1
|
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther 2025; 10:170. [PMID: 40383803 PMCID: PMC12086256 DOI: 10.1038/s41392-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is a critical regulator of vasculogenesis, angiogenesis, and lymphangiogenesis, processes that are vital for the development of vascular and lymphatic systems, tissue repair, and the maintenance of homeostasis. VEGF ligands and their receptors orchestrate endothelial cell proliferation, migration, and survival, playing a pivotal role in dynamic vascular remodeling. Dysregulated VEGF signaling drives diverse pathological conditions, including tumor angiogenesis, cardiovascular diseases, and ocular disorders. Excessive VEGF activity promotes tumor growth, invasion, and metastasis, while insufficient signaling contributes to impaired wound healing and ischemic diseases. VEGF-targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have revolutionized the treatment of diseases involving pathological angiogenesis, offering significant clinical benefits in oncology and ophthalmology. These therapies inhibit angiogenesis and slow disease progression, but they often face challenges such as therapeutic resistance, suboptimal efficacy, and adverse effects. To further explore these issues, this review provides a comprehensive overview of VEGF ligands and receptors, elucidating their molecular mechanisms and regulatory networks. It evaluates the latest progress in VEGF-targeted therapies and examines strategies to address current challenges, such as resistance mechanisms. Moreover, the discussion includes emerging therapeutic strategies such as innovative drug delivery systems and combination therapies, highlighting the continuous efforts to improve the effectiveness and safety of VEGF-targeted treatments. This review highlights the translational potential of recent discoveries in VEGF biology for improving patient outcomes.
Collapse
Affiliation(s)
- Chunsik Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea.
| | - Myung-Jin Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea
| | - Anil Kumar
- Center for Research and Innovations, Adichunchanagiri University, Mandya, Karnataka, India
| | - Han-Woong Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Peng M, Deng J, Li X. Clinical advances and challenges in targeting FGF/FGFR signaling in lung cancer. Mol Cancer 2024; 23:256. [PMID: 39543657 PMCID: PMC11566285 DOI: 10.1186/s12943-024-02167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors regulate numerous cellular processes, such as metabolism and signal transduction, but can also drive tumorigenesis. Specifically, in lung cancer, the overexpression of FGFs, as well as the amplification, mutation and fusion of FGFR genes, are closely linked to the initiation, progression and resistance of the disease, suggesting that targeting FGF/FGFR is an attractive therapeutic strategy for lung cancer treatment. Nintedanib, a multitarget tyrosine kinase inhibitor (TKI) used in combination with docetaxel, has shown some success as a second-line therapy for lung cancer. However, clinical trials evaluating other FGFR inhibitors have yielded mixed results, indicating substantial complexity in targeting aberrant FGF/FGFR signaling. In this review, we describe the aberrations in FGF/FGFR signaling in lung cancer and summarize the clinical efficacy of FGFR inhibitors, such as multitarget TKIs, selective FGFR-TKIs and biological agents. We also discuss various challenges associated with FGFR targeting in lung cancer, including precision patient selection, toxicity and resistance. Finally, we provide perspectives on future directions, namely, developing novel FGFR-targeting drugs, such as FGFR degraders and more specific FGFR-TKIs, adopting combination therapy and targeting FGFs.
Collapse
Affiliation(s)
- Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
| |
Collapse
|
3
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
4
|
Ribeiro E, Vale N. Repurposing of the Drug Tezosentan for Cancer Therapy. Curr Issues Mol Biol 2023; 45:5118-5131. [PMID: 37367074 DOI: 10.3390/cimb45060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Tezosentan is a vasodilator drug that was originally developed to treat pulmonary arterial hypertension. It acts by inhibiting endothelin (ET) receptors, which are overexpressed in many types of cancer cells. Endothelin-1 (ET1) is a substance produced by the body that causes blood vessels to narrow. Tezosentan has affinity for both ETA and ETB receptors. By blocking the effects of ET1, tezosentan can help to dilate blood vessels, improve the blood flow, and reduce the workload on the heart. Tezosentan has been found to have anticancer properties due to its ability to target the ET receptors, which are involved in promoting cellular processes such as proliferation, survival, neovascularization, immune cell response, and drug resistance. This review intends to demonstrate the potential of this drug in the field of oncology. Drug repurposing can be an excellent way to improve the known profiles of first-line drugs and to solve several resistance problems of these same antineoplastic drugs.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
