumorous tissues were measured by real-time PCR. GC cells were transfected with recombinant plasmid carrying full-length PSMA3-AS1 or shRNA targeting PSMA3-AS1. The stable transfectants were selected by G418. Then, the effects of PSMA3-AS1 knockdown or overexpression on GC progression in vitro and in vivo were evaluated. The results showed that PSMA3-AS1 was highly expressed in human GC tissues. Stable knockdown of PSMA3-AS1 significantly restrained proliferation/migration/invasion, enhanced cell apoptosis, and induced oxidative stress in vitro. Tumor growth and matrix metalloproteinase expression in tumor tissues were markedly inhibited, while oxidative stress was enhanced in nude mice after stable PSMA3-AS1 knockdown. Additionally, PSMA3-AS1 negatively regulated miR-329-3p while positively regulated ALDOA expression. MiR-329-3p directly targeted ALDOA-3'UTR. Interestingly, miR-329-3p knockdown or ALDOA overexpression partially attenuated the tumor-suppressive effects of PSMA3-AS1 knockdown. Conversely, PSMA3-AS1 overexpression exhibited the opposite effects. PSMA3-AS1 promoted GC progression by regulating the miR-329-3p/ALDOA axis. PSMA3-AS1 might serve as a promising and effective target for GC treatment.
Collapse
Affiliation(s)
- Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Meiqi Yang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
14
|
Shang T, Jiang T, Lu T, Wang H, Cui X, Pan Y, Xu M, Pei M, Ding Z, Feng X, Lin Y, Li X, Tan Y, Feng F, Dong H, Wang H, Dong L. Tertiary lymphoid structures predict the prognosis and immunotherapy response of cholangiocarcinoma. Front Immunol 2023; 14:1166497. [PMID: 37234171 PMCID: PMC10206168 DOI: 10.3389/fimmu.2023.1166497] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Cholangiocarcinoma (CCA) is a malignant tumor of the biliary epithelium with a poor prognosis. The lack of biomarkers to predict therapeutic response and prognosis is one of the major challenges for CCA treatment. Tertiary lymphoid structures (TLS) provide a local and pivotal microenvironment for tumor immune responses. The prognostic value and clinical relevance of TLS in CCA remain unclear. We aimed to explore the characteristics and clinical significance of TLS in CCA. Methods We investigated the prognostic value and clinical relevance of TLS in CCA using a surgery cohort containing 471 CCA patients (cohort 1) and an immunotherapy cohort containing 100 CCA patients (cohort 2). Hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were used to evaluate the maturity of TLS. Multiplex IHC (mIHC) was employed to characterize the composition of TLS. Results Different maturity of TLS were observed in CCA tissue sections. Strong staining of the four-gene signature including PAX5, TCL1A, TNFRSF13C, and CD79A were found in TLS regions. A high density of intra-tumoral TLS (T-score high) were significantly correlated with longer overall survival (OS) both in CCA cohort 1 (p = 0.002) and cohort 2 (p = 0.01), whereas a high density of peri-tumoral TLS (P-score high) were associated with shorter OS in these two cohorts (p = 0.003 and p = 0.03, respectively). Conclusion The established four-gene signature efficiently identified the TLS in CCA tissues. The abundance and spatial distribution of TLS were significantly correlated with the prognosis and immune checkpoint inhibitors (ICIs) immunotherapy response of CCA patients. The presence of intra-tumoral TLS are positive prognostic factors for CCA, which provide a theoretical basis for the future diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Taiyu Shang
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Tianyi Jiang
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Tao Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Wang
- Department of Hepatobiliary Diseases, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xiaowen Cui
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Yufei Pan
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Mengyou Xu
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Mengmiao Pei
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhiwen Ding
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Xiaofan Feng
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Yunkai Lin
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Xin Li
- Department of Hepatobiliary Diseases, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yexiong Tan
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Feiling Feng
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Liwei Dong
- National Center for Liver Cancer, Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
15
|
