1
|
Mahdinia E, Rostami R, Rezaei A, Ghaderi P, Yarahmadi S, Fallah S. Evaluation of autophagy related ATG4B gene, protein and miR-655-3p expression levels in endometrial cancer and hyperplasia. J Gynecol Oncol 2025; 36:e33. [PMID: 39302146 PMCID: PMC11964977 DOI: 10.3802/jgo.2025.36.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE The pathogenesis of endometrial cancer (EC) and hyperplasia is complex and poorly understood. Autophagy has emerged as a crucial aspect of this process. METHODS This study examines the role of autophagy in the pathogenesis of EC and hyperplasia by investigating the expression of the autophagy-related 4B cysteine peptidase (ATG4B) gene, protein, and miR-665-3p levels in patients compared to a control group. This cross-sectional case control study analyzed 90 endometrial tissues, including 30 tumors, 30 normal controls, and 30 hyperplasia, using quantitative reverse transcription polymerase chain reaction and Western blot to assess ATG4B gene and protein levels. RESULTS Higher ATG4B gene expression levels were found in the endometrial tissue of EC patients than in hyperplasia patients and controls. Furthermore, protein levels of ATG4B were also higher in EC and hyperplasia patients than in controls. ATG4B gene expression and protein levels were positively correlated in EC patients. However, in EC patients, miR-655-3p showed a significant negative correlation with the ATG4B gene and protein levels. CONCLUSION ATG4B gene and protein expression is elevated in EC tissue, suggesting their role as a tumor promoter. Evaluating their levels could serve as markers for monitoring EC progression and prognosis.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rahim Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Ghaderi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lazaridis A, Katifelis H, Kalampokas E, Lambropoulou D, Aravantinos G, Gazouli M, Vlahos NF. Utilization of miRNAs as Biomarkers for the Diagnosis, Prognosis, and Metastasis in Gynecological Malignancies. Int J Mol Sci 2024; 25:11703. [PMID: 39519256 PMCID: PMC11546551 DOI: 10.3390/ijms252111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gynecological cancer is a term referring to malignancies that typically involve ovarian, cervical, uterine, vaginal, and vulvar cancer. Combined, these cancers represent major causes of morbidity and mortality in women with a heavy socioeconomic impact. MiRNAs are small non-coding RNAs that are intensively studied in the field of cancer and changes in them have been linked to a variety of processes involved in cancer that range from tumorigenesis to prognosis and metastatic potential. This review aims to summarize the existing literature that has linked miRNAs with each of the female malignancies as potential biomarkers in diagnosis (circulating miRNAs), in tumor histology and prognosis (as tissue biomarkers), and for local (lymph node) and distant metastatic disease.
Collapse
Affiliation(s)
- Alexandros Lazaridis
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece;
| | - Emmanouil Kalampokas
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| | | | | | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece;
| | - Nikos F. Vlahos
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| |
Collapse
|
3
|
Hegde S, Wagh K, Narayana SM, Abikar A, Nambiar S, Ananthamurthy S, Narayana NH, Reddihalli PV, Chandraiah S, Ranganathan P. microRNA profile of endometrial cancer from Indian patients-identification of potential biomarkers for prognosis. Biochem Biophys Rep 2024; 39:101812. [PMID: 39282095 PMCID: PMC11395764 DOI: 10.1016/j.bbrep.2024.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Endometrial cancer is one of the major cancers in women throughout the world. If diagnosed early, these cancers are treatable and the prognosis is usually good. However, one major problem in treating endometrial cancer is accurate diagnosis and staging. Till date, the choice method for diagnosis and staging is histopathology. Although there are few molecular markers identified, they are not always sufficient in making accurate diagnosis and deciding on therapeutic strategy. As a result, very often patients are under treated or over treated. In this study, our group has profiled microRNAs from Indian patients using NGS-based approach. We have identified 212 differentially expressed microRNAs in endometrial cancer. Among these, there are 17 novel miRNAs. Since this data represents only Indian cohort and also lacks survival data, validation across other populations is necessary before being considered as biomarkers. As one approach towards this, these microRNAs have also been compared to data from TCGA, which represent other populations and also correlated to relevance in overall survival. Using in-silico approaches, mRNA targets of the miRNAs have been predicted. After comparing with TCGA, we have identified 16 miRNA-mRNA pairs which could be potential prognostic biomarkers for endometrial cancer. This is the first miRNA profiling report from Indian cohort and one of the very few studies which have identified potential biomarkers of prognosis in endometrial cancer.
Collapse
Affiliation(s)
| | | | | | - Apoorva Abikar
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| | | | | | | | | | - Savitha Chandraiah
- Vani Vilas Hospital, Bangalore Medical College and Research Institute, Bengaluru, India
| | - Prathibha Ranganathan
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| |
Collapse
|
4
|
Chen L, Xiong Y, Chopp M, Zhang Y. Engineered exosomes enriched with select microRNAs amplify their therapeutic efficacy for traumatic brain injury and stroke. Front Cell Neurosci 2024; 18:1376601. [PMID: 38566841 PMCID: PMC10985177 DOI: 10.3389/fncel.2024.1376601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke stand as prominent causes of global disability and mortality. Treatment strategies for stroke and TBI are shifting from targeting neuroprotection toward cell-based neurorestorative strategy, aiming to augment endogenous brain remodeling, which holds considerable promise for the treatment of TBI and stroke. Compelling evidence underscores that the therapeutic effects of cell-based therapy are mediated by the active generation and release of exosomes from administered cells. Exosomes, endosomal derived and nano-sized extracellular vesicles, play a pivotal role in intercellular communication. Thus, we may independently employ exosomes to treat stroke and TBI. Systemic administration of mesenchymal stem cell (MSC) derived exosomes promotes neuroplasticity and neurological functional recovery in preclinical animal models of TBI and stroke. In this mini review, we describe the properties of exosomes and recent exosome-based therapies of TBI and stroke. It is noteworthy that the microRNA cargo within exosomes contributes to their therapeutic effects. Thus, we provide a brief introduction to microRNAs and insight into their key roles in mediating therapeutic effects. With the increasing knowledge of exosomes, researchers have "engineered" exosome microRNA content to amplify their therapeutic benefits. We therefore focus our discussion on the therapeutic benefits of recently employed microRNA-enriched engineered exosomes. We also discuss the current opportunities and challenges in translating exosome-based therapy to clinical applications.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Yanlu Zhang
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| |
Collapse
|
5
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
6
|
SHI WEI, LIN JIANXIA, JIN RONG, XIE XIANJING, LIANG YAN. Expression and function of long non-coding RNA DLX6-AS1 in endometrial cancer. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Zhao X, Si L, Niu L, Wei M, Wang F, Liu X, Chen Z, Qiao Y, Cheng L, Yang S. Effects of RFRP‑3 on an ovariectomized estrogen‑primed rat model and HEC‑1A human endometrial carcinoma cells. Exp Ther Med 2022; 25:76. [PMID: 36684658 PMCID: PMC9842939 DOI: 10.3892/etm.2022.11775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fengxia Wang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
8
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Wejman J, Ostrowska J, Gondek A, Włodarski PK. Decreased expression of miR-23b is associated with poor survival of endometrial cancer patients. Sci Rep 2022; 12:18824. [PMID: 36335210 PMCID: PMC9637218 DOI: 10.1038/s41598-022-22306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common types of cancer of the female reproductive system. EC is classified into two types (EC1 and EC2). MiRNAs are single-stranded RNA molecules that regulate gene expression posttranscriptionally. They have aberrant expression profiles in cancer, including EC. This study aimed to assess the level of expression of a panel of 16 miRNAs in both types of EC and healthy endometrium (HE). A total of 45 patients were enrolled into the study, 18 patients diagnosed with EC1, 12 diagnosed with EC2, and 15 HE controls. Tumor tissues or healthy endometrial tissues were dissected from archival formalin-fixed paraffin-embedded (FFPE) using laser capture microdissection (LCM). RNA was isolated from collected material and the expression of selected miRNAs was determined using the real-time qPCR. We found that miR-23b, miR-125b-5p, miR-199a-3p, miR-221-3p, and miR-451a were downregulated in EC in comparison to HE. Moreover, the expression of miR-34a-5p and miR-146-5p was higher in EC1 compared to EC2. Analysis of The Cancer Genome Atlas (TCGA) database confirmed decreased levels of miR-23b, miR-125b-5p, and miR-199a-3p in EC. Decreased miR-23b expression was associated with worse survival of EC patients.
