1
|
Sui Y, Liu Z, Yao Y, Zhang S, Wang Y, Wang Y, Kong B. Estrogen receptor β inhibits breast cancer migration and promotes its apoptosis through NF-κB/IL-8 signaling. Transl Cancer Res 2025; 14:1824-1835. [PMID: 40224998 PMCID: PMC11985197 DOI: 10.21037/tcr-24-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 04/15/2025]
Abstract
Background Estrogen receptor β (ERβ) has been confirmed to play a tumor suppressor effect in various cancers, but its role in breast cancer is still unclear, especially in triple-negative breast cancer. In this study, we aim to explore the expression of ERβ in breast cancer and its influence on the biological behavior of breast cancer cells, including its potential mechanisms of action. Methods MCF-7 and MDA-MB-231 breast cancer cell lines were transfected with ERβ-overexpressing lentivirus and treated with pyrrolidinedithiocarbamate ammonium, a specific inhibitor of NF-κB. Cell Counting Kit-8, colony formation, and apoptosis assays were used to examine breast cancer cells viability in vitro. We further investigated breast cancer cells mobility and migration through wound healing and transwell assays. Western blot and quantitative real-time polymerase chain reaction analysis determined the expression of related genes at the protein and messenger RNA levels. Results Breast cancer tissues displayed significantly lower ERβ messenger RNA and protein levels compared to adjacent healthy tissues. Conversely, interleukin-8 (IL-8) messenger RNA and protein levels were significantly higher in cancer tissues. ERβ overexpression led to a reduction in the expression of NF-κB pathway proteins like p-IκBα and p-P65, thereby inhibiting the pathway and consequently decreasing the expression of the inflammatory factor IL-8. This resulted in decreased mobility and migration of breast cancer cells, accompanied by increased apoptosis. Conclusions This study demonstrates that ERβ suppresses the NF-κB/IL-8 signaling axis by inhibiting the phosphorylation of IκBα and P65, consequently restricting breast cancer cell mobility and migration while promoting apoptosis.
Collapse
Affiliation(s)
- Yanke Sui
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, China
| | - Zuge Liu
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, China
| | - Yao Yao
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, China
| | - Shuting Zhang
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, China
| | - Yuxiang Wang
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, China
| | - Yuanyuan Wang
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, China
| | - Bin Kong
- Qingdao Medical College of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Yuan S, Xu N, Yang J, Yuan B. Emerging role of PES1 in disease: A promising therapeutic target? Gene 2025; 932:148896. [PMID: 39209183 DOI: 10.1016/j.gene.2024.148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Nuo Xu
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Bao X, Yan D, Yang J, Zhang Z, Yuan B. Role of ERβ in the ovary and ovary related diseases. Gene 2024; 927:148678. [PMID: 38906392 DOI: 10.1016/j.gene.2024.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Estrogen and estrogen receptors (ERα and ERβ) regulate a multitude of complicated physiological and pathological processes. Jan-Ake Gustafsson's group discovered ERβ in 1996, this crucial finding gives us new insights into the understanding of estrogen signaling. ERβ is highly expressed in the ovary and particularly exists in granulosa cells (GCs). ERβ is a key transcription factor in the maintenance of ovarian granulosa cell growth, differentiation, and homeostasis, and the ovulation function of ovarian follicles and oocytes. Additionally, ERβ can modulate the steroidogenic transcriptional program through phosphorylation and regulate both gonadotropin response and FOXL2 expression within the ovary. In this review, we focus on the role of ERβ in regulating ovarian granulosa cell development and homeostasis, particularly its significance in ovarian cancer (OC), premature ovarian failure (POF), and polycystic ovary syndrome (PCOS). It also highlights the prospects of small molecule compounds targeting ERβ, providing a new strategy for the treatment of ovarian-related diseases.
Collapse
Affiliation(s)
- Xuewei Bao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Di Yan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China; Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China.
| |
Collapse
|
4
|
Monteiro FL, Stepanauskaite L, Archer A, Williams C. Estrogen receptor beta expression and role in cancers. J Steroid Biochem Mol Biol 2024; 242:106526. [PMID: 38657699 DOI: 10.1016/j.jsbmb.2024.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Estrogen drives the growth of some cancers, such as breast cancer, via estrogen receptor alpha (ERα). Estrogen also activates ERβ, but whether ERβ is expressed and has a role in different cancers is debated. The use of nonspecific antibodies has contributed to the confusion, and this review delves into ERβ's controversial role in cancer and focuses on tumor expression that can be supported by non-antibody-dependent assays. We discuss its expression at the transcript level and focus on its potential role in lymphoma, granulosa cell tumors, testicular, and adrenal cancers, emphasizing recent findings and the complexities that necessitate further research.