New Therapeutic Strategy for Overcoming Multidrug Resistance in Cancer Cells with Pyrazolo[3,4- d]pyrimidine Tyrosine Kinase Inhibitors. Cancers (Basel) 2021; 13:cancers13215308. [PMID: 34771471 PMCID: PMC8582576 DOI: 10.3390/cancers13215308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary P-glycoprotein (P-gp) is an ATP-binding cassette transporter whose overexpression in cancer cells is one of the main causes of multidrug resistance (MDR). Tyrosine kinase inhibitors (TKIs) have been reported to interact with ABC transporters and in some cases, increase the susceptibility of cancer cells to chemotherapy. We investigated the potential of novel TKI pyrazolo[3,4-d] pyrimidines and their prodrugs to inhibit P-gp in two MDR cancer cell lines with P-gp overexpression. The tested compounds were able to suppress P-gp by inhibiting its ATPase activity. Interestingly, prodrugs displayed a stronger potential to modulate P-gp and showed higher interaction energies in the docking simulations compared to their parent drugs. Furthermore, prodrugs showed significant potential to inhibit P-gp activity even in prolonged treatment and therefore to enhance the efficacy of doxorubicin and paclitaxel in MDR cancer cells. All of these characteristics imply that the new TKIs could be considered a valuable strategy for combating resistant cancers, especially in combination with other chemotherapeutics. Abstract Tyrosine kinase inhibitors (TKIs) often interact with the multidrug resistant (MDR) phenotype of cancer cells. In some cases, TKIs increase the susceptibility of MDR cancer cells to chemotherapy. As the overexpression of membrane transporter P-glycoprotein (P-gp) is the most common alteration in MDR cancer cells, we investigated the effects of TKI pyrazolo[3,4-d]pyrimidines on P-gp inhibition in two cellular models comprising sensitive and corresponding MDR cancer cells (human non-small cell lung carcinoma and colorectal adenocarcinoma). Tested TKIs showed collateral sensitivity by inducing stronger inhibition of MDR cancer cell line viability. Moreover, TKIs directly interacted with P-gp and inhibited its ATPase activity. Their potential P-gp binding site was proposed by molecular docking simulations. TKIs reversed resistance to doxorubicin and paclitaxel in a concentration-dependent manner. The expression studies excluded the indirect effect of TKIs on P-gp through regulation of its expression. A kinetics study showed that TKIs decreased P-gp activity and this effect was sustained for seven days in both MDR models. Therefore, pyrazolo[3,4-d]pyrimidines with potential for reversing P-gp-mediated MDR even in prolonged treatments can be considered a new therapeutic strategy for overcoming cancer MDR.
Collapse
|
6
|
Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, Laemmerer A, Gabler L, Pirker C, Donson AM, Bannauer P, Korbel P, Jaunecker CN, Hübner JM, Mayr L, Madlener S, Schmook MT, Ricken G, Maaß K, Grusch M, Holzmann K, Grasl-Kraupp B, Spiegl-Kreinecker S, Hsu J, Dorfer C, Rössler K, Azizi AA, Foreman NK, Peyrl A, Haberler C, Czech T, Slavc I, Filbin MG, Pajtler KW, Kool M, Berger W, Gojo J. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol 2021; 142:339-360. [PMID: 34046693 PMCID: PMC8270873 DOI: 10.1007/s00401-021-02327-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.
Collapse
MESH Headings
- Animals
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/pathology
- Ependymoma/genetics
- Ependymoma/pathology
- Humans
- Mice
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
Collapse
Affiliation(s)
- Daniela Lötsch
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Dominik Kirchhofer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Bernhard Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anna Laemmerer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Peter Bannauer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Pia Korbel
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Carola N Jaunecker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maria T Schmook
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kendra Maaß
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Klaus Holzmann
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Jennifer Hsu
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
7
|
Pacini L, Jenks AD, Lima NC, Huang PH. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells 2021; 10:1154. [PMID: 34068816 PMCID: PMC8151052 DOI: 10.3390/cells10051154] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Genetic alterations, such as amplifications, mutations and translocations in the fibroblast growth factor receptor (FGFR) family have been found in non-small cell lung cancer (NSCLC) where they have a role in cancer initiation and progression. FGFR aberrations have also been identified as key compensatory bypass mechanisms of resistance to targeted therapy against mutant epidermal growth factor receptor (EGFR) and mutant Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) in lung cancer. Targeting FGFR is, therefore, of clinical relevance for this cancer type, and several selective and nonselective FGFR inhibitors have been developed in recent years. Despite promising preclinical data, clinical trials have largely shown low efficacy of these agents in lung cancer patients with FGFR alterations. Preclinical studies have highlighted the emergence of multiple intrinsic and acquired resistance mechanisms to FGFR tyrosine kinase inhibitors, which include on-target FGFR gatekeeper mutations and activation of bypass signalling pathways and alternative receptor tyrosine kinases. Here, we review the landscape of FGFR aberrations in lung cancer and the array of targeted therapies under clinical evaluation. We also discuss the current understanding of the mechanisms of resistance to FGFR-targeting compounds and therapeutic strategies to circumvent resistance. Finally, we highlight our perspectives on the development of new biomarkers for stratification and prediction of FGFR inhibitor response to enable personalisation of treatment in patients with lung cancer.