Collapse
Affiliation(s)
- Klaudia Klicka
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Mielniczuk
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jarosław Wejman
- grid.414852.e0000 0001 2205 7719Department of Pathology, Medical Center of Postgraduate Education, 01-826 Warsaw, Poland
| | - Joanna Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Pathology, Medical Center of Postgraduate Education, 01-826 Warsaw, Poland
| | - Agata Gondek
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł K. Włodarski
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Nguyen TB, Do DN, Nguyen-Thi ML, Hoang-The H, Tran TT, Nguyen-Thanh T. Identification of potential crucial genes and key pathways shared in Inflammatory Bowel Disease and cervical cancer by machine learning and integrated bioinformatics. Comput Biol Med 2022; 149:105996. [DOI: 10.1016/j.compbiomed.2022.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/10/2022] [Accepted: 08/14/2022] [Indexed: 11/15/2022]
|
10
|
Kalantzakos TJ, Sebel LE, Trussler J, Sullivan TB, Burks EJ, Sarita-Reyes CD, Canes D, Moinzadeh A, Rieger-Christ KM. MicroRNA Associated with the Invasive Phenotype in Clear Cell Renal Cell Carcinoma: Let-7c-5p Inhibits Proliferation, Migration, and Invasion by Targeting Insulin-like Growth Factor 1 Receptor. Biomedicines 2022; 10:2425. [PMID: 36289686 PMCID: PMC9598558 DOI: 10.3390/biomedicines10102425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 01/20/2025] Open
Abstract
Differential microRNA (miRNA) expression can portend clear cell renal cell carcinoma (ccRCC) progression. In a previous study, we identified a subset of dysregulated miRNA in small renal masses, pT1 ccRCC (≤5 cm) that are associated with an aggressive phenotype. The present study investigated miRNA expression in clinical stage I (cT1) tumors (≤5 cm), comparing pathologic stage I (pT1) tumors to those upstaged to pathologic stage 3 (pT3) after surgery following identification of renal vein invasion or invasion into adjacent fat tissue within Gerota's fascia. Twenty cT1 tumors were examined in an miRNA screening, 10 pT1 and 10 pT3 tumors. The ccRCC cell lines 786-O and Caki-1 were used to assess the impact of let-7c-5p and its protein target insulin-like growth factor 1 receptor (IGF1R). Cells were transfected with pre-let-7c-5p and assessed through cell proliferation, migration, and invasion assays. IGF1R expression was evaluated through Simple Western, and interaction between let-7c-5p and IGF1R was confirmed via luciferase reporter assay. Screening identified 20 miRNA, including let-7c-5p, that were dysregulated between pT1 and pT3 upstaged tumors. This miRNA was also downregulated in our previous study of pT1 tumors that progressed to metastatic disease. Transfection of ccRCC cells with pre-let-7c-5p significantly inhibited proliferation, migration, invasion, and IGF1R expression. These findings suggest that miRNA dysregulation is involved in ccRCC progression, specifically through invasion, and that let-7c-5p downregulation contributes to the aggressiveness of small ccRCC tumors, in part, through its regulation of IGF1R.
Collapse
Affiliation(s)
- Thomas J. Kalantzakos
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Luke E. Sebel
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - James Trussler
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Travis B. Sullivan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Eric J. Burks
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Carmen D. Sarita-Reyes
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - David Canes
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Alireza Moinzadeh
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Kimberly M. Rieger-Christ
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| |
Collapse
|
11
|
Gunderson CC, Radhakrishnan R, Gomathinayagam R, Husain S, Aravindan S, Moore KM, Dhanasekaran DN, Jayaraman M. Circulating Tumor Cell-Free DNA Genes as Prognostic Gene Signature for Platinum Resistant Ovarian Cancer Diagnosis. Biomark Insights 2022; 17:11772719221088404. [PMID: 35370397 PMCID: PMC8966103 DOI: 10.1177/11772719221088404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical management of gynecological cancer begins by optimal debulking with first-line platinum-based chemotherapy. However, in ~80% patients, ovarian cancer will recur and is lethal. Prognostic gene signature panel identifying platinum-resistance enables better patient stratification for precision therapy. Retrospectively collected serum from 11 "poor" (<6 months progression free interval [PFI]) and 22 "favorable" (>24 months PFI) prognosis patients, were evaluated using circulating cell-free DNA (cfDNA). DNA from both groups showed 50 to 10 000 bp fragments. Pairwise analysis of sequenced cfDNA from patients showed that gene dosages were higher for 29 genes and lower for 64 genes in poor than favorable prognosis patients. Gene ontology analysis of higher dose genes predominantly grouped into cytoskeletal proteins, while lower dose genes, as hydrolases and receptors. Higher dosage genes searched for cancer-relatedness in Reactome database indicated 15 genes were referenced with cancer. Among them 3 genes, TGFBR2, ZMIZ2, and NRG2, were interacting with more than 4 cancer-associated genes. Protein expression analysis of tumor samples indicated that TGFBR2 was downregulated and ZMIZ2 was upregulated in poor prognosis patients. Our results indicate that the cfDNA gene dosage combined with protein expression in tumor samples can serve as gene signature panel for prognosis determination amongst ovarian cancer patients.
Collapse
Affiliation(s)
- Camille C Gunderson
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rohini Gomathinayagam
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanam Husain
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sheeja Aravindan
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathleen M Moore
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Muralidharan Jayaraman, Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, 975 NE 10th Street, BRC416, Oklahoma City, OK 73104, USA.
| |
Collapse
|
12
|
Gomes LC, Resende RR, Parreira RC, Ferreira CN, Reis EA, Duarte RCF, Alves LCV, Araújo SSDS, Carvalho MDG, Sabino ADP. Chronic Lymphocytic Leukemia (CLL): evaluation of AKT protein kinase and microRNA gene expression related to disease pathogenesis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Kumari P, Sharma I, Saha SC, Srinivasan R, Minhas P. Diagnostic potential of differentially regulated microRNAs among endometriosis, endometrioid ovarian cancer, and endometrial cancer. J Cancer Res Ther 2021; 17:1003-1011. [PMID: 34528556 DOI: 10.4103/jcrt.jcrt_969_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background There is an increased risk of developing endometrioid ovarian and endometrial cancer in patients with endometriosis and there are no definitive diagnostic biomarkers available for these three associated diseases. Therefore, we evaluated the diagnostic potential of differentially expressed microRNAs (miRNAs) from the tissue samples of endometriosis, endometrioid ovarian cancer, and endometrial cancer to establish them as biomarkers for these diseases. Materials and Methods Ten samples of each, i.e., endometriosis, endometrioid ovarian cancer, endometrial cancer and control healthy endometrium were enrolled after obtaining ethical clearance. Differential expression of miR-16, miR-20a, miR-99b, miR-125a, miR-143, and miR-145 and some of their target genes, i.e., vascular endothelial growth factor (VEGF), hypoxia inducible factor 1A (HIF1A), cyclooxygenase 2 (COX2), and tumor necrosis factor (TNF) were quantified using quantitative reverse transcription polymerase chain reaction. Receiver operating characteristic (ROC) curve analysis was performed to predict the diagnostic potential. Results miR-16 and miR-20a were significantly downregulated, whereas miR-99b, miR-125a, and miR-143 were significantly upregulated in all three diseased samples. miR-145 was significantly upregulated in endometriosis and endometrioid ovarian cancer but significantly downregulated in endometrial cancer. mRNA levels of VEGF, HIF1A, COX2, and TNF were significantly increased in all three diseased samples as compared to control samples. ROC curve analysis revealed that for endometriosis, miR-99b, and miR-125a were giving highest area under curve (AUC) (0.950 and 0.733, respectively), for endometrioid carcinoma of ovary miR-143 was giving highest AUC (0.933) and for endometrioid endometrial cancer miR-16 (AUC = 0.815), miR-99b (AUC = 0.920), and miR-145 (AUC = 0.985) were found to be best predictors. Conclusion These findings suggest that these miRNAs can act as good predictors and discriminators of these three diseases and might serve as potential biomarkers for them.
Collapse
Affiliation(s)
- Priti Kumari
- Department of Zoology, Panjab University, Chandigarh, India
| | - Indu Sharma
- Department of Zoology, Panjab University, Chandigarh, India
| | - Subhas Chandra Saha
- Department of Obstetrics and Gynecology; Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radhika Srinivasan
- Department of Obstetrics and Gynecology; Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
14
|
Zhang Q, Wang Y, Zhou Y, Zhang Q, Xu C. Potential biomarkers of miRNA in non-functional pituitary adenomas. World J Surg Oncol 2021; 19:270. [PMID: 34503538 PMCID: PMC8431909 DOI: 10.1186/s12957-021-02383-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The abnormal expression of microRNA (miRNA) has been proved to be closely related to the occurrence and progression of tumors. A unique expression of multiple miRNAs has been found in different types of tumors. However, the correlation between miRNA and non-functional pituitary adenoma (NFPA) is not clear. In this study, miRNAs (miRNA-26b, miRNA-138, miRNA-206, and miRNA-let-7e) have been used as detection genes to compare the miRNA expression levels of NFPA subjects and healthy controls and to explore the expression of four different miRNAs in NFPA. METHODS Ten untreated NFPA volunteers were served as subjects, and 10 normal subjects were selected as controls. Peripheral blood samples were collected, and four differentiated expressed miRNAs (miRNA-26b, miRNA-138, miRNA-206, and miRNA-let-7e) obtained in the early stage of the test group were detected, recorded, and archived by quantitative real-time PCR (qPCR). The difference and significance of endogenous miRNA expressions were explored through statistical analysis, hoping to find biomarkers for clinical treatment. RESULTS The levels of miRNA-26b, miRNA-138, miRNA-206, and miRNA-let-7e in the peripheral serum of patients with NFPA were significantly lower than those in normal subjects (P < 0.05). CONCLUSION miRNA-26b, miRNA-138, miRNA-206, and miRNA-let-7e may be involved in the occurrence and progress of NFPAs. This study aims to study the biological targets of NFPA. It starts from the study of whether miRNA, miRNA-26b, miRNA-138, miRNA-206, and miRNA-let-7e may be tumor suppressor genes in NFPA, which provides a basis for further exploration of tumor markers of pituitary adenoma.
