1
|
Lee NK, Na DL, Myeong SH, Lee SY, Lee NH, Jang H, Seo SW, Chang JW, Kim HJ, Son HJ. Effects of Dexamethasone and Tacrolimus on Mesenchymal Stem Cell Characteristics and Gene Expression. Int J Stem Cells 2025; 18:173-185. [PMID: 40082066 PMCID: PMC12122247 DOI: 10.15283/ijsc24116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are frequently used for therapeutic applications in both pre-clinical and clinical settings owing to their capacity for immune modulation and neuroprotective effects. However, transient fever is commonly observed as an adverse event following MSC injection in patients with Alzheimer's disease (AD). In this study, we investigated the potential impact of immunosuppressants such as dexamethasone and tacrolimus on altering the characteristics of human mesenchymal stem cells (hMSCs). Additionally, we examined whether these immunosuppressants affect the persistence of hMSCs or the immune response upon their administration into the brain parenchyma of AD mice. The exposure of hMSCs to high concentrations of dexamethasone and tacrolimus in vitro did not significantly alter the characteristics of hMSCs. The expression of genes related to innate immune responses, such as Irak1, Irf3, Nod1, and Ifnar1, was significantly downregulated by the additional administration of dexamethasone and tacrolimus to the brain parenchyma of AD mice. However, hMSC persistence in the AD mouse brain was not affected. The results of this study support the use of immunosuppressants to mitigate fever during stem cell therapy in patients with AD.
Collapse
Affiliation(s)
- Na Kyung Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Duk L. Na
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Happymind Clinic, Seoul, Korea
| | - Su Hyeon Myeong
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung-Yeon Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Na-Hee Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Sang Won Seo
- Cell and Gene Therapy Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Cell and Gene Therapy Institute, ENCell Co., Ltd., Seoul, Korea
| | - Hee Jin Kim
- Cell and Gene Therapy Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hyo Jin Son
- Cell and Gene Therapy Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Liu Q, Yang H, Kang X, Tian H, Kang Y, Li L, Yang X, Liu H, Ren P, Kuang X, Tong M, Fan W. A Synbiotic Ameliorates Con A-Induced Autoimmune Hepatitis in Mice through Modulation of Gut Microbiota and Immune Imbalance. Mol Nutr Food Res 2023; 67:e2200428. [PMID: 36708241 DOI: 10.1002/mnfr.202200428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Indexed: 01/29/2023]
Abstract
SCOPE Changes in the intestinal flora are related to autoimmune hepatitis (AIH) development. The aim of this study is to investigate the synergistic effects of probiotics and prebiotics on liver injury induced by concanavalin A (Con A). METHODS AND RESULTS C57BL/6 mice are fed probiotics (Pro), prebiotics (Pre), synbiotic (Syn) for 7 days and then Con A is injected via tail veins to induce AIH. Additionally, methylprednisolone (MP) is gavaged 0.5 h after the Con A injection. It is found that both Pro, Pre, Syn, and MP decrease the levels of serum transaminase, liver F4/80+ macrophage cells, and hepatocellular apoptosis. Pro, Pre, and Syn decrease proinflammatory cytokines, elevate levels of anti-inflammatory as well as restored immune imbalance in AIH. Besides, Pro, Pre, and Syn not only reshape the perturbed gut microbiota, but also maintain intestinal barrier integrity, block the activation of lipopolysaccharide (LPS)/TLR4/NF-κB pathway in the liver. Interestingly, the effects of Syn are superior to Pro or Pre alone in Con A-induced acute liver injury. CONCLUSIONS Syn obviously facilitates AIH remission. The combined use of Pro and Pre is effective in improving Pro and Pre efficacy and can be an important tool for preventing and adjuvant treating patients for AIH.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- LinFen Central Hospital, LinFen, 041000, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Haixia Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| | - Lin Li
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
| | - Mingwei Tong
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, 030619, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Jinzhong, 030619, China
| |
Collapse
|
4
|
Rex DAB, Suchitha GP, Palollathil A, Kanichery A, Prasad TSK, Dagamajalu S. The network map of urotensin-II mediated signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2022; 16:601-608. [PMID: 35174439 PMCID: PMC9733756 DOI: 10.1007/s12079-022-00672-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5158 ). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.