Collapse
Affiliation(s)
| | | | | | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (L.P.); (A.D.J.); (N.C.L.)
| |
Collapse
|
8
|
Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, Wu D. FGFR-TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021; 14:23. [PMID: 33568192 PMCID: PMC7876795 DOI: 10.1186/s13045-021-01040-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play key roles in promoting the proliferation, differentiation, and migration of cancer cell. Inactivation of FGFRs by tyrosine kinase inhibitors (TKI) has achieved great success in tumor-targeted therapy. However, resistance to FGFR-TKI has become a concern. Here, we review the mechanisms of FGFR-TKI resistance in cancer, including gatekeeper mutations, alternative signaling pathway activation, lysosome-mediated TKI sequestration, and gene fusion. In addition, we summarize strategies to overcome resistance, including developing covalent inhibitors, developing dual-target inhibitors, adopting combination therapy, and targeting lysosomes, which will facilitate the transition to precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Sitong Yue
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yukun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Xiaojuan Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Meixiang Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Yongheng Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Daichao Wu
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
9
|
Guntner AS, Peyrl A, Mayr L, Englinger B, Berger W, Slavc I, Buchberger W, Gojo J. Cerebrospinal fluid penetration of targeted therapeutics in pediatric brain tumor patients. Acta Neuropathol Commun 2020; 8:78. [PMID: 32493453 PMCID: PMC7268320 DOI: 10.1186/s40478-020-00953-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Treatment with small-molecule inhibitors, guided by precision medicine has improved patient outcomes in multiple cancer types. However, these compounds are often not effective against central nervous system (CNS) tumors. The failure of precision medicine approaches for CNS tumors is frequently attributed to the inability of these compounds to cross the blood-brain barrier (BBB), which impedes intratumoral target engagement. This is complicated by the fact that information on CNS penetration in CNS-tumor patients is still very limited. Herein, we evaluated cerebrospinal fluid (CSF) drug penetration, a well-established surrogate for CNS-penetration, in pediatric brain tumor patients. We analyzed 7 different oral anti-cancer drugs and their metabolites by high performance liquid chromatography mass spectrometry (HPLC-MS) in 42 CSF samples obtained via Ommaya reservoirs of 9 different patients. Moreover, we related the resulting data to commonly applied predictors of BBB-penetration including ABCB1 substrate-character, physicochemical properties and in silico algorithms. First, the measured CSF drug concentrations depicted good intra- and interpatient precision. Interestingly, ribociclib, vorinostat and imatinib showed high (> 10 nM), regorafenib and dasatinib moderate (1-10 nM) penetrance. In contrast, panobinostat und nintedanib were not detected. In addition, we identified active metabolites of imatinib and ribociclib. Comparison to well-established BBB-penetrance predictors confirmed low molecular weight, high proportion of free-drug and low ABCB1-mediated efflux as central factors. However, evaluation of diverse in silico algorithms showed poor correlation within our dataset. In summary, our study proves the feasibility of measuring CSF concentration via Ommaya reservoirs thus setting the ground for utilization of this method in future clinical trials. Moreover, we demonstrate CNS presence of certain small-molecule inhibitors and even active metabolites in CSF of CNS-tumor patients and provide a potential guidance for physicochemical and biological factors favoring CNS-penetration.
Collapse
Affiliation(s)
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Bernhard Englinger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wolfgang Buchberger
- Institute of Analytical Chemistry, Johannes Kepler University, Linz, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Krchniakova M, Skoda J, Neradil J, Chlapek P, Veselska R. Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration. Int J Mol Sci 2020; 21:ijms21093157. [PMID: 32365759 PMCID: PMC7247577 DOI: 10.3390/ijms21093157] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively. However, the role of TKIs appears to be dual because they can act as substrates and/or inhibitors of these transporters. In addition, several TKIs have been identified to be sequestered into lysosomes either due to their physiochemical properties or via ABC transporters expressed on the lysosomal membrane. Since the development of MDR represents a great concern in anticancer treatment, it is important to elucidate the interactions of TKIs with MDR-related transporters as well as to improve the properties that would prevent TKIs from diffusing into lysosomes. These findings not only help to avoid MDR, but also help to define the possible impact of combining TKIs with other anticancer drugs, leading to more efficient therapy and fewer adverse effects in patients.