Zhang X, Han Y, Nie Y, Jiang Y, Sui X, Ge X, Liu F, Zhang Y, Wang X. PAX5 aberrant expression incorporated in MIPI-SP risk scoring system exhibits additive value in mantle cell lymphoma. J Mol Med (Berl) 2023; 101:595-606. [PMID: 37126184 DOI: 10.1007/s00109-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin lymphoma with highly heterogeneous clinical courses. Paired-box 5 (PAX5), the regulator of B cell differentiation and growth, is abnormally expressed in several types of cancers. Herein, we explored the prognostic value of PAX5 in MCL by comprehensively analyzing the clinical features and laboratory data of 82 MCL cases. PAX5 positivity was associated with shorter overall survival (OS; p = 0.011) and was identified as an independent prognostic factor in MCL patients. The elevated β2-MG (p = 0.027) and advanced Mantle Cell Lymphoma International Prognostic Index (MIPI) score (p = 0.014) were related to positive PAX5 expression. The MIPI-SP risk scoring system was established and exhibited a superior prognostic value for OS depending on an area under the curve (AUC) of 0.770 (95% CI, 0.658-0.881) than MIPI score. Bioinformatic analysis of PAX5-related genes supported the mechanistic roles of PAX5 in MCL. This study provides insight into the potential role of PAX5 in MCL, and the novel risk scoring system MIPI-SP optimizes the risk stratification and facilitates prognosis evaluation in MCL patients. KEY MESSAGES: • Paired-box 5 positivity indicated adverse prognosis in mantle cell lymphoma patients. • Positive PAX5 expression was related to MIPI score and β2-MG in MCL patients. • MIPI-SP risk scoring system has superior prognostic value than MIPI score in MCL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yu Nie
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
16
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Feng L, Yang J, Zhang W, Wang X, Li L, Peng M, Luo P. Prognostic significance and identification of basement membrane-associated lncRNA in bladder cancer. Front Oncol 2022; 12:994703. [PMID: 36300088 PMCID: PMC9590283 DOI: 10.3389/fonc.2022.994703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Based on the importance of basement membrane (BM) in cancer invasion and metastasis, we constructed a BM-associated lncRNA risk model to group bladder cancer (BCa) patients. Transcriptional and clinical data of BCa patients were downloaded from The Cancer Genome Atlas (TCGA), and the expressed genes of BM-related proteins were obtained from the BM-BASE database. We download the GSE133624 chip data from the GEO database as an external validation dataset. We screened for statistically different BM genes between tumors and adjacent normal tissues. Co-expression analysis of lncRNAs and differentially expressed BM genes was performed to identify BM-related lncRNAs. Then, differentially expressed BM-related lncRNAs (DEBMlncRNAs) between tumor and normal tissues were identified. Univariate/multivariate Cox regression analysis was performed to select lncRNAs for risk assessment. LASSO analysis was performed to build a prognostic model. We constructed a model containing 8 DEBMlncRNAs (AC004034.1, AL662797.1, NR2F1-AS1, SETBP1-DT, AC011503.2, AC093010.2, LINC00649 and LINC02321). The prognostic risk model accurately predicted the prognosis of BCa patients and revealed that tumor aggressiveness and distant metastasis were associated with higher risk scores. In this model, we constructed a nomogram to assist clinical decision-making based on clinicopathological characteristics such as age, T, and N. The model also showed good predictive power for the tumor microenvironment and mutational burden. We validated the expression of eight lncRNAs using the dataset GSE133624 and two human bladder cancer cell lines (5637, BIU-87) and examined the expression and cellular localization of LINC00649 and AC011503.2 using a human bladder cancer tissue chip. We found that knockdown of LINC00649 expression in 5637 cells promoted the proliferation of 5637 cells.Our eight DEBMlncRNA risk models provide new insights into predicting prognosis, tumor invasion, and metastasis in BCa patients.
Collapse
Affiliation(s)
- Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Wei Zhang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Min Peng, ; Lili Li,
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Min Peng, ; Lili Li,
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Min Peng, ; Lili Li,
| |
Collapse
|
18
|
Zheng L, He J, Li M, Yuan H, Li H, Hu F, Chen L, Tang W, Sheng M. Clinical significance and mechanism of long noncoding RNA HAGLROS in triple negative breast cancer. Pathol Res Pract 2022; 231:153810. [DOI: 10.1016/j.prp.2022.153810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
|