Collapse
Affiliation(s)
- Fátima L Monteiro
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Lina Stepanauskaite
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna 171 21, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 83, Sweden.
| |
Collapse
|
5
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
6
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
7
|
Anticancer or carcinogenic? The role of estrogen receptor β in breast cancer progression. Pharmacol Ther 2023; 242:108350. [PMID: 36690079 DOI: 10.1016/j.pharmthera.2023.108350] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Estrogen receptor β (ERβ) is closely related to breast cancer (BC) progression. Traditional concepts regard ERβ as a tumor suppressor. As studies show the carcinogenic effect of ERβ, some people have come to a new conclusion that ERβ serves as a tumor suppressor in estrogen receptor α (ERα)-positive breast cancer, while it is a carcinogen in ERα-negative breast cancer. However, we re-examine the role of ERβ and find this conclusion to be misleading based on the last decade's research. A large number of studies have shown that ERβ plays an anticancer role in both ERα-positive and ERα-negative breast cancers, and its carcinogenicity does not depend solely on the presence of ERα. Herein, we review the anticancer and oncogenic effects of ERβ on breast cancer progression in the past ten years, discuss the mechanism respectively, analyze the main reasons for the inconsistency and update ERβ selective ligand library. We believe a detailed and continuously updated review will help correct the one-sided understanding of ERβ, promoting ERβ-targeted breast cancer therapy.
Collapse
|
8
|
Targeting Breast Cancer Stem Cells Using Naturally Occurring Phytoestrogens. Int J Mol Sci 2022; 23:ijms23126813. [PMID: 35743256 PMCID: PMC9224163 DOI: 10.3390/ijms23126813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer therapies have made significant strides in improving survival for patients over the past decades. However, recurrence and drug resistance continue to challenge long-term recurrence-free and overall survival rates. Mounting evidence supports the cancer stem cell model in which the existence of a small population of breast cancer stem cells (BCSCs) within the tumor enables these cells to evade conventional therapies and repopulate the tumor, giving rise to more aggressive, recurrent tumors. Thus, successful breast cancer therapy would need to target these BCSCs, as well the tumor bulk cells. Since the Women’s Health Initiative study reported an increased risk of breast cancer with the use of conventional hormone replacement therapy in postmenopausal women, many have turned their attention to phytoestrogens as a natural alternative. Phytoestrogens are plant compounds that share structural similarities with human estrogens and can bind to the estrogen receptors to alter the endocrine responses. Recent studies have found that phytoestrogens can also target BCSCs and have the potential to complement conventional therapy eradicating BCSCs. This review summarized the latest findings of different phytoestrogens and their effect on BCSCs, along with their mechanisms of action, including selective estrogen receptor binding and inhibition of molecular pathways used by BCSCs. The latest results of phytoestrogens in clinical trials are also discussed to further evaluate the use of phytoestrogen in the treatment and prevention of breast cancer.
Collapse
|
9
|
Abstract
Estrogen receptors (ERs) are known to play an important role in the proper development of estrogen-sensitive organs, as well as in the development and progression of various types of cancer. ERα, the first ER to be discovered, has been the focus of most cancer research, especially in the context of breast cancer. However, ERβ expression also plays a significant role in cancer pathophysiology, notably its seemingly protective nature and loss of expression with oncogenesis and progression. Although ERβ exhibits antitumor activity in breast, ovarian, and prostate cancer, its expression is associated with disease progression and worse prognosis in lung cancer. The function of ERβ is complicated by the presence of multiple isoforms and single nucleotide polymorphisms, in addition to tissue-specific functions. This mini-review explores current literature on ERβ and its mechanism of action and clinical implications in breast, ovarian, prostate, and lung cancer.
Collapse
Affiliation(s)
- Nicole M Hwang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Research Center, Pittsburgh, PA 15232, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Research Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
10
|
Zhang M, Flury S, Kim CK, Chung WCJ, Kirk JA, Pak TR. Absolute Quantification of Phosphorylated ERβ Amino Acids in the Hippocampus of Women and in A Rat Model of Menopause. Endocrinology 2021; 162:6306514. [PMID: 34147032 PMCID: PMC8294689 DOI: 10.1210/endocr/bqab122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/13/2022]
Abstract
The rapid decline of circulating 17β-estradiol (E2) at menopause leads to negative neurological consequences, although hormone therapy paradoxically has both harmful and positive effects depending on the age at which it is delivered. The inconsistent response to E2 suggests unappreciated regulatory mechanisms for estrogen receptors (ERs), and we predicted it could be due to age-related differences in ERβ phosphorylation. We assessed ERβ phosphorylation using a sensitive mass spectrometry approach that provides absolute quantification (AQUA-MS) of individually phosphorylated residues. Specifically, we quantified phosphorylated ERβ in the hippocampus of women (aged 21-83 years) and in a rat model of menopause at 4 residues with conserved sequence homology between the 2 species: S105, S176, S200, and Y488. Phosphorylation at these sites, which spanned all domains of ERβ, were remarkably consistent between the 2 species, showing high levels of S105 phosphorylation (80%-100%) and low levels of S200 (20%-40%). Further, S200 phosphorylation decreased with aging in humans and loss of E2 in rats. Surprisingly, Y488 phosphorylation, which has been linked to ERβ ligand-independent actions, exhibited approximately 70% phosphorylation, unaltered by species, age, or E2, suggesting ERβ's primary mode of action may not require E2 binding. We further show phosphorylation at 2 sites directly altered ERβ DNA-binding efficiency, and thus could affect its transcription factor activity. These findings provide the first absolute quantification of ERβ phosphorylation in the human and rat brain, novel insights into ERβ regulation, and a critical foundation for providing more targeted therapeutic options for menopause in the future.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Sarah Flury
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Chun K Kim
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Wilson C J Chung
- Department of Biology, Kent State University, Kent, Ohio 44242, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
- Correspondence: Toni R. Pak, PhD, Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Ave, CTRE 115-520, Maywood, IL 60153, USA.
| |
Collapse
|
11
|
Thomas C, Karagounis IV, Srivastava RK, Vrettos N, Nikolos F, Francois N, Huang M, Gong S, Long Q, Kumar S, Koumenis C, Krishnamurthy S, Ueno NT, Chakrabarti R, Maity A. Estrogen Receptor β-Mediated Inhibition of Actin-Based Cell Migration Suppresses Metastasis of Inflammatory Breast Cancer. Cancer Res 2021; 81:2399-2414. [PMID: 33514514 PMCID: PMC8570087 DOI: 10.1158/0008-5472.can-20-2743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic breast carcinoma with high frequency of estrogen receptor α (ERα) negativity. Here we explored the role of the second ER subtype, ERβ, and report expression in IBC tumors and its correlation with reduced metastasis. Ablation of ERβ in IBC cells promoted cell migration and activated gene networks that control actin reorganization, including G-protein-coupled receptors and downstream effectors that activate Rho GTPases. Analysis of preclinical mouse models of IBC revealed decreased metastasis of IBC tumors when ERβ was expressed or activated by chemical agonists. Our findings support a tumor-suppressive role of ERβ by demonstrating the ability of the receptor to inhibit dissemination of IBC cells and prevent metastasis. On the basis of these findings, we propose ERβ as a potentially novel biomarker and therapeutic target that can inhibit IBC metastasis and reduce its associated mortality. SIGNIFICANCE: These findings demonstrate the capacity of ERβ to elicit antimetastatic effects in highly aggressive inflammatory breast cancer and propose ERβ and the identified associated genes as potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Christoforos Thomas
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Ilias V Karagounis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ratnesh K Srivastava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas Vrettos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fotis Nikolos
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Noëlle Francois
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Menggui Huang
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Siliang Gong
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sushil Kumar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Yuan B, Yang J, Dubeau L, Hu Y, Li R. A Phosphotyrosine Switch in Estrogen Receptor β Is Required for Mouse Ovarian Function. Front Cell Dev Biol 2021; 9:649087. [PMID: 33898441 PMCID: PMC8063698 DOI: 10.3389/fcell.2021.649087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