Collapse
Affiliation(s)
- Maria Krchniakova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-49-7905
| |
Collapse
|
11
|
Owusu M, Bannauer P, Ferreira da Silva J, Mourikis TP, Jones A, Májek P, Caldera M, Wiedner M, Lardeau CH, Mueller AC, Menche J, Kubicek S, Ciccarelli FD, Loizou JI. Mapping the Human Kinome in Response to DNA Damage. Cell Rep 2020; 26:555-563.e6. [PMID: 30650350 DOI: 10.1016/j.celrep.2018.12.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023] Open
Abstract
We provide a catalog for the effects of the human kinome on cell survival in response to DNA-damaging agents, covering all major DNA repair pathways. By treating 313 kinase-deficient cell lines with ten diverse DNA-damaging agents, including seven commonly used chemotherapeutics, we identified examples of vulnerability and resistance that are kinase specific. To investigate synthetic lethal interactions, we tested the response to carmustine for 25 cell lines by establishing a phenotypic fluorescence-activated cell sorting (FACS) assay designed to validate gene-drug interactions. We show apoptosis, cell cycle changes, and DNA damage and proliferation after alkylation- or crosslink-induced damage. In addition, we reconstitute the cellular sensitivity of DYRK4, EPHB6, MARK3, and PNCK as a proof of principle for our study. Furthermore, using global phosphoproteomics on cells lacking MARK3, we provide evidence for its role in the DNA damage response. Our data suggest that cancers with inactivating mutations in kinases, including MARK3, are particularly vulnerable to alkylating chemotherapeutic agents.
Collapse
Affiliation(s)
- Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Peter Bannauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Thanos P Mourikis
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Alistair Jones
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - André C Mueller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Ramadan WS, Zaher DM, Altaie AM, Talaat IM, Elmoselhi A. Potential Therapeutic Strategies for Lung and Breast Cancers through Understanding the Anti-Angiogenesis Resistance Mechanisms. Int J Mol Sci 2020; 21:565. [PMID: 31952335 PMCID: PMC7014257 DOI: 10.3390/ijms21020565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Breast and lung cancers are among the top cancer types in terms of incidence and mortality burden worldwide. One of the challenges in the treatment of breast and lung cancers is their resistance to administered drugs, as observed with angiogenesis inhibitors. Based on clinical and pre-clinical findings, these two types of cancers have gained the ability to resist angiogenesis inhibitors through several mechanisms that rely on cellular and extracellular factors. This resistance is mediated through angiogenesis-independent vascularization, and it is related to cancer cells and their microenvironment. The mechanisms that cancer cells utilize include metabolic symbiosis and invasion, and they also take advantage of neighboring cells like macrophages, endothelial cells, myeloid and adipose cells. Overcoming resistance is of great interest, and researchers are investigating possible strategies to enhance sensitivity towards angiogenesis inhibitors. These strategies involved targeting multiple players in angiogenesis, epigenetics, hypoxia, cellular metabolism and the immune system. This review aims to discuss the mechanisms of resistance to angiogenesis inhibitors and to highlight recently developed approaches to overcome this resistance.
Collapse
Affiliation(s)
- Wafaa S. Ramadan
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Dana M. Zaher
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Alaa M. Altaie
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Pathology Department, Faculty of Medicine, Alexandria University, 21526 Alexandria, Egypt
| | - Adel Elmoselhi
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Kallus S, Englinger B, Senkiv J, Laemmerer A, Heffeter P, Berger W, Kowol CR, Keppler BK. Nanoformulations of anticancer FGFR inhibitors with improved therapeutic index. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2632-2643. [PMID: 30121385 DOI: 10.1016/j.nano.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 06/25/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors like ponatinib and nintedanib are clinically approved for defined cancer patient cohorts but often exert dose-limiting adverse effects. Hence, we encapsulated the FGFR inhibitors ponatinib, PD173074, and nintedanib into polylactic acid nanoparticles and liposomes to enable increased tumor accumulation/specificity and reduce side effects. Different methods of drug loading were tested and the resulting formulations compared regarding average size distribution as well as encapsulation efficiency. Appropriate encapsulation levels were achieved for liposomal preparations only. Nanoencapsulation resulted in significantly decelerated uptake kinetics in vitro with clearly decreased short-term (up to 72 h) cytotoxicity at higher concentrations. However, in long-term clonogenic assays liposomal formations were equally or even more active as compared to the free drugs. Accordingly, in an FGFR inhibitor-sensitive murine osteosarcoma transplantation model (K7M2), only liposomal but not free ponatinib resulted in significant tumor growth inhibition (by 60.4%) at markedly reduced side effects.
Collapse
Affiliation(s)
- Sebastian Kallus
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Vienna, Austria
| | - Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Julia Senkiv
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Institute of Cell Biology of National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Anna Laemmerer
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria.
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Vienna, Austria
| |
Collapse
|
14
|
Ji X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, de Biasi M, Han Y, Gorlova O, Hung RJ, Wu X, McKay J, Zong X, Carreras-Torres R, Christiani DC, Caporaso N, Johansson M, Liu G, Bojesen SE, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Chen C, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman C, Wilkens L, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden EHFM, Kim JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Doherty J, Goodman GE, Cox A, Taylor F, Woll P, Brüske I, Manz J, Muley T, Risch A, Rosenberger A, Grankvist K, Johansson M, Shepherd F, Tsao MS, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, et alJi X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, de Biasi M, Han Y, Gorlova O, Hung RJ, Wu X, McKay J, Zong X, Carreras-Torres R, Christiani DC, Caporaso N, Johansson M, Liu G, Bojesen SE, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Chen C, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman C, Wilkens L, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden EHFM, Kim JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Doherty J, Goodman GE, Cox A, Taylor F, Woll P, Brüske I, Manz J, Muley T, Risch A, Rosenberger A, Grankvist K, Johansson M, Shepherd F, Tsao MS, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Koh WP, Gao YT, Houlston R, McLaughlin J, Stevens V, Nickle DC, Obeidat M, Timens W, Zhu B, Song L, Artigas MS, Tobin MD, Wain LV, Gu F, Byun J, Kamal A, Zhu D, Tyndale RF, Wei WQ, Chanock S, Brennan P, Amos CI. Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 2018; 9:3221. [PMID: 30104567 PMCID: PMC6089967 DOI: 10.1038/s41467-018-05074-y] [Show More Authors] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
Collapse
Grants
- P30 CA023108 NCI NIH HHS
- P30 CA076292 NCI NIH HHS
- U01 CA063464 NCI NIH HHS
- P50 CA070907 NCI NIH HHS
- R01 CA111703 NCI NIH HHS
- UM1 CA182876 NCI NIH HHS
- UL1 TR000117 NCATS NIH HHS
- P20 CA090578 NCI NIH HHS
- U19 CA148127 NCI NIH HHS
- P20 GM103534 NIGMS NIH HHS
- UL1 TR000445 NCATS NIH HHS
- R01 LM012012 NLM NIH HHS
- R01 CA092824 NCI NIH HHS
- R35 CA197449 NCI NIH HHS
- UM1 CA164973 NCI NIH HHS
- U01 CA167462 NCI NIH HHS
- U19 CA203654 NCI NIH HHS
- R01 CA144034 NCI NIH HHS
- P20 RR018787 NCRR NIH HHS
- S10 RR025141 NCRR NIH HHS
- R01 CA074386 NCI NIH HHS
- R01 CA176568 NCI NIH HHS
- K07 CA172294 NCI NIH HHS
- P50 CA119997 NCI NIH HHS
- G0902313 Medical Research Council
- R01 CA063464 NCI NIH HHS
- P01 CA033619 NCI NIH HHS
- R01 HL133786 NHLBI NIH HHS
- P30 CA177558 NCI NIH HHS
- P50 CA090578 NCI NIH HHS
- U01 HG004798 NHGRI NIH HHS
- R01 CA151989 NCI NIH HHS
- 001 World Health Organization
- 202849/Z/16/Z Wellcome Trust
- UM1 CA167462 NCI NIH HHS
- U01 CA164973 NCI NIH HHS
- This work was supported by National Institutes of Health (NIH) for the research of lung cancer (grant P30CA023108, P20GM103534 and R01LM012012); Trandisciplinary Research in Cancer of the Lung (TRICL) (grant U19CA148127); UICC American Cancer Society Beginning Investigators Fellowship funded by the Union for International Cancer Control (UICC) (to X.Ji). CAPUA study. This work was supported by FIS-FEDER/Spain grant numbers FIS-01/310, FIS-PI03-0365, and FIS-07-BI060604, FICYT/Asturias grant numbers FICYT PB02-67 and FICYT IB09-133, and the University Institute of Oncology (IUOPA), of the University of Oviedo and the Ciber de Epidemiologia y Salud Pública. CIBERESP, SPAIN. The work performed in the CARET study was supported by the The National Institute of Health / National Cancer Institute: UM1 CA167462 (PI: Goodman), National Institute of Health UO1-CA6367307 (PIs Omen, Goodman); National Institute of Health R01 CA111703 (PI Chen), National Institute of Health 5R01 CA151989-01A1(PI Doherty). The Liverpool Lung project is supported by the Roy Castle Lung Cancer Foundation. The Harvard Lung Cancer Study was supported by the NIH (National Cancer Institute) grants CA092824, CA090578, CA074386 The Multiethnic Cohort Study was partially supported by NIH Grants CA164973, CA033619, CA63464 and CA148127 The work performed in MSH-PMH study was supported by The Canadian Cancer Society Research Institute (020214), Ontario Institute of Cancer and Cancer Care Ontario Chair Award to R.J.H. and G.L. and the Alan Brown Chair and Lusi Wong Programs at the Princess Margaret Hospital Foundation. NJLCS was funded by the State Key Program of National Natural Science of China (81230067), the National Key Basic Research Program Grant (2011CB503805), the Major Program of the National Natural Science Foundation of China (81390543). Norway study was supported by Norwegian Cancer Society, Norwegian Research Council The Shanghai Cohort Study (SCS) was supported by National Institutes of Health R01 CA144034 (PI: Yuan) and UM1 CA182876 (PI: Yuan). The Singapore Chinese Health Study (SCHS) was supported by National Institutes of Health R01 CA144034 (PI: Yuan) and UM1 CA182876 (PI: Yuan). The work in TLC study has been supported in part the James & Esther King Biomedical Research Program (09KN-15), National Institutes of Health Specialized Programs of Research Excellence (SPORE) Grant (P50 CA119997), and by a Cancer Center Support Grant (CCSG) at the H. Lee Moffitt Cancer Center and Research Institute, an NCI designated Comprehensive Cancer Center (grant number P30-CA76292) The Vanderbilt Lung Cancer Study – BioVU dataset used for the analyses described was obtained from Vanderbilt University Medical Center’s BioVU, which is supported by institutional funding, the 1S10RR025141-01 instrumentation award, and by the Vanderbilt CTSA grant UL1TR000445 from NCATS/NIH. Dr. Aldrich was supported by NIH/National Cancer Institute K07CA172294 (PI: Aldrich) and Dr. Bush was supported by NHGRI/NIH U01HG004798 (PI: Crawford). The Copenhagen General Population Study (CGPS) was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The NELCS study: Grant Number P20RR018787 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). The MDACC study was supported in part by grants from the NIH (P50 CA070907, R01 CA176568) (to X. Wu), Cancer Prevention & Research Institute of Texas (RP130502) (to X. Wu), and The University of Texas MD Anderson Cancer Center institutional support for the Center for Translational and Public Health Genomics. The study in Lodz center was partially funded by Nofer Institute of Occupational Medicine, under task NIOM 10.13: Predictors of mortality from non-small cell lung cancer - field study. Kentucky Lung Cancer Research Initiative was supported by the Department of Defense [Congressionally Directed Medical Research Program, U.S. Army Medical Research and Materiel Command Program] under award number: 10153006 (W81XWH-11-1-0781). Views and opinions of, and endorsements by the author(s) do not reflect those of the US Army or the Department of Defense. This research was also supported by unrestricted infrastructure funds from the UK Center for Clinical and Translational Science, NIH grant UL1TR000117 and Markey Cancer Center NCI Cancer Center Support Grant (P30 CA177558) Shared Resource Facilities: Cancer Research Informatics, Biospecimen and Tissue Procurement, and Biostatistics and Bioinformatics. The Resource for the Study of Lung Cancer Epidemiology in North Trent (ReSoLuCENT) study was funded by the Sheffield Hospitals Charity, Sheffield Experimental Cancer Medicine Centre and Weston Park Hospital Cancer Charity. FT was supported by a clinical PhD fellowship funded by the Yorkshire Cancer Research/Cancer Research UK Sheffield Cancer Centre. The authors would like to thank the staff at the Respiratory Health Network Tissue Bank of the FRQS for their valuable assistance with the lung eQTL dataset at Laval University. The lung eQTL study at Laval University was supported by the Fondation de l’Institut universitaire de cardiologie et de pneumologie de Québec, the Respiratory Health Network of the FRQS, the Canadian Institutes of Health Research (MOP - 123369). Y.B. holds a Canada Research Chair in Genomics of Heart and Lung Diseases. The research undertaken by M.D.T., L.V.W. and M.S.A. was partly funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M.D.T. holds a Medical Research Council Senior Clinical Fellowship (G0902313).
Collapse
Affiliation(s)
- Xuemei Ji
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, G1V 4G5, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jiang Gui
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Xiangjun Xiao
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - David Qian
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Philippe Joubert
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Maxime Lamontagne
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Yafang Li
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Ivan Gorlov
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Mariella de Biasi
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Younghun Han
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Olga Gorlova
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - James McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Robert Carreras-Torres
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, 02115, MA, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Geoffrey Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Herlev 2730, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 København N, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Ringvej 75, Copenhagen, Herlev 2730, Denmark
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, 37203, TN, USA
| | - William S Bush
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, 37203, TN, USA
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center, Haifa, 34361, Israel
- Faculty of Medicine, Technion, Haifa, 34361, Israel
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - M Dawn Teare
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Lambertus A Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, 6525 EZ, The Netherlands
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, 99210-1495, WA, USA
| | - Aage Haugen
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Stephen Lam
- British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z1L3, Canada
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 33612, FL, USA
| | - Angeline S Andrew
- Department of Epidemiology, Geisel School of Medicine, 1 Medical Center Drive, Hanover, 03755, NH, USA
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, 1 Gwanak-ro, Gwanak-gu, Seoul, 151 742, Republic of Korea
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, 15232, PA, USA
| | - Pier A Bertazzi
- Department of Preventive Medicine, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, Milan, 20133, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 20133, Italy
| | - Angela C Pesatori
- Department of Preventive Medicine, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, Milan, 20133, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 20133, Italy
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Nancy Diao
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
| | - Ruyang Zhang
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Natasha Leighl
- University Health Network-The Princess Margaret Cancer Centre, 600 University Avenue, Toronto, M5G 2C4, Canada
| | - Jakob S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark
| | - Anders Mellemgaard
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark
| | - Walid Saliba
- Clalit National Cancer Control Center, Carmel Medical Center, Haifa, 34361, Israel
- Faculty of Medicine, Technion, Haifa, 34361, Israel
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, CA, USA
| | - Lynne Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Ana Fernandez-Somoano
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Guillermo Fernandez-Tardon
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Erik H F M van der Heijden
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, 6525 EZ, The Netherlands
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Michael W Marcus
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Hans Brunnström
- Department of Pathology, Lund University, Lund, 222 41, Sweden
| | - Jonas Manjer
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | - Olle Melander
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | - David C Muller
- School of Public Health, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Kim Overvad
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, "Civic-M.P. Arezzo" Hospital, ASP, Ragusa, 97100, Italy
| | - Jennifer Doherty
- Department of Epidemiology, Geisel School of Medicine, 1 Medical Center Drive, Hanover, 03755, NH, USA
- Fred Hutchinson Cancer Research Center, Seattle, 98109-1024, WA, USA
| | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, 98109-1024, WA, USA
- Swedish Medical Group, Arnold Pavilion, Suite 200, Seattle, 98104, WA, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Penella Woll
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Irene Brüske
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Judith Manz
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Thomas Muley
- Thoraxklinik at University Hospital Heidelberg, Heidelberg, 69126, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, 69120, Germany
| | - Angela Risch
- Cancer Cluster Salzburg, University of Salzburg, Salzburg, 5020, Austria
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, 901 85, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Umeå University, Umeå, 901 85, Sweden
| | | | | | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, First Floor, 800 Rose Street, Lexington, 40508, KY, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 33612, KY, USA
| | - Ciprian Bolca
- Institute of Pneumology "Marius Nasta", Bucharest, RO-050159, Romania
| | - Ivana Holcatova
- 1st Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08 Praha 2, Czech Republic
| | - Vladimir Janout
- 1st Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08 Praha 2, Czech Republic
| | - Milica Kontic
- Clinical Center of Serbia, Clinic for Pulmonology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Institute-Oncology Center, Warsaw, 02-781, Poland
| | - Anush Mukeria
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | - Simona Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade, 11070, Serbia
| | - Tadeusz M Orlowski
- Department of Surgery, National Tuberculosis and Lung Diseases Research Institute, Warsaw, PL-01-138, Poland
| | - Ghislaine Scelo
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, 91-348, Poland
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Vidar Skaug
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Shanbeh Zienolddiny
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Eric J Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, 08908, Spain
| | - Lesley M Butler
- University of Pittsburgh Cancer Institute, Pittsburgh, 15232, PA, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, 119077, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 2200, China
| | | | | | | | - David C Nickle
- Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, 02115-5727, MA, USA
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, V6Z 1Y6, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, GRIAC, University of Groningen, University Medical Center Groningen, Groningen, NL - 9713 GZ, The Netherlands
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Louise V Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Fangyi Gu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jinyoung Byun
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Ahsan Kamal
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Dakai Zhu
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, ON, Canada
| | - Wei-Qi Wei
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Christopher I Amos
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA.