Collapse
Affiliation(s)
- Qizhi Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Ying Wang
- Department of Ophthalmology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yinting Zhou
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
15
|
Yang LJ, Gao L, Guo YN, Liang ZQ, Li DM, Tang YL, Liu YH, Gao WJ, Zeng JJ, Shi L, Wei KL, Chen G. Upregulation of microRNA miR-141-3p and its prospective targets in endometrial carcinoma: a comprehensive study. Bioengineered 2021; 12:2941-2956. [PMID: 34180758 PMCID: PMC8806562 DOI: 10.1080/21655979.2021.1943111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The clinicopathological value of microRNA-141-3p (miR-141-3p) and its prospective target genes in endometrial carcinoma (EC) remains unclear. The present study determined the expression level of miR-141-3p in EC via quantitative real-time PCR (RT-qPCR). RT-qPCR showed a markedly higher expression level of miR-141-3p in EC tissues than in non-EC endometrium tissues (P < 0.0001). The microarray and miRNA-seq data revealed upregulation of miR-141-3p. Integrated analysis based on 675 cases of EC and 63 controls gave a standardized mean difference of 1.737, confirmed the upregulation of miR-141-3p. The Kaplan-Meier survival curve showed that a higher expression of miR-141-3p positively corelated with a poorer prognosis. Combining the predicted targets and downregulated genes in EC, we obtained 271 target genes for miR-141-3p in EC. Two potential targets, PPP1R12A and PPP1R12B, were downregulated at both the mRNA and protein levels. This study indicates that the overexpression of miR-141-3p may play an important part in the carcinogenesis of EC. The overexpression of miR-141-3p may be a risk factor for the prognosis of patients with EC.
Collapse
Affiliation(s)
- Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yi-Nan Guo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yi-Hong Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Wan-Jing Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Kang-Lai Wei
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
16
|
MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci Rep 2021; 41:228873. [PMID: 34076696 PMCID: PMC8209168 DOI: 10.1042/bsr20210111] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose: Circulating microRNAs (miRNAs) prove to be promising diagnostic biomarkers for various cancers, including endometrial cancer (EC). The present study aims to identify serum microRNAs that can serve as potential biomarkers for EC diagnosis. Patients and methods: A total of 92 EC and 102 normal control (NC) serum samples were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) in this four-phase experiment. The logistic regression method was used to construct a diagnostic model based on the differentially expressed miRNAs in serum. The receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value. To further validate the diagnostic capacity of the identified signature, the 6-miRNA marker was compared with previously reported biomarkers and verified in three public datasets. In addition, the expression characteristics of the identified miRNAs were further explored in tissue and serum exosomes samples. Results: Six miRNAs (miR-143-3p, miR-195-5p, miR-20b-5p, miR-204-5p, miR-423-3p, and miR-484) were significantly overexpressed in the serum of EC compared with NCs. Areas under the ROC of the 6-miRNA signatures were 0.748, 0.833, and 0.967 for the training, testing, and the external validation phases, respectively. The identified signature has a very stable diagnostic performance in the large cohorts of three public datasets. Compared with previously identified miRNA biomarkers, the 6-miRNA signature in the present study has superior performance in diagnosing EC. Moreover, the expression of miR-143-3p and miR-195-5p in tissues and the expression of miR-20b-5p in serum exosomes were consistent with those in serum. Conclusions: We established a 6-miRNA signature in serum and they could function as potential non-invasive biomarker for EC diagnosis.
Collapse
|
17
|
Circulating miRNA 27a and miRNA150-5p; a noninvasive approach to endometrial carcinoma. Mol Biol Rep 2021; 48:4351-4360. [PMID: 34076790 DOI: 10.1007/s11033-021-06450-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 01/28/2023]
Abstract
The search for novel non-invasive biomarkers such as epigenetic molecular markers is new hope for common and burdensome cancers. We aim to assess serum expression of miRNA 27a and miRNA150-5p in endometrial cancer patients. Serum was drawn for 36 un-intervened endometrial cancer patients scheduled for hysterectomy and 35 controls. miRNA 27a and miRNA150-5p were measured by real time reverse transcription polymerase chain reaction. Significant overexpression of both miRNA in patients (p < 0.001). At cutoffs 0.2872 & > 1.02, miRNA 27a showed 100% sensitivity, specificity, positive and negative predictive values. miRNA150-5p showed 88.89% sensitivity, 100% specificity, 100% positive and 78.9% negative predictive values. Areas under curve were 1.0 for miRNA 27a, 0.982 for miRNA 150 performing much better than Ca125. miRNA 27a was significantly associated with type I endometroid endometrial cancer. Conclusion: miRNA 27a and miRNA-150-5P can be suggested as promising biomarkers of endometrial cancer possibly part of a miRNA panel for management.
Collapse
|
18
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Identification of miRNAs as diagnostic and prognostic markers in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:6115-6133. [PMID: 33617479 PMCID: PMC7950227 DOI: 10.18632/aging.202606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
The development of high-throughput technologies has yielded a large amount of data from molecular and epigenetic analysis that could be useful for identifying novel biomarkers of cancers. We analyzed Gene Expression Omnibus (GEO) DataSet micro–ribonucleic acid (miRNA) profiling datasets to identify miRNAs that could have value as diagnostic and prognostic biomarkers in hepatocellular carcinoma (HCC). We adopted several computing methods to identify the functional roles of these miRNAs. Ultimately, via integrated analysis of three GEO DataSets, three differential miRNAs were identified as valuable markers in HCC. Combining the results of receiver operating characteristic (ROC) analyses and Kaplan–Meier Plotter (KM) survival analyses, we identified hsa-let-7e as a novel potential biomarker for HCC diagnosis and prognosis. Then, we found via quantitative reverse-transcription polymerase chain reaction (RT-qPCR) that let-7e was upregulated in HCC tissues and that such upregulation was significantly associated with poor prognosis in HCC. The results of functional analysis indicated that upregulated let-7e promoted tumor cell growth and proliferation. Additionally, via mechanistic analysis, we found that let-7e could regulate mitochondrial apoptosis and autophagy to adjust and control cancer cell proliferation. Therefore, the integrated results of our bioinformatics analyses of both clinical and experimental data showed that let-7e was a novel biomarker for HCC diagnosis and prognosis and might be a new treatment target.
Collapse
|
20
|
Pietrus M, Seweryn M, Kapusta P, Wołkow P, Pityński K, Wątor G. Low Expression of miR-375 and miR-190b Differentiates Grade 3 Patients with Endometrial Cancer. Biomolecules 2021; 11:biom11020274. [PMID: 33668431 PMCID: PMC7918779 DOI: 10.3390/biom11020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Endometrial cancer (EC) is treated according to the stage and prognostic risk factors. Most EC patients are in the early stages and they are treated surgically. However some of them, including those with high grade (grade 3) are in the intermediate and high intermediate prognostic risk groups and may require adjuvant therapy. The goal of the study was to find differences between grades based on an miRNA gene expression profile. Tumor samples from 24 patients with grade 1 (n = 10), 2 (n = 7), and 3 (n = 7) EC were subjected to miRNA profiling using next generation sequencing. The results obtained were validated using the miRNA profile of 407 EC tumors from the external Cancer Genome Atlas (TCGA) cohort. We obtained sets of differentially expressed (DE) miRNAs with the largest amount between G2 to G1 (50 transcripts) and G3 to G1 (40 transcripts) patients. Validation of our results with external data (TCGA) gave us a reasonable gene overlap of which we selected two miRNAs (miR-375 and miR190b) that distinguish the high grade best from the low grade EC. Unsupervised clustering showed a high degree of heterogeneity within grade 2 samples. MiR-375 as well as 190b might be useful to create grading verification test for high grade EC. One of the possible mechanisms that is responsible for the high grade is modulation by virus of host morphology or physiology.
Collapse
Affiliation(s)
- Miłosz Pietrus
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Correspondence: (K.P.); (G.W.)
| | - Gracjan Wątor
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
- Correspondence: (K.P.); (G.W.)
| |
Collapse
|
21
|
Deng F, Mu J, Qu C, Yang F, Liu X, Zeng X, Peng X. A Novel Prognostic Model of Endometrial Carcinoma Based on Clinical Variables and Oncogenomic Gene Signature. Front Mol Biosci 2021; 7:587822. [PMID: 33490103 PMCID: PMC7817972 DOI: 10.3389/fmolb.2020.587822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the difficulty in predicting the prognosis of endometrial carcinoma (EC) patients by clinical variables alone, this study aims to build a new EC prognosis model integrating clinical and molecular information, so as to improve the accuracy of predicting the prognosis of EC. The clinical and gene expression data of 496 EC patients in the TCGA database were used to establish and validate this model. General Cox regression was applied to analyze clinical variables and RNAs. Elastic net-penalized Cox proportional hazard regression was employed to select the best EC prognosis-related RNAs, and ridge regression was used to construct the EC prognostic model. The predictive ability of the prognostic model was evaluated by the Kaplan-Meier curve and the area under the receiver operating characteristic curve (AUC-ROC). A clinical-RNA prognostic model integrating two clinical variables and 28 RNAs was established. The 5-year AUC of the clinical-RNA prognostic model was 0.932, which is higher than that of the clinical-alone (0.897) or RNA-alone prognostic model (0.836). This clinical-RNA prognostic model can better classify the prognosis risk of EC patients. In the training group (396 patients), the overall survival of EC patients was lower in the high-risk group than in the low-risk group [HR = 32.263, (95% CI, 7.707-135.058), P = 8e-14]. The same comparison result was also observed for the validation group. A novel EC prognosis model integrating clinical variables and RNAs was established, which can better predict the prognosis and help to improve the clinical management of EC patients.
Collapse
Affiliation(s)
- Fang Deng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jing Mu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Chiwen Qu
- School of Mathematics and Statistics, Hunan Normal University, Changsha, China
| | - Fang Yang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xing Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaomin Zeng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoning Peng
- School of Mathematics and Statistics, Hunan Normal University, Changsha, China.,Department of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Department of Pathophysiology, Jishou University School of Medicine, Jishou, China
| |
Collapse
|
22
|
Liu Y, Cai Y, Chang Y. Dual inhibition of RNAi therapeutic miR-26a-5p targeting cMet and immunotherapy against EGFR in endometrial cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:5. [PMID: 33553298 PMCID: PMC7859788 DOI: 10.21037/atm-20-3166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Precise prediction of drug combination targeting tumor cells effectively is a crucial challenge for tumor therapy, especially for endometrial cancer (EC). Considering the resistance, crosstalk that occurs between the receptor tyrosine kinase mesenchymal-epithelial transition factor (cMet) and epidermal growth factor receptor (EGFR), and their indispensable influence on the occurrence of EC, this study aimed to explore a novel therapeutic approach for EC treatment through blocking cMet and EGFR simultaneously. Methods In the present study, the expression of miR-26a-5p in EC cell lines was detected using quantitative real-time polymerase chain reaction assay. The potential role of miR-26a-5p in the development of EC was examined using cell counting kit assay, 5-ethynyl-2’- deoxyuridine staining, wound healing assay, and cell apoptosis staining assay. Subsequently, the effect of upregulated miR-26a-5p in vivo was confirmed on a xenograft model. Luciferase reporter assay and Western blot analysis were performed to verify the relation between miR-26a-5p and cMet. Furthermore, the dual therapeutic effect of miR-26a-5p and EGFR monoclonal antibody cetuximab was confirmed in vivo and in vitro. Results The results indicated that miR-26a-5p expression significantly reduced in EC cell lines compared with the normal endometrial cell line. Furthermore, the overexpression of miR-26a-5p inhibited the progression of EC, including cell migration, cell proliferation, and cell apoptosis in vivo and in vitro. Subsequently, mir-26a-5p regulated the expression of cMet and the downstream the hepatocyte growth factor (HGF)/cMet pathway, thus exerting an inhibitory effect on EC cells. In addition, the study also demonstrated that the upregulation of miR-26a-5p could significantly enhance the inhibitory effect of cetuximab compared with the use of cetuximab alone in vivo and in vitro. Conclusions RNAi therapeutic miR-26a-5p suppressed the progression of EC through regulating the cMet/HGF pathway. The dual therapy using RNA interference and neutralizing antibody simultaneously blocked tumor targets, including cMet and EGFR, thus providing a novel approach for overcoming the resistance to the inhibitors against a single target in EC treatment.
Collapse
Affiliation(s)
- Yun Liu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yixuan Cai
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Chen Z, Huang X, Lv Y, Fang Y, Pan L, Gan Z, Huang Z, Wei W. A Five-microRNA Signature as Risk Stratification System in Uterine Corpus Endometrial Carcinoma. Comb Chem High Throughput Screen 2021; 24:187-194. [PMID: 32748742 DOI: 10.2174/1386207323999200730211227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MicroRNAs (miRs) have been shown to play important roles in various cancers and may be a reliable prognostic marker. However, its prognostic value in endometrial carcinoma (UCEC) needs to be further explored. OBJECTIVES The aim of this study was to create a miR-based signature to effectively predict the prognosis for patients with uterine corpus endometrial carcinoma (UCEC). METHODS Using UCEC data set in TCGA, we identified differentially expressed miRs between UCEC and healthy endometrial tissues. The LASSO method was used to construct a miR-based signature prognosis index for predicting prognosis in the training cohort. The miR-based signature prognosis index was validated in an independent test cohort. MiRNet tool was applied to perform functional enrichment analysis of this miR-based signature. RESULTS A total of 208 miRs were differentially expressed between UCEC and healthy endometrial tissues. Five miRs (miR-652, miR-3170, miR-195, miR-34a, and miR-934) were identified to generate a prognosis index (PI). The five-miR signature is a promising biomarker for predicting the 5-year-survival rate of UCEC with AUC = 0.730. The PI remained an independent prognostic factor adjusted by routine clinicopathologic factors. Using the PI, we could successfully identify the high-risk individuals, furthermore, it still worked in an independent test cohort. The five miRs involved in various pathways associated with cancer. CONCLUSION We proposed and validated a five-miR signature that could serve as an independent prognostic predictor of UCECs.
Collapse
Affiliation(s)
- Zhichao Chen
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Xiaoyuan Huang
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Yufeng Lv
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Yuan Fang
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Lili Pan
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Zuhuan Gan
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Zhong Huang
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| | - Wenhao Wei
- Department of Oncology, Langdong Hospital of Guangxi Medical University, 60 North Jinhu Road, Nanning 530029, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
24
|
Zhao Z, Muth DC, Mulka K, Liao Z, Powell BH, Hancock GV, Metcalf Pate KA, Witwer KW. miRNA profiling of primate cervicovaginal lavage and extracellular vesicles reveals miR-186-5p as a potential antiretroviral factor in macrophages. FEBS Open Bio 2020; 10:2021-2039. [PMID: 33017084 PMCID: PMC7530394 DOI: 10.1002/2211-5463.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Cervicovaginal secretions, or their components collected, are referred to as cervicovaginal lavage (CVL). CVL constituents have utility as biomarkers and play protective roles in wound healing and against HIV-1 infection. However, several components of cervicovaginal fluids are less well understood, such as extracellular RNAs and their carriers, for example, extracellular vesicles (EVs). EVs comprise a wide array of double-leaflet membrane extracellular particles and range in diameter from 30 nm to over one micron. The aim of this study was to determine whether differentially regulated CVL microRNAs (miRNAs) might influence retrovirus replication. To this end, we characterized EVs and miRNAs of primate CVL during the menstrual cycle and simian immunodeficiency virus (SIV) infection of macaques. EVs were enriched by stepped ultracentrifugation, and miRNA profiles were assessed with a medium-throughput stem-loop/hydrolysis probe qPCR platform. Whereas hormone cycling was abnormal in infected subjects, EV concentration correlated with progesterone concentration in uninfected subjects. miRNAs were present predominantly in the EV-depleted CVL supernatant. Only a small number of CVL miRNAs changed during the menstrual cycle or SIV infection, for example, miR-186-5p, which was depleted in retroviral infection. This miRNA inhibited HIV replication in infected macrophages in vitro. In silico target prediction and pathway enrichment analyses shed light on the probable functions of miR-186-5p in hindering HIV infections via immunoregulation, T-cell regulation, disruption of viral pathways, etc. These results provide further evidence for the potential of EVs and small RNAs as biomarkers or effectors of disease processes in the reproductive tract.
Collapse
Affiliation(s)
- Zezhou Zhao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dillon C. Muth
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kathleen Mulka
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Zhaohao Liao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bonita H. Powell
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | | | - Kelly A. Metcalf Pate
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
25
|
Prominent roles of microRNA-142 in cancer. Pathol Res Pract 2020; 216:153220. [PMID: 33007646 DOI: 10.1016/j.prp.2020.153220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNAs that regulate gene expression post-transcriptionally via mRNA degradation, or translational repression. They have important roles in normal development and homeostasis maintenance. Many studies have revealed that aberrant expression of miRNAs is associated with development of pathological conditions, including cancers. MiRNAs can either promote or suppress tumorigenesis based on the regulation of gene expression by targeting multiple molecules. In recent years, several miRNAs have been reported to be dysregulated in various cancers. Most recent findings have shown that miR-142 gene, located at chromosome 17q22, is involved in cellular migration, proliferation, and apoptosis in different human cancers. The present review discusses some molecular mechanisms and the expression status of miRNA-142 in the pathogenesis of various cancers.
Collapse
|
26
|
Ovarian stimulation and exogenous progesterone affect the endometrial miR-16-5p, VEGF protein expression, and angiogenesis. Microvasc Res 2020; 133:104074. [PMID: 32949576 DOI: 10.1016/j.mvr.2020.104074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Angiogenesis, where vascular endothelial growth factor (VEGF) is critically involved, is an important factor in endometrial receptivity. Angio-miRNAs form a special class of microRNAs (miRNAs) that target angiogenic genes and regulate angiogenesis. Various studies have shown that ovarian stimulation and exogenous progesterone affect endometrial vascular density. The present research aimed to assess the impact of HMG/HCG and progesterone on miR-16-5p, VEGF protein expression, and angiogenesis in the mouse endometrium during the preimplantation period. Forty adult female mice were divided into four groups: 1) control, 2) ovarian stimulation (HMG and 48 h after HCG IP), 3) progesterone (progesterone IP for 3 days), 4) ovarian stimulation + progesterone (HMG and 48 h after HCG IP) + (progesterone IP for 3 days) groups.The mice were sacrificed 96 h following HCG administration. miR-16-5p, VEGF protein expression, and CD31-positive cell (Endothelial cell) density were specified.The results showed that endothelial cell density,VEGF protein, and miR-16-5p expression increased in all treatment groups, with the maximum increase belonging to the ovarian stimulation + progesterone group. This study provides evidence that ovarian stimulation and progesterone administration enhance endometrial angiogenesis through VEGF protein upregulation. Furthermore, except for miR-16-5p, other miRNAs and molecules appear to be involved in angiogenic pathways, thereby requiring further studies.