The two homologous estrogen receptors ERα and ERβ exert distinct effects on their cognate tissues. Previous work from our laboratory identified an ERβ-specific phosphotyrosine residue that regulates ERβ transcriptional activity and antitumor function in breast cancer cells. To determine the physiological role of the ERβ phosphotyrosine residue in normal tissue development and function, we investigated a mutant mouse model (Y55F) whereby this particular tyrosine residue in endogenous mouse ERβ is mutated to phenylalanine. While grossly indistinguishable from their wild-type littermates, mutant female mice displayed reduced fertility, decreased ovarian follicular cell proliferation, and lower progesterone levels. Moreover, mutant ERβ from female mice during superovulation is defective in activating promoters of its target genes in ovarian tissues. Thus, our findings provide compelling genetic and molecular evidence for a role of isotype-specific ERβ phosphorylation in mouse ovarian development and function.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Jing Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Louis Dubeau
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Yanfen Hu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Yuan B, Clark CA, Wu B, Yang J, Drerup JM, Li T, Jin VX, Hu Y, Curiel TJ, Li R. Estrogen receptor beta signaling in CD8 + T cells boosts T cell receptor activation and antitumor immunity through a phosphotyrosine switch. J Immunother Cancer 2021; 9:jitc-2020-001932. [PMID: 33462142 PMCID: PMC7816924 DOI: 10.1136/jitc-2020-001932] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
The non-overlapping functions of the two estrogen receptor subtypes, ERα (Estrogen Receptor α)and ERβ (Estrogen Receptor β), in tumor cells have been studied extensively. However, their counterparts in host cells is vastly underinterrogated. Even less is known about how ERα and ERβ activities are regulated in a subtype-specific manner. We previously identified a phosphotyrosine residue (pY36) of human ERβ that is important for tumor ERβ to inhibit growth of breast cancer cells in vitro and in vivo. A role of this ERβ phosphotyrosine switch in regulating host ERβ remains unclear.Conventional gene editing was used to mutate the corresponding tyrosine residue of endogenous mouse ERβ (Y55F) in mouse embryonic stem cells. The derived homozygous mutant Esr2Y55F/Y55F mouse strain and its wild-type (WT) counterpart were compared in various transplant tumor models for their ability to support tumor growth. In addition, flow cytometry-based immunophenotyping was carried out to assess antitumor immunity of WT and mutant hosts. Adoptive transfer of bone marrow and purified CD8+ T cells were performed to identify the host cell type that harbors ERβ-dependent antitumor function. Furthermore, cell signaling assays were conducted to compare T cell receptor (TCR)-initiated signaling cascade in CD8+ T cells of WT and mutant mice. Lastly, the ERβ-selective agonist S-equol was evaluated for its efficacy to boost immune checkpoint blockade (ICB)-based anticancer immunotherapy.Disabling the ERβ-specific phosphotyrosine switch in tumor-bearing hosts exacerbates tumor growth. Further, a cell-autonomous ERβ function was defined in CD8+ effector T cells. Mechanistically, TCR activation triggers ERβ phosphorylation, which in turn augments the downstream TCR signaling cascade via a non-genomic action of ERβ. S-equol facilitates TCR activation that stimulates the ERβ phosphotyrosine switch and boosts anti-PD-1 (Programmed cell death protein 1) ICB immunotherapy. Our mouse genetic study clearly demonstrates a role of the ERβ phosphotyrosine switch in regulating ERβ-dependent antitumor immunity in CD8+ T cells. Our findings support the development of ERβ agonists including S-equol in combination with ICB immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Curtis A Clark
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Bogang Wu
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Jing Yang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Justin M Drerup
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Tianbao Li
- Department of Molecular Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Victor X Jin
- Department of Molecular Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Tyler J Curiel
- Department of Medicine, The Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA. Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Front Oncol 2020; 10:587386. [PMID: 33194742 PMCID: PMC7645238 DOI: 10.3389/fonc.2020.587386] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) belong to a superfamily of nuclear receptors called steroid hormone receptors, which, upon binding ligand, dimerize and translocate to the nucleus where they activate or repress the transcription of a large number of genes, thus modulating critical physiologic processes. ERβ has multiple isoforms that show differing association with prognosis. Expression levels of the full length ERβ1 isoform are often lower in aggressive cancers as compared to normal tissue. High ERβ1 expression is associated with improved overall survival in women with breast cancer. The promise of ERβ activation, as a potential targeted therapy, is based on concurrent activation of multiple tumor suppressor pathways with few side effects compared to chemotherapy. Thus, ERβ is a nuclear receptor with broad-spectrum tumor suppressor activity, which could serve as a potential treatment target in a variety of human cancers including breast cancer. Further development of highly selective agonists that lack ERα agonist activity, will be necessary to fully harness the potential of ERβ.
Collapse
Affiliation(s)
- Rahul Mal
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Alexa Magner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Joel David
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Meghna Vallabhaneni
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mahmoud Kassem
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jasmine Manouchehri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Willingham
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jeffery Vandeusen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Sagar Sardesai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Nicole Williams
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Maryam Lustberg
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Mathew A Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Hatono M, Ikeda H, Suzuki Y, Kajiwara Y, Kawada K, Tsukioki T, Kochi M, Suzawa K, Iwamoto T, Yamamoto H, Shien T, Yamane M, Taira N, Doihara H, Toyooka S. Effect of isoflavones on breast cancer cell development and their impact on breast cancer treatments. Breast Cancer Res Treat 2020; 185:307-316. [PMID: 33034801 DOI: 10.1007/s10549-020-05957-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Epidemiological studies have suggested that intake of soy isoflavones is associated with a reduced risk of development of breast cancer and an improved prognosis in patients with breast cancer. In addition, basic research has demonstrated the antitumor effects of these compounds on breast cancer cell lines. However, the detailed effects of the intake of equol, which is one of the metabolites of the soy isoflavones, are yet to be clarified on the risk of development and recurrence of breast cancer and its interactions with drugs used for treating breast cancer. This study aimed to determine the antitumor effects of equol and investigate the impact of adding equol to therapeutic agents for breast cancer using breast cancer cell lines. METHODS We examined the antitumor effect of equol on breast cancer cell lines using MTS assay. We also studied the combined effect of equol and the existing hormonal or chemotherapeutic agents using combination index. We evaluated the expressions of the related proteins by Western blot analysis and correlated the findings with the antitumor effect. RESULTS Equol showed bi-phasic protumor and antitumor effects; at a low concentration, it promoted the tumor growth in hormone receptor-positive cell lines, whereas antitumor effects were generally observed when an excessive amount of dose unexpected in the blood and the tissue was administered. When used with tamoxifen, equol might have some antagonistic effect, although it depends on equol concentration and the type of cancer cells. CONCLUSIONS We confirmed that equol has dual action, specifically a tumor growth-promoting effect and an antitumor effect. Although the results suggested that equol might exert an antagonistic effect against tamoxifen depending on the concentration, equol did not exert an antagonistic effect on other therapeutic agents.
Collapse
Affiliation(s)
- Minami Hatono
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hirokuni Ikeda
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yoko Suzuki
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yukiko Kajiwara
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kengo Kawada
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takahiro Tsukioki
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Mariko Kochi
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takayuki Iwamoto
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tadahiko Shien
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naruto Taira
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyoshi Doihara
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
16
|
Shao Z, Li Y, Dai W, Jia H, Zhang Y, Jiang Q, Chai Y, Li X, Sun H, Yang R, Cao Y, Feng F, Guo Y. ETS-1 induces Sorafenib-resistance in hepatocellular carcinoma cells via regulating transcription factor activity of PXR. Pharmacol Res 2018; 135:188-200. [PMID: 30114438 DOI: 10.1016/j.phrs.2018.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Transcription factor E26 transformation specific sequence 1 (ETS-1) is a primary regulator in the metastasis of human cancer cells, especially hepatocellular carcinoma (HCC) cells; and it would affect the prognosis of HCC patients who received chemotherapies. However, the regulatory role of ETS-1 in the resistance of HCC cells to molecular-targeting agent remains poorly understood. In the present work, we demonstrate that high ETS-1 expression correlates with poor prognosis of advanced HCC patients received Sorafenib treatment. Mechanistically, ETS-1 binds to nuclear Pregnane X receptor (PXR) directly and enhances PXR's transcription factor activity, which further leads to the induction of the PXR's downstream multi-drug resistance related genes. Overexpression of ETS-1 accelerates the metabolic clearance of Sorafenib in HCC cells and leads to the better survival and faster migration of those cells. The therapeutic studies show that ETS-1 promotes the Sorafenib-resistance of HCC tumor models and ETS-1 blockade enhances the anti-tumor capacity of Sorafenib by decreasing PXR activation. Thus, our study suggests that ETS-1 could enhance the activation of PXR and be a potential therapeutic target for overcoming Sorafenib resistance in HCC treatment.
Collapse
Affiliation(s)
- Zhiyi Shao
- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, PR China; The Library, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yibo Li
- School of Psychology, Shaanxi Normal University, Xi'an, PR China
| | - Wenjie Dai
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Hui Jia
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110016, PR China
| | - Yingshi Zhang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110016, PR China
| | - Qiyu Jiang
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Yantao Chai
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Xiaojuan Li
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Huiwei Sun
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Ruichuang Yang
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Fan Feng
- The Library, Shaanxi Normal University, Xi'an, 710062, PR China; Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China.
| | - Yingjie Guo
- School of Foreign Languages, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
17
|
Therapeutic utility of natural estrogen receptor beta agonists on ovarian cancer. Oncotarget 2018; 8:50002-50014. [PMID: 28654894 PMCID: PMC5564823 DOI: 10.18632/oncotarget.18442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/28/2017] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the deadliest of all gynecologic cancers. Despite success with initial chemotherapy, the majority of patients relapse with an incurable disease. Development of chemotherapy resistance is a major factor for poor long-term survival in ovarian cancer. The biological effects of estrogens are mediated by estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Emerging evidence suggests that ovarian cancer cells express ERβ that functions as a tumor suppressor; however, the clinical utility of ERβ agonists in ovarian cancer remains elusive. We tested the utility of two natural ERβ agonists liquiritigenin (Liq), which is isolated from Glycyrrhiza uralensis and S-equol, which is isolated from soy isoflavone daidzein, for treating ovarian cancer. Both natural ERβ ligands had significant growth inhibition in cell viability and survival assays, reduced migration and invasion, and promoted apoptosis. Further, ERβ agonists showed tumor suppressive functions in therapy-resistant ovarian cancer model cells and sensitized ovarian cancer cells to cisplatin and paclitaxel treatment. Global RNA-Seq analysis revealed that ERβ agonists modulate several tumor suppressive pathways, including downregulation of the NF-κB pathway. Immunoprecipitation assays revealed that ERβ interacts with p65 subunit of NF-κB and ERβ overexpression reduced the expression of NF-κB target genes. In xenograft assays, ERβ agonists reduced tumor growth and promoted apoptosis. Collectively, our findings demonstrated that natural ERβ agonists have the potential to significantly inhibit ovarian cancer cell growth by anti-inflammatory and pro-apoptotic actions, and natural ERβ agonists represent novel therapeutic agents for the management of ovarian cancer.
Collapse
|
18
|
Tian W, Pang W, Ge Y, He X, Wang D, Li X, Hou H, Zhou D, Feng S, Chen Z, Yang Y. Hepatocyte-generated 27-hydroxycholesterol promotes the growth of melanoma by activation of estrogen receptor alpha. J Cell Biochem 2017; 119:2929-2938. [PMID: 29130512 DOI: 10.1002/jcb.26498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
Abstract
Cholesterol plays an important role in maintaining normal physiological function of human body. However, excessive intake will induce a series of diseases including cancer. For melanoma, the relationship between hypercholesterolemia and its incidence remains unknown. The cholesterol metabolite 27-hydroxy cholesterol (27-HC) catalyzed by CYP27A1 has been reported to activate estrogen receptor (ER). As studies have indicated that melanoma expresses ER, we designed experiments to explore whether 27-HC could link hypercholesterolemia and melanoma. In this study, hepatocyte-specific CYP27A1-/- mice were generated by CRISPR/Cas9 technology. The results revealed that high-cholesterol diet induced metabolism disorder and promoted the melanoma growth through 27-HC. Further study found that 27-HC promoted the growth of melanoma cells by activating ERα and eliciting the AKT and MAPK signaling pathway. This study puts forward the important role of 27-HC in the development of melanoma for the first time, links hypercholesterolemia with melanoma progression. The research also provides the rationale for the use of tamoxifen in melanoma therapy. The levels of 27-HC in blood could act as a novel biomarker for tamoxifen treatment in melanoma patients.
Collapse
Affiliation(s)
- Wei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Wenxiao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China.,Infectious Disease Research Office, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yao Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Xiaomeng He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Duowei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Xianjing Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Hui Hou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Dewang Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Shuang Feng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Zhen Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Therapeutic Use of Estrogen Receptor β Agonists in Prevention and Treatment of Endocrine Therapy Resistant Breast Cancers: Observations From Preclinical Models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:177-194. [DOI: 10.1016/bs.pmbts.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|