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, 77030, TX, USA.
| |
Collapse
|
15
|
Englinger B, Kallus S, Senkiv J, Heilos D, Gabler L, van Schoonhoven S, Terenzi A, Moser P, Pirker C, Timelthaler G, Jäger W, Kowol CR, Heffeter P, Grusch M, Berger W. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer. J Exp Clin Cancer Res 2017; 36:122. [PMID: 28882160 PMCID: PMC5590147 DOI: 10.1186/s13046-017-0592-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Studying the intracellular distribution of pharmacological agents, including anticancer compounds, is of central importance in biomedical research. It constitutes a prerequisite for a better understanding of the molecular mechanisms underlying drug action and resistance development. Hyperactivated fibroblast growth factor receptors (FGFRs) constitute a promising therapy target in several types of malignancies including lung cancer. The clinically approved small-molecule FGFR inhibitor nintedanib exerts strong cytotoxicity in FGFR-driven lung cancer cells. However, subcellular pharmacokinetics of this compound and its impact on therapeutic efficacy remain obscure. METHODS 3-dimensional fluorescence spectroscopy was conducted to asses cell-free nintedanib fluorescence properties. MTT assay was used to determine the impact of the lysosome-targeting agents bafilomycin A1 and chloroquine combined with nintedanib on lung cancer cell viability. Flow cytometry and live cell as well as confocal microscopy were performed to analyze uptake kinetics as well as subcellular distribution of nintedanib. Western blot was conducted to investigate protein expression. Cryosections of subcutaneous tumor allografts were generated to detect intratumoral nintedanib in mice after oral drug administration. RESULTS Here, we report for the first time drug-intrinsic fluorescence properties of nintedanib in living and fixed cancer cells as well as in cryosections derived from allograft tumors of orally treated mice. Using this feature in conjunction with flow cytometry and confocal microscopy allowed to determine cellular drug accumulation levels, impact of the ABCB1 efflux pump and to uncover nintedanib trapping into lysosomes. Lysosomal sequestration - resulting in an organelle-specific and pH-dependent nintedanib fluorescence - was identified as an intrinsic resistance mechanism in FGFR-driven lung cancer cells. Accordingly, combination of nintedanib with agents compromising lysosomal acidification (bafilomycin A1, chloroquine) exerted distinctly synergistic growth inhibitory effects. CONCLUSION Our findings provide a powerful tool to dissect molecular factors impacting organismal and intracellular pharmacokinetics of nintedanib. Regarding clinical application, prevention of lysosomal trapping via lysosome-alkalization might represent a promising strategy to circumvent cancer cell-intrinsic nintedanib resistance.
Collapse
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Sebastian Kallus
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Julia Senkiv
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Institute of Cell Biology NAS of Ukraine, Drahomanova str 14/16, 79005 Lviv, Ukraine
| | - Daniela Heilos
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Sushilla van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
16
|
Clayton NS, Wilson AS, Laurent EP, Grose RP, Carter EP. Fibroblast growth factor-mediated crosstalk in cancer etiology and treatment. Dev Dyn 2017; 246:493-501. [PMID: 28470714 DOI: 10.1002/dvdy.24514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
It is becoming increasingly evident that multiple cell types within the tumor work together to drive tumour progression and impact on both the response to therapy and the dissemination of tumour cells throughout the body. Fibroblast growth factor signalling (FGF) is perturbed in a number of tumors, serving to drive tumor cell proliferation and migration, but also has a central role in orchestrating the plethora of cells that comprise the tumor microenvironment. This review focuses on how this family of signalling molecules can influence the interactions between tumor cells and their surrounding environment. Unraveling the complexities of FGF signalling between the distinct cell types of a tumor may identify additional opportunities for FGF-targeted compounds in therapy and could help combat drug resistance. Developmental Dynamics 246:493-501, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- N S Clayton
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - A S Wilson
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - E P Laurent
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - R P Grose
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - E P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Porta R, Borea R, Coelho A, Khan S, Araújo A, Reclusa P, Franchina T, Van Der Steen N, Van Dam P, Ferri J, Sirera R, Naing A, Hong D, Rolfo C. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit Rev Oncol Hematol 2017; 113:256-267. [PMID: 28427515 DOI: 10.1016/j.critrevonc.2017.02.018] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. AREAS COVERED This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. EXPERT OPINION Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations.
Collapse
Affiliation(s)
- Rut Porta
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain; Girona Biomedical Research Institute (IDIBGi), Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Roberto Borea
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Andreia Coelho
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Shahanavaj Khan
- Nanomedicine and Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - António Araújo
- Department of Medical Oncology, Centro Hospitalar do Porto, Porto, Portugal
| | - Pablo Reclusa
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Tindara Franchina
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Nele Van Der Steen
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Peter Van Dam
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Jose Ferri
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Rafael Sirera
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - David Hong
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2).
| |
Collapse
|