Collapse
|
27
|
Sidorkiewicz I, Jóźwik M, Niemira M, Krętowski A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers (Basel) 2020; 12:E2559. [PMID: 32911852 PMCID: PMC7563767 DOI: 10.3390/cancers12092559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) remains one of the most common cancers of the female reproductive system. Epidemiological and clinical data implicate insulin resistance (IR) and its accompanying hyperinsulinemia as key factors in the development of EC. MicroRNAs (miRNAs) are short molecules of non-coding endogenous RNA that function as post-transcriptional regulators. Accumulating evidence has shown that the miRNA expression pattern is also likely to be associated with EC risk factors. The aim of this work was the verification of the relationships between IR, EC, and miRNA, and, as based on the literature data, elucidation of miRNA's potential utility for EC prevention in IR patients. The pathways affected in IR relate to the insulin receptors, insulin-like growth factors and their receptors, insulin-like growth factor binding proteins, sex hormone-binding globulin, and estrogens. Herein, we present and discuss arguments for miRNAs as a plausible molecular link between IR and EC development. Specifically, our careful literature search indicated that dysregulation of at least 13 miRNAs has been ascribed to both conditions. We conclude that there is a reasonable possibility for miRNAs to become a predictive factor of future EC in IR patients.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
28
|
Men Y, Zhang L, Ai H. [MicroRNA-145-5p over-expression suppresses proliferation, migration and invasion and promotes apoptosis of human endometrial cancer cells by targeting dual specific phosphatase 6]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:61-66. [PMID: 32376567 DOI: 10.12122/j.issn.1673-4254.2020.01.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the role of microRNA-145-5p (miR-145-5p) in regulating the proliferation, migration, invasion and apoptosis of human endometrial carcinoma cells. METHODS Human endometrial carcinoma Ishikawa cells were transfected with miR-145-5p mimic, miR-145-5p inhibitor, or their negative controls via liposome (Lipo2000), and the changes in the expression of miR-145-5p was verified by real-time PCR. The effects of overexpression or inhibition of miR-145-5p on the proliferation, migration, invasion and apoptosis of the cells were evaluated using MTT assay, wound healing assay, Transwell assay or flow cytometry. Bioinformatic analysis was performed to predict the target genes of miR-145-5p. The mRNA and protein expression levels of the downstream target of miR-145-5p, namely dual specific phosphatase 6 (DUSP6), were detected using real-time PCR and Western blotting. RESULTS Transfection of the cells with miR-145-5p mimic significantly suppressed the proliferation of Ishikawa cells, while transfection with miR-145-5p inhibitor obvious enhanced the proliferation of the cells (P < 0.05). Over-expression of miR-145-5p significantly suppressed the migration and invasion and promoted apoptosis of the cells, and inhibition of miR-145-5p caused the reverse changes (P < 0.05). Bioinformatic analysis showed that DUSP6 was the potential target gene of miR-145-5p. Over-expression of miR-145-5p significantly lowered while inhibition of miR-145-5p significantly enhanced the expression of DUSP6 protein (P < 0.05). CONCLUSIONS Overexpression of miR-145-5p inhibits the proliferation, migration and invasion and promotes apoptosis of endometrial cancer cells possibly by negative regulation of DUSP6 expression.
Collapse
Affiliation(s)
- Yingchao Men
- Department of Biochemistry and Molecular Biology, Jinzhou Medical University, Jinzhou 121000, China
| | - Lei Zhang
- Department of Biochemistry and Molecular Biology, Jinzhou Medical University, Jinzhou 121000, China
| | - Hao Ai
- Department of Gynecology, Third Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
29
|
Zeng S, Liu S, Feng J, Gao J, Xue F. MicroRNA-32 promotes ovarian cancer cell proliferation and motility by targeting SMG1. Oncol Lett 2020; 20:733-741. [PMID: 32565999 PMCID: PMC7285996 DOI: 10.3892/ol.2020.11624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy and one of the leading causes of cancer-related deaths among women. Metastasis is the main cause of poor prognosis in OC. MicroRNA (miRNA/miR) has been shown to play an important role in tumorigenesis and metastasis in various cancer types by affecting the expression of its targets. In the present study, the role of miR-32 (miR-32-5p) in OC was explored. Reverse transcription-quantitative PCR results showed that miR-32 expression was significantly upregulated in both OC tissues and cell lines. Inhibition of miR-32 by transfection with miR-32 inhibitor in OC cells markedly suppressed cell proliferation, migration and invasion. In addition, a luciferase assay showed that suppressor of morphogenesis in genitalia 1 (SMG1) is a direct target of miR-32, and interference in SMG1 expression with transfection of SMG1 small hairpin RNA restored miR-32-mediated OC cell proliferation, migration and invasion. Taken together, these results indicate that miR-32 may promote OC cell growth and motility by targeting SMG1. The data of the present study suggest that miR-32 may serve as a potential therapeutic target for OC treatment in the future.
Collapse
Affiliation(s)
- Saitian Zeng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Shikai Liu
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jing Feng
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jiefan Gao
- Department of Gynecology and Obstetrics, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
30
|
Moynihan MJ, Sullivan TB, Burks E, Schober J, Calabrese M, Fredrick A, Kalantzakos T, Warrick J, Canes D, Raman JD, Rieger-Christ K. MicroRNA profile in stage I clear cell renal cell carcinoma predicts progression to metastatic disease. Urol Oncol 2020; 38:799.e11-799.e22. [PMID: 32534961 DOI: 10.1016/j.urolonc.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study sought to identify microRNA (miRNA) profiles of small, pathologically confirmed stage 1 clear cell renal cell carcinoma (ccRCC) tumors that are associated with progression to metachronous metastatic disease. MATERIALS AND METHODS Fifty-five pathologic stage 1 ccRCC tumors ≤5cm, from 2 institutions, were examined in a miRNA screening, followed by a validation study. For the screening phase 752 miRNA were evaluated on each sample to identify those with differential expression between tumors that subsequently did (n = 10) or did not (n = 10) progress to metastatic disease. For the validation, 35 additional samples (20 nonprogressors and 15 with distant progression) were utilized to investigate 20 miRNA to determine if a miRNA panel could differentiate aggressive tumors: associations of miRNA expression with cancer specific survival was also investigated. RESULTS In the screening analysis, 35 miRNA were differentially expressed (P < 0.05, FDR < 0.1) between the groups. In the validation, 11 miRNA were confirmed to have differential expression. The miRNA -10a-5p, -23b-3p, and -26a-5p differentiated nonprogressive and distant progressive disease with a sensitivity of 73.3% and a specificity of 85% (AUC=0.893). In addition, levels of miR-30a-3p and -145-5p were identified as independent prognostic factors of cancer specific survival. CONCLUSIONS This investigation identified miRNA biomarkers that may differentiate between non-progressive ccRCC tumors and those that progress to metastatic disease in this group of stage I tumors. The miRNA profiles determined in this study have the potential to identify patients with small renal masses who are likely to have progressive ccRCC. Such information may be valuable to incorporate into predictive models.
Collapse
Affiliation(s)
| | - Travis B Sullivan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA
| | - Eric Burks
- Department of Pathology, Lahey Hospital & Medical Center, Burlington, MA
| | - Jared Schober
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA
| | - Marc Calabrese
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA
| | - Ariel Fredrick
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA
| | - Thomas Kalantzakos
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA
| | - Joshua Warrick
- Department of Pathology, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - David Canes
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA
| | - Jay D Raman
- Department of Urology, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Kimberly Rieger-Christ
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA; Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA.
| |
Collapse
|
31
|
Diagnostic value of microRNA panel in endometrial cancer: A systematic review. Oncotarget 2020; 11:2010-2023. [PMID: 32523655 PMCID: PMC7260115 DOI: 10.18632/oncotarget.27601] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We conducted a systematic review to evaluate the overall diagnostic accuracy of miRNAs in detecting endometrial cancer. MATERIALS AND METHODS A systematic search of Medline, Embase, Cinahl and the Cochrane Controlled Register of Trials was performed to identify studies reporting on the diagnostic value of miRNA in EC patients. Included were diagnostic studies looking at miRNA expression in women diagnosed with endometrial cancer. Two reviewers independently selected studies and assessed quality of studies using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) score system. Data extraction was completed and the vote-counting strategy was used to rank miRNAs. RESULTS 26 studies were included with a total number of 1,400 EC patients reporting on 106 differentially expressed miRNAs. The most frequently found up-regulated miRNA was miR-205 followed by miR-200c, -223, -182, -183 and -200a. In addition, miR-135b, miR-429, miR-141 and miR-200b were also frequently up-regulated. There was less consensus on down-regulated miRNAs. CONCLUSIONS miRNAs yield a promising diagnostic biomarker potential in endometrial cancer, especially miR-205, the miR-200 family and miR-135b, -182, -183 and -223. However, no sufficient high quality data are available to draw hard conclusions. More research is needed to validate the diagnostic potential of these miRNAs in larger studies. In addition, the potential of urine as a non-invasive biofluid should be investigated in more detail.
Collapse
|
32
|
Wang Q, Xu K, Tong Y, Dai X, Xu T, He D, Ying J. Novel miRNA markers for the diagnosis and prognosis of endometrial cancer. J Cell Mol Med 2020; 24:4533-4546. [PMID: 32150330 PMCID: PMC7176884 DOI: 10.1111/jcmm.15111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
As endometrial cancer (EC) is a major threat to female health worldwide, the ability to provide an accurate diagnosis and prognosis of EC is promising to improve its treatment guidance. Since the discovery of miRNAs, it has been realized that miRNAs are associated with every cell function, including malignant transformation and metastasis. This study aimed to explore diagnostic and prognostic miRNA markers of EC. In this study, differential analysis and machine learning were performed, followed by correlation analysis of miRNA-mRNA based on the miRNA and mRNA expression data. Nine miRNAs were identified as diagnostic markers, and a diagnostic classifier was established to distinguish between EC and normal endometrium tissue with overall correct rates >95%. Five specific prognostic miRNA markers were selected to construct a prognostic model, which was confirmed more effective in identifying EC patients at high risk of mortality compared with the FIGO staging system. This study demonstrates that the expression patterns of miRNAs may hold promise for becoming diagnostic and prognostic biomarkers and novel therapeutic targets for EC.
Collapse
Affiliation(s)
- Qian Wang
- Department of Clinical LaboratoryWenzhou People's HospitalThe Third Clinical Institute Affiliated to Wenzhou Medical UniversityWenzhouChina
| | - Kai Xu
- Department of Clinical LaboratoryWenzhou People's HospitalThe Third Clinical Institute Affiliated to Wenzhou Medical UniversityWenzhouChina
| | - Yu Tong
- Department of Clinical LaboratoryWenzhou People's HospitalThe Third Clinical Institute Affiliated to Wenzhou Medical UniversityWenzhouChina
| | - Xianning Dai
- Department of Clinical LaboratoryWenzhou People's HospitalThe Third Clinical Institute Affiliated to Wenzhou Medical UniversityWenzhouChina
| | - Teng Xu
- Department of CardiologyInstitute of Translational MedicineBaotou Central HospitalBaotouChina
| | - Danna He
- Department of CardiologyInstitute of Translational MedicineBaotou Central HospitalBaotouChina
| | - Jianchao Ying
- Central LaboratoryInstitute of Emergency MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
33
|
Zhao X, Dai L, Yue Q, Wang H, Wang XU, Li Y, Chen R. MiR-195 inhibits migration, invasion and epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells by targeting SOX4. J Biosci 2019; 44:146. [PMID: 31894127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) have been identified as potential biomarkers for endometrial carcinoma (EC) diagnosis, prognosis and therapy. The purpose of the present study was to investigate the detailed role and molecular mechanism of miR-195 in EC metastasis. qRT-PCR assay was performed to assess the expression of miR-195 and SRY-related high-mobility group box 4 (SOX4) mRNA in EC tissues and cells. The levels of N-cadherin, Vimentin, E-cadherin and SOX4 protein were determined by western blot. SOX4 protein expression in EC tissues was also determined by Immunohistochemistry (IHC) experiment. Transwell assay was used to analyze cell migration and invasion abilities. Dual-luciferase reporter assay and RNA Immunoprecipitation (RIP) assay were performed to confirm the targeted interaction between miR-195 and SOX4. Our data supported that miR-195 was downregulated and SOX4 was upregulated in EC tissues and cell lines. Upregulation of miR-195 inhibited migration, invasion and epithelial-mesenchymal transition (EMT) of EC cells. Moreover, SOX4 was a direct target of miR-195. MiR-195 overexpression-mediated anti-migration, anti-invasion and anti-EMT effects were antagonized by SOX4 restoration in EC cells. In conclusion, our study suggested that miR-195 inhibited the migration, invasion and epithelial mesenchymal transition (EMT) of EC cells at least partly by targeting SOX4. Our study provided a novel underlying mechanism for EC metastasis and a promising therapeutic target for EC management.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- Department of Gynecology and Obstetrics, The Shijiazhuang Cardiovascular Hospital, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhao X, Dai L, Yue Q, Wang H, Wang X, Li Y, Chen R. MiR-195 inhibits migration, invasion and epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells by targeting SOX4. J Biosci 2019. [DOI: 10.1007/s12038-019-9966-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 2019; 8:24. [PMID: 31468250 PMCID: PMC6715759 DOI: 10.1186/s40169-019-0240-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors. Let-7 targets include genes regulating the cell cycle, cell signaling, and maintenance of differentiation. It is categorized as a tumor suppressor because it reduces cancer aggressiveness, chemoresistance, and radioresistance. However, in rare situations let-7 acts as an oncogene, increasing cancer migration, invasion, chemoresistance, and expression of genes associated with progression and metastasis. Here, we review let-7 function as tumor suppressor and oncogene, considering let-7 as a potential diagnostic and prognostic marker, and a therapeutic target for cancer treatment. We explain the complex regulation and function of different let-7 family members, pointing to abnormal processes involved in carcinogenesis. Let-7 is a promising option to complement conventional cancer therapy, but requires a tumor specific delivery method to avoid toxicity. While let-7 therapy is not yet established, we make the case that assessing its tumor presence is crucial when choosing therapy. Clinical data demonstrate that let-7 can be used as a biomarker for rational precision medicine decisions, resulting in improved patient survival.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Anatomy, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Kerby C Oberg
- Division of Anatomy and Pediatric Pathology, Loma Linda University, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Gynecology and Obstetrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, 11085 Campus Street, Mortensen Hall 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
36
|
Giglio S, Annibali V, Cirombella R, Faruq O, Volinia S, De Vitis C, Pesce M, Caserta D, Pettinato A, Fraggetta F, Vecchione A. miRNAs as Candidate Biomarker for the Accurate Detection of Atypical Endometrial Hyperplasia/Endometrial Intraepithelial Neoplasia. Front Oncol 2019; 9:526. [PMID: 31293968 PMCID: PMC6598546 DOI: 10.3389/fonc.2019.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in developed countries. Estrogen-dependent tumors (type I, endometrioid) account for 80% of cases and non-estrogen-dependent (type II, non-endometrioid) account for the rest. Endometrial cancer type I is generally thought to develop via precursor lesions along with the increasing accumulation of molecular genetic alterations. Endometrial hyperplasia with atypia/Endometrial Intraepithelial Neoplasia is the least common type of hyperplasia but it is the type most likely to progress to type I cancer, whereas endometrial hyperplasia without atypia rarely progresses to carcinoma. MicroRNAs are a class of small, non-coding, single-stranded RNAs that negatively regulate gene expression mainly binding to 3′-untranslated region of target mRNAs. In the current study, we identified a microRNAs signature (miR-205, miR-146a, miR-1260b) able to discriminate between atypical and typical endometrial hyperplasia in two independent cohorts of patients. The identification of molecular markers that can distinguish between these two distinct pathological conditions is considered to be highly useful for the clinical management of patients because hyperplasia with an atypical change is associated with a higher risk of developing cancer. We show that the combination of miR-205, −146a, and −1260b has the best predictive power in discriminating these two conditions (>90%). With the aim to find a biological role for these three microRNAs, we focused our attention on a common putative target involved in endometrial carcinogenesis: the oncosuppressor gene SMAD4. We showed that miRs-146a,−205, and−1260b directly target SMAD4 and their enforced expression induced proliferation and migration of Endometrioid Cancer derived cell lines, Hec1a cells. These data suggest that microRNAs-mediated impairment of the TGF-β pathway, due to inhibition of its effector molecule SMAD4, is a relevant molecular alteration in endometrial carcinoma development. Our findings show a potential diagnostic role of this microRNAs signature for the accurate diagnosis of Endometrial hyperplasia with atypia/Endometrial Intraepithelial Neoplasia and improve the understanding of their pivotal role in SMAD4 regulation.
Collapse
Affiliation(s)
- Simona Giglio
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| | - Viviana Annibali
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| | - Roberto Cirombella
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| | - Omar Faruq
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| | - Stefano Volinia
- Department of Internal Medicine, Biosystems Analysis, LTTA, Department of Morphology, Surgery and Experimental Medicine, Università Degli Studi, Ferrara, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| | - Margherita Pesce
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| | - Donatella Caserta
- Department of Medical-Surgical Sciences and Translational Medicine, "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| | | | | | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
37
|
Liu A, Zhang D, Yang X, Song Y. Estrogen receptor alpha activates MAPK signaling pathway to promote the development of endometrial cancer. J Cell Biochem 2019; 120:17593-17601. [PMID: 31140648 DOI: 10.1002/jcb.29027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Endometrial cancer (EC) is a common malignant tumor of the female reproductive system in the world. For most of the treated patients, although the survival rate is improved, most patients still have a poor prognosis. The pathogenesis of EC has always been a strong scientific focus, but there is no clear conclusion. Therefore, in view of modularization, this study is to conduct an in-depth analysis on the effects of estrogen receptor alpha (ERα) regarding EC. The purpose is to identify the molecular course of EC. We obtained 10 co-expression modules, in which ANO2, EMP3, and other genes are significantly differentially expressed in patients with EC. Additionally, there are active regulatory effects in dysfunction modules, thus genes such as ANO2 and EMP3 would be identified as key genes, which are associated with the development of EC. Enrichment results showed that the module genes were significantly involved in RNA splicing, covalent chromatin modification, histone modification, and organelle fission, and other biological processes, as well as significantly regulated mitogen-activated protein kinases (MAPK) signaling pathway, Endocytosis, Rap1 signaling pathway, and viral carcinogenesis, and other signaling pathways. Finally, we identified noncoding RNA pivot including FENDRR, miR-520c-3p. Besides, transcription factors pivot including NFKB1, E2F1, and RELA which significantly regulate dysfunction module genes. Overall, our work deciphered a co-expression network involving differential gene regulation in ERα-associated EC. It helps reveal the core modules and potential regulatory factors of the diseases and enhances our understanding of the pathogenesis. More importantly, we revealed that ERα activates the MAPK signaling pathway to promote the development of EC. It helps to provide a new reference for later research.
Collapse
Affiliation(s)
- Ai Liu
- Department of Gynaecology and Obstetrics, People's Hospital of Zoucheng, Jining, Shandong, China
| | - Dan Zhang
- Department of Gynaecology, People's Hospital of Guan, LangFang, Hebei, China
| | - Xiufen Yang
- Department of Oncology, YanZhou Hospital of Traditional Chinese Medicine, Jining, Shandong, China
| | - Ying Song
- Department of Gynaecology and Obstetrics, People's Hospital of Zoucheng, Jining, Shandong, China
| |
Collapse
|
38
|
Wu YS, Lin H, Chen D, Yi Z, Zeng B, Jiang Y, Ren G. A four-miRNA signature as a novel biomarker for predicting survival in endometrial cancer. Gene 2019; 697:86-93. [PMID: 30779946 DOI: 10.1016/j.gene.2019.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The microRNAs (miRNAs) have been validated as prognostic markers in many cancers. The aim of this study was to identify new miRNA prognostic biomarkers in endometrial cancer (EC) and to develop an expression-based miRNA signature to provide survival risk prediction for EC patients. METHODS From TCGA database, the miRNA datasets of EC and clinical information were downloaded in April 2018. Using univariate and multivariate Cox regression analyses identify prognostic factors. Using area under the curve (AUC) of receiver operating characteristic (ROC) curve assess the sensitivity and specificity of prognostic model. RESULTS 530 patients were randomly divided into training set and testing set. Among 561 differentially expressed miRNAs, 4 miRNAs (miR-4758, miR-876, miR-142, miR-190b) were demonstrated to be predictive biomarkers of overall survival (OS) for EC patients in training set. Based on the risk score of 4-miRNA model, patients in the training set were divided into high-risk and low-risk groups with significantly different OS. This 4-miRNA model was validated in testing and entire set. The AUC for the ROC curves in the entire set was 0.704. Meanwhile, multivariate Cox regression combined with other traditional clinical parameters indicated that the 4-miRNA model can be used as an independent OS prognostic factor. Functional enrichment analysis revealed that these miRNAs are involved in biological processes and pathways that are closely related to cancer. CONCLUSION A robust 4-miRNA signature as an independent prognostic factor for OS in EC patients was established.
Collapse
Affiliation(s)
- Yu-Shen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Huapeng Lin
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, PR China
| | - Duke Chen
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yicheng Jiang
- Department of Oncology, The People's Hospital of Chongqing Hechuan, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
39
|
Zheng X, Liu M, Song Y, Feng C. Long Noncoding RNA-ATB Impairs the Function of Tumor Suppressor miR-126-Mediated Signals in Endometrial Cancer for Tumor Growth and Metastasis. Cancer Biother Radiopharm 2019; 34:47-55. [PMID: 30601064 DOI: 10.1089/cbr.2018.2565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Long non-coding RNA-ATB (Lnc-ATB) have been reported to promote tumor proliferation and metastasis via regulation of tumor suppressive miRNA-related signals. Patients with endometrial cancer (EC) have advanced stage disease or metastasis have poor prognosis. We here investigated the role of Lnc-ATB in endometrial cancer. METHODS Endometrial cancer tissues and normal tissues (n = 35) were collected to determine the expression and clinical significance of Lnc-ATB, and bioinformatics analysis was used to predict the miRNA target. siRNA was used to estimate the function of Lnc-ATB in EC cell lines and in vivo. RESULT The expression of Lnc-ATB is up-regulated in tumor tissues and EC cell lines. Patients with high expressed Lnc-ATB have high FIGO stage and poor tumor differentiation. The tumor suppressor miR-126 interacted with Lnc-ATB. Down-regulated miR-126 negative correlated with FIGO stage and tumor differentiation. Knockdown of Lnc-ATB in RL95 and HEC1A cell lines increased the miR-126 level and impaired the cell vitality, induced caspase-3-related tumor apoptosis and G1/S arrest. However, abrogation of miR-126 by its inhibitors counteracted Lnc-ATB knockdown-induced tumor inhibition via regulation of miR-126 target gene PIK3R2 and Sox2-related apoptosis and cell cycle pathway. Meanwhile, Lnc-ATB knockdown also suppressed the migration and invasion and inhibited TGF-β-induced epithelial-mesenchymal transition (EMT) phenotype via miR-126. Knockdown of Lnc-ATB in vivo remarkably induced tumor regression via restoration of tumor suppressor miR-126, leading to deceased tumor volume, reduced expression of PCNA and PIK3R2/Sox2 signals and EMT phenotype in tumor tissues. CONCLUSION These data demonstrate the tumorigenic role of Lnc-ATBs in endometrial cancer via abrogation of tumor suppressor miR-126 signals.
Collapse
Affiliation(s)
- Xia Zheng
- 1 Department of Gynaecology and Obstetrics, Fifth Hospital of Xi'an, Xi'an, China
| | - Min Liu
- 2 Department of Oncology, Affiliated Hospital of Yan'an University, Yan'an, Yan'an, China
| | - YingChun Song
- 3 Department of Gynaecology and Obstetrics, First Hospital of Xi'an, Xi'an, China
| | - ChunHua Feng
- 4 Department of Obstetrics and Gynecology, Tongchuan People's Hospital, Tongchuan, China
| |
Collapse
|
40
|
Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W, Yang JG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol 2018; 234:10726-10740. [PMID: 30565678 DOI: 10.1002/jcp.27745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Ischemia-reperfusion (I/R) injury often leads to myocardial apoptosis and necrosis. Studies have demonstrated the role microRNAs (miRs) played in myocardial I/R injury. Thus, we established a myocardial I/R injury model and a thoracic epidural anesthesia (TEA) model in mice to explore whether microRNA-374 (miR-374) affects myocardial I/R injury. We collected myocardial tissues to evaluate whether TEA exerts a protection effect on myocardial tissues. In addition, the levels of miR-374, dystrobrevin alpha (DTNA), and the statue of the Notch1 axis were detected. Subsequently, cardiomyocytes extracted from TEA mice were treated to regulate their levels of miR-374 and DTNA. After that, cell viability, cell cycle distribution, and apoptosis of cardiomyocytes were assessed. This was followed by the detection of the myocardial infarction area. The mice models of myocardial I/R injury were associated with poorly expressed miR-374 and highly expressed DTNA. TEA was found to protect myocardial tissues against myocardial I/R injury by elevating miR-374 and reducing DTNA. Dual-luciferase reporter assay validated that DTNA was the target gene of miR-374. Cardiomyocytes with overexpressed miR-374 were shown to have downregulated DTNA levels and blocked Notch1 axis. Overexpressed miR-374 was also found to promote the viability and inhibit the apoptosis of cardiomyocytes, as well as to increase the number of cells arrested in the S phase. In accordance with this, the myocardial infarction area was decreased with the upregulated miR-347 and downregulated DTNA. Collectively, these results demonstrated that, by inhibiting the activity of DTNA-mediated Notch1 axis, miR-374 could protect against myocardial I/R injury in mice after TEA.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yun Zhao
- Department of Cardiology, Cangzhou People's Hospital, Cangzhou, China
| | - Li Ying-Chun
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Lei Zhao
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei Zhang
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jian-Guo Yang
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
41
|
Lu G, Wu X, Zhao Z, Ding Y, Wang P, Wu C, Kang X, Pu X. MicroRNA-126 regulates the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) pathway in SLK cells in vitro and the expression of its pathway members in Kaposi's sarcoma tissue. Medicine (Baltimore) 2018; 97:e11855. [PMID: 30170375 PMCID: PMC6392886 DOI: 10.1097/md.0000000000011855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vitro, microRNA-126 (miR-126) inhibits SLK cell proliferation, inhibits the cell cycle, induces cell apoptosis, and reduces cell invasiveness. Double luciferase assays have shown that phosphatidylinositol-3 kinase (PI3K) is the miR-126 target in SLK cells. We aimed to investigate the influence of miR-126 on the phosphate and tension homology deleted on chromosome ten (PTEN)/PI3K/protein kinase B (AKT) pathway members in SLK cells and to determine the expression of these pathway members in Kaposi's sarcoma (KS). The mimic and inhibitor of miR-126 were transfected into SLK cells and PTEN and AKT1 expression was assayed in SLK cells by real-time quantitative PCR and western blotting. PTEN, AKT1, phosphorylated (P)-PTEN, and phosphorylated (P)-AKT expression in KS and paraneoplastic skin were assayed by immunohistochemistry. AKT1 expression was downregulated in SLK cells that overexpressed miR-126, while there was no significant difference in PTEN expression between SLK cells overexpressing miR-126 and those in which its expression was knocked down. PTEN and AKT1 were expressed in KS and paraneoplastic skin but P-AKT was not. Interestingly, P-PTEN was not expressed in paraneoplastic skin but it was expressed in 90% of KS biopsies (P < .05). P-PTEN expression was also significantly higher in visceral than in cutaneous KS (P = .01) and was higher in indoor than in outdoor workers (P = .018). In vitro, miR-126 negatively regulated AKT1 expression but no regulation of PTEN expression was evident. Results indicated that in KS, PTEN is activated and may therefore be a potential therapeutic target for KS. In addition, these results also indicate that sunlight may not be the cause of KS.
Collapse
Affiliation(s)
- Gaihui Lu
- Xinjiang Medical University, Urumqi, Xinjiang, China
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiujuan Wu
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Zongfeng Zhao
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Yuan Ding
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Peng Wang
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Caoying Wu
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaojing Kang
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiongming Pu
- Xinjiang Medical University, Urumqi, Xinjiang, China
- Dermatological Department, Clinical Medical Research Center, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
42
|
Kong F, Ma J, Yang H, Yang D, Wang C, Ma X. Long non-coding RNA PVT1 promotes malignancy in human endometrial carcinoma cells through negative regulation of miR-195-5p. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:S0167-4889(18)30169-1. [PMID: 30031900 DOI: 10.1016/j.bbamcr.2018.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
The plasmacytoma variant translocation 1 (PVT1)1 gene is a long non-coding RNA (lncRNA)2 that has been shown to be an oncogene in many cancers. Herein, the function and potential molecular mechanisms connecting PVT1 and miR-195-5p were elucidated in endometrial cancer cell lines. Quantitative real-time PCR and fluorescence in situ hybridization (FISH)3 demonstrated that PVT1 is up-regulated concomitant with miR-195-5p down-regulation in human endometrial carcinoma tissues. PVT1 knockdown inhibited cell proliferation, migration, and invasion while facilitating apoptosis of endometrial cancer cells. Moreover, restoration of miR-195-5p due to PVT1 knockdown exerted tumor-suppressive functions. We observed that PVT1 promotes malignant cell behavior by decreasing miR-195-5p expression. Binding of PVT1 and miR-195-5p was confirmed using luciferase assays. Furthermore, expression of miR-195-5p negatively correlates with PVT1 expression. At the molecular level, either PVT1 knockdown or miR-195-5p overexpression resulted in a decrease of acidic fibroblast growth factor receptor (FGFR1)4 and basic fibroblast growth factor (FGF2).5 FGFR1 and FGF2 are targets of miR-195-5p that play a critical role in endometrial carcinoma by activating PI3K/AKT and MAPK/Erk pathways. Remarkably, PVT1 knockdown combined with miR-195-5p overexpression led to tumor regression in vivo. Overall, these results depict a novel pathway mediated by PVT1 in endometrial carcinoma, which may have potential application for endometrial carcinoma therapy.
Collapse
Affiliation(s)
- Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
43
|
Srivastava A, Moxley K, Ruskin R, Dhanasekaran DN, Zhao YD, Ramesh R. A Non-invasive Liquid Biopsy Screening of Urine-Derived Exosomes for miRNAs as Biomarkers in Endometrial Cancer Patients. AAPS J 2018. [PMID: 29987691 DOI: 10.1208/s12248-018-0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Exosomes have great potential to serve as a source of diagnostic and prognostic biomarkers for endometrial cancer (EC). Urine-derived exosomes from patients with EC and patients with symptoms of EC, but without established EC, were used to evaluate a unique miRNA expression profile. Of the 84 miRNA studied, 57 were amplified in qPCR, suggesting the differential packaging of miRNA in exosomes. Further, hsa-miR-200c-3p was identified to be enriched the most. Various bioinformatics and in silico tools were used to evaluate the biological significance of hsa-miR-200c-3p in EC. We conclude that differential miRNA in exosomes can be utilized for discovery of biomarker signatures and EC diagnosis; hsa-miR-200c-3p is one such candidate. Urine-derived exosomes pave the way for the development of non-invasive biomarkers.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Katherine Moxley
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Gynecology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rachel Ruskin
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Gynecology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Danny Natarajan Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yan Daniel Zhao
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Department of Pathology, Stanton L. Young Biomedical Research Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
44
|
Srivastava A, Moxley K, Ruskin R, Dhanasekaran DN, Zhao YD, Ramesh R. A Non-invasive Liquid Biopsy Screening of Urine-Derived Exosomes for miRNAs as Biomarkers in Endometrial Cancer Patients. AAPS JOURNAL 2018; 20:82. [PMID: 29987691 DOI: 10.1208/s12248-018-0220-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Exosomes have great potential to serve as a source of diagnostic and prognostic biomarkers for endometrial cancer (EC). Urine-derived exosomes from patients with EC and patients with symptoms of EC, but without established EC, were used to evaluate a unique miRNA expression profile. Of the 84 miRNA studied, 57 were amplified in qPCR, suggesting the differential packaging of miRNA in exosomes. Further, hsa-miR-200c-3p was identified to be enriched the most. Various bioinformatics and in silico tools were used to evaluate the biological significance of hsa-miR-200c-3p in EC. We conclude that differential miRNA in exosomes can be utilized for discovery of biomarker signatures and EC diagnosis; hsa-miR-200c-3p is one such candidate. Urine-derived exosomes pave the way for the development of non-invasive biomarkers.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Katherine Moxley
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Gynecology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rachel Ruskin
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Gynecology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Danny Natarajan Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yan Daniel Zhao
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Department of Pathology, Stanton L. Young Biomedical Research Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
45
|
Ying J, Wang Q, Xu T, Lyu J. Establishment of a nine-gene prognostic model for predicting overall survival of patients with endometrial carcinoma. Cancer Med 2018; 7:2601-2611. [PMID: 29665298 PMCID: PMC6010780 DOI: 10.1002/cam4.1498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/04/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Endometrial carcinoma (EC) is the most common malignant tumor of the female genital tract in developed countries. The prognosis of early stage EC is favorable, but a subset faces high risk of cancer progression or recurrence. EC has a poor prognosis upon progression to advanced or metastatic stages. Therefore, our goal is to build a robust prognostic model for predicting overall survival (OS) in EC patients. In this study, 1571 genes were identified as being associated with OS based on genomewide expression profiles using a training dataset. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these genes were involved in various cancer-related signaling pathways. Nine signature genes were further selected using stepwise selection, and their potential role in the development of EC was demonstrated by performing differential expression analysis between EC and normal uterine tissues. A prognostic model that aggregated these nine signature genes was ultimately established and effectively divided EC patients into two risk groups. OS for patients in the high-risk group was significantly poorer compared with that of the low-risk group. This nine-gene model was subsequently validated and evaluated using the TCGA dataset and shown to have a high discriminating power to distinguish EC patients with an elevated risk of mortality based on the FIGO staging system and other prognostic factors. This study provides a novel prognostic model for the identification of EC patients with elevated risk of mortality and will help to improve our understanding of the underlying mechanisms involved in prognostic EC factors.
Collapse
Affiliation(s)
- Jianchao Ying
- Key Laboratory of Laboratory MedicineMinistry of EducationZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouChina
| | - Qian Wang
- Department of Clinical LaboratoryWenzhou People's HospitalThe Third Clinical Institute Affiliated to Wenzhou Medical UniversityWenzhouChina
| | - Teng Xu
- Key Laboratory of Laboratory MedicineMinistry of EducationZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouChina
| | - Jianxin Lyu
- Key Laboratory of Laboratory MedicineMinistry of EducationZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
46
|
Chen J, Chopp M. Exosome Therapy for Stroke. Stroke 2018; 49:1083-1090. [PMID: 29669873 PMCID: PMC6028936 DOI: 10.1161/strokeaha.117.018292] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Geriatrics, Tianjin Medical University General Hospital, China (J.C.)
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, China (J.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Physics, Oakland University, Rochester, MI (M.C.)
| |
Collapse
|
47
|
Nunes S, Silva IB, Ampuero MR, de Noronha ALL, de Souza LCL, Correia TC, Khouri R, Boaventura VS, Barral A, Ramos PIP, Brodskyn C, Oliveira PRS, Tavares NM. Integrated Analysis Reveals That miR-193b, miR-671, and TREM-1 Correlate With a Good Response to Treatment of Human Localized Cutaneous Leishmaniasis Caused by Leishmania braziliensis. Front Immunol 2018; 9:640. [PMID: 29670621 PMCID: PMC5893808 DOI: 10.3389/fimmu.2018.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Localized cutaneous leishmaniasis (LCL) is a chronic disease characterized by ulcerated skin lesion(s) and uncontrolled inflammation. The mechanisms underlying the pathogenesis of LCL are not completely understood, and little is known about posttranscriptional regulation during LCL. MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression and can be implicated in the pathogenesis of LCL. We investigated the involvement of miRNAs and their targets genes in human LCL using publicly available transcriptome data sets followed by ex vivo validation. Initial analysis highlighted that miRNA expression is altered during LCL, as patients clustered separately from controls. Joint analysis identified eight high confidence miRNAs that had altered expression (−1.5 ≤ fold change ≥ 1.5; p < 0.05) between cutaneous ulcers and uninfected skin. We found that the expression of miR-193b and miR-671 are greatly associated with their target genes, CD40 and TNFR, indicating the important role of these miRNAs in the expression of genes related to the inflammatory response observed in LCL. In addition, network analysis revealed that miR-193b, miR-671, and TREM1 correlate only in patients who show faster wound healing (up to 59 days) and not in patients who require longer cure times (more than 60 days). Given that these miRNAs are associated with control of inflammation and healing time, our findings reveal that they might influence the pathogenesis and prognosis of LCL.
Collapse
Affiliation(s)
- Sara Nunes
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | | | | | | | - Ricardo Khouri
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Viviane Sampaio Boaventura
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Aldina Barral
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Cláudia Brodskyn
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Rafael Silveira Oliveira
- Federal University of Bahia, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Natalia Machado Tavares
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
48
|
Non-Coding RNAs and Endometrial Cancer. Genes (Basel) 2018; 9:genes9040187. [PMID: 29596364 PMCID: PMC5924529 DOI: 10.3390/genes9040187] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 01/03/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are involved in the regulation of cell metabolism and neoplastic transformation. Recent studies have tried to clarify the significance of these information carriers in the genesis and progression of various cancers and their use as biomarkers for the disease; possible targets for the inhibition of growth and invasion by the neoplastic cells have been suggested. The significance of ncRNAs in lung cancer, bladder cancer, kidney cancer, and melanoma has been amply investigated with important results. Recently, the role of long non-coding RNAs (lncRNAs) has also been included in cancer studies. Studies on the relation between endometrial cancer (EC) and ncRNAs, such as small ncRNAs or micro RNAs (miRNAs), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), antisense RNAs (asRNAs), small nuclear RNAs (snRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), competing endogenous RNAs (ceRNAs), lncRNAs, and long intergenic ncRNAs (lincRNAs) have been published. The recent literature produced in the last three years was extracted from PubMed by two independent readers, which was then selected for the possible relation between ncRNAs, oncogenesis in general, and EC in particular.
Collapse
|