Collapse
Affiliation(s)
- D. A. B. Rex
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - G. P. Suchitha
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Akhina Palollathil
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Anagha Kanichery
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - T. S. Keshava Prasad
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Shobha Dagamajalu
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| |
Collapse
|
5
|
Li Y, Guo Z, Cui H, Wang T, Xu Y, Zhao J. Urantide prevents CCl4‑induced acute liver injury in rats by regulating the MAPK signalling pathway. Mol Med Rep 2021; 24:688. [PMID: 34328202 PMCID: PMC8365596 DOI: 10.3892/mmr.2021.12329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
A number of drugs and other triggers can cause acute liver injury (ALI) in clinical practice. Therefore, identifying a safe drug for the prevention of liver injury is important. The aim of the present study was to investigate the potential preventive effect and regulatory mechanism of urantide on carbon tetrachloride (CCl4)‑induced ALI by investigating the expression of components of the MAPK signalling pathway and the urotensin II (UII)/urotensin receptor (UT) system. Liver oedema and severe fatty degeneration of the cytoplasm were observed in ALI model rats, and the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were found to be significantly increased. Compared with those in the ALI model group, ALT and AST levels and the liver index did not significantly increase in each group given the preventive administration of urantide, and the liver tissue morphology was correspondingly protected. Moreover, the gene and protein expression levels of UII, G protein‑coupled receptor (GPR14) and the oxidative stress‑sensitive cytokines, α‑smooth muscle actin and osteopontin were decreased, indicating that the protein translation process was effectively maintained. However, the expression levels of MAPK signalling pathway‑related proteins and genes were decreased. It was found that urantide could effectively block the MAPK signalling pathway by antagonizing the UII/UT system, thus protecting the livers of ALI model rats. Therefore, it was suggested that ALI may be associated with the MAPK signalling pathway, and effective inhibition of the MAPK signalling pathway may be critical in protecting the liver.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zheming Guo
- Second Department of Trauma, Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050000, P.R. China
| | - Haipeng Cui
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Tu Wang
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuhang Xu
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Juan Zhao
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
6
|
Sun L, Li Y, Misumi I, González-López O, Hensley L, Cullen JM, McGivern DR, Matsuda M, Suzuki R, Sen GC, Hirai-Yuki A, Whitmire JK, Lemon SM. IRF3-mediated pathogenicity in a murine model of human hepatitis A. PLoS Pathog 2021; 17:e1009960. [PMID: 34591933 PMCID: PMC8509855 DOI: 10.1371/journal.ppat.1009960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
HAV-infected Ifnar1-/- mice recapitulate many of the cardinal features of hepatitis A in humans, including serum alanine aminotransferase (ALT) elevation, hepatocellular apoptosis, and liver inflammation. Previous studies implicate MAVS-IRF3 signaling in pathogenesis, but leave unresolved the role of IRF3-mediated transcription versus the non-transcriptional, pro-apoptotic activity of ubiquitylated IRF3. Here, we compare the intrahepatic transcriptomes of infected versus naïve Mavs-/- and Ifnar1-/- mice using high-throughput sequencing, and identify IRF3-mediated transcriptional responses associated with hepatocyte apoptosis and liver inflammation. Infection was transcriptionally silent in Mavs-/- mice, in which HAV replicates robustly within the liver without inducing inflammation or hepatocellular apoptosis. By contrast, infection resulted in the upregulation of hundreds of genes in Ifnar1-/- mice that develop acute hepatitis closely modeling human disease. Upregulated genes included pattern recognition receptors, interferons, chemokines, cytokines and other interferon-stimulated genes. Compared with Ifnar1-/- mice, HAV-induced inflammation was markedly attenuated and there were few apoptotic hepatocytes in livers of infected Irf3S1/S1Ifnar1-/- mice in which IRF3 is transcriptionally-inactive due to alanine substitutions at Ser-388 and Ser-390. Although transcriptome profiling revealed remarkably similar sets of genes induced in Irf3S1/S1Ifnar1-/- and Ifnar1-/- mice, a subset of genes was differentially expressed in relation to the severity of the liver injury. Prominent among these were both type 1 and type III interferons and interferon-responsive genes associated previously with apoptosis, including multiple members of the ISG12 and 2’-5’ oligoadenylate synthetase families. Ifnl3 and Ifnl2 transcript abundance correlated strongly with disease severity, but mice with dual type 1 and type III interferon receptor deficiency remained fully susceptible to liver injury. Collectively, our data show that IRF3-mediated transcription is required for HAV-induced liver injury in mice and identify key IRF3-responsive genes associated with pathogenicity, providing a clear distinction from the transcription-independent role of IRF3 in liver injury following binge exposure to alcohol. Hepatitis A is a common and potentially serious disease involving inflammation and liver cell death resulting from infection with the picornavirus, hepatitis A virus (HAV). The pathogenesis of the disease is incompletely understood. Here, we have profiled changes in the RNA transcriptome of livers from mice with various genetic deficiencies in the innate immune response to HAV. We show that the liver injury associated with HAV infection in these mice results from the induction of genes under transcriptional control of interferon regulatory factor 3 (IRF3). We use high-throughput RNA sequencing to identify sets of genes induced in mice with wild-type versus transcriptionally-incompetent IRF3, rule out roles for type III interferons and IFIT proteins in disease pathogenesis, and identify genes with intrahepatic expression correlating closely with HAV-mediated liver pathology.
Collapse
Affiliation(s)
- Lu Sun
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ichiro Misumi
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lucinda Hensley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John M. Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David R. McGivern
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Asuka Hirai-Yuki
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Jason K. Whitmire
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Salman AA, Waheed MH, Ali-Abdulsahib AA, Atwan ZW. Low type I interferon response in COVID-19 patients: Interferon response may be a potential treatment for COVID-19. Biomed Rep 2021; 14:43. [PMID: 33786172 PMCID: PMC7995242 DOI: 10.3892/br.2021.1419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFN) are antiviral cytokines that mitigate the effects of invading viruses early on during the infection process. SARS-CoV and MERS induce weak IFN responses; hence, the clinical trials which included recombinant IFN accompanied with other antiviral drugs exhibited improved results in terms of shortening the duration of illness. The aim of the present study was to evaluate the type I IFN response in COVID-19 patients to determine whether it is sufficient to eliminate or reduce the severity of the infection, and whether it can be recommended as a potential therapy. Total RNA samples were converted to cDNA and used as templates to evaluate the gene expression levels of IFN regulatory factor (IRF)3 and IFN-β in COVID-19 patients or control. The results showed that IRF3 gene expression was upregulated ~250-fold compared with the negative samples. In contrast, IFN-β expression increased slightly in COVID-19 patients. Consistent with other coronaviruses, such as SARS-CoV and MERS, COVID-19 infection does not induce an efficient IFN response to reduce the severity of the virus. This may be attributed to an incomplete response of IRF3 in activating the IFN-β promoter in the infected patients. The results suggest IFN-β or α may be used as potential treatments.
Collapse
Affiliation(s)
| | | | | | - Zeenah Weheed Atwan
- Genetic Engineering Laboratory, Biology Department, College of Science, Basrah University, Basrah, Iraq
| |
Collapse
|
8
|
Zhong H, He Y, Yang X, Si QQ, Xie P, Gao DY, Liu LM. Liver injury mediated by the UII and its receptor (UT) system is possibly associated with the activation of autophagy-related and apoptosis-resisted pathways of Kupffer cells in acute liver failure. EUR J INFLAMM 2021; 19. [DOI: 10.1177/20587392211027401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
The system of urotensin II (UII) and its receptor (UT) (or: UII/UT system) mediates hepatic immune inflamed injury in acute liver failure (ALF) with autophagy inhibition. However, it is unknown whether the system has an effect on liver autophagy in ALF. In this study, we attempted to explore hepatic autophagy response in ALF through blocking the UII/UT signal. Autophagy-related genes were examined in the liver tissues of lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced ALF after pretreatment of UT receptor specific antagonist urantide. And then, the levels of autophagy- and apoptosis-related genes were assayed in LPS-stimulated KCs via urantide pretreatment. We found that the expressions of hepatic autophagy related genes, including Beclin-1, Atg5, Atg7, LC3 and p62 mRNA, and LC3 II and p62 protein, were significantly downregulated in LPS/D-GalN-induced ALF mice; but they were not affected by pretreatment of urantide, a special UT receptor antagonist. To probe inflammatory mechanisms of the UII/UT system, we further investigated the effect of the system on Kupffer cells (KCs), the innate immune cells in liver. We found that urantide pretreatment significantly inhibited production of inflammatory injury molecules including TRAF6 and ROS in LPS-stimulated KCs. LPS stimulation induced LC3 and p62 mRNA and LC3 II and p62 protein expression in KCs. After urantide pretreatment, LC3 and p62 mRNA and LC3 II protein were downregulated, while p62 protein was upregulated in LPS-stimulated KCs. In addition, antiapoptotic protein Bcl-2 inhibition and proapoptotic protein cleaved caspase-3 increase were observed in LPS-stimulated KCs, and the effects were enhanced after urantide pretreatment in the study. We conclude that liver injury mediated by the UII/UT system is possibly associated with the activation of autophagy-related and apoptosis-resisted pathways of KCs in ALF.
Collapse
Affiliation(s)
- Huan Zhong
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu He
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Yang
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin-Qin Si
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pin Xie
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - De-Yong Gao
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang-Ming Liu
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Wang N, Li Y, Wang X, Ma Z, Wang Y, Zhang C, Yuan Y, Zhao M. Inhibition of TBK1 by amlexanox attenuates paraquat-induced acute lung injury. Toxicology 2020; 443:152555. [DOI: 10.1016/j.tox.2020.152555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
|
10
|
Cheng K, Tang Q, Huang Y, Liu X, Karrow NA, Wang C. Effect of vitamin D 3 on the immunomodulation of head kidney after Edwardsiella ictaluri challenge in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2020; 99:353-361. [PMID: 32081806 DOI: 10.1016/j.fsi.2020.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Edwardsiella ictaluri (E. ictaluri) causes severe infections in yellow catfish (Pelteobagrus fulvidraco), which leads to a massive loss in the aquaculture industry especially in catfish commercial production. Previous studies have confirmed that vitamin D3 is essential in immune regulation in mammals. Based on next-generation sequencing, this study explored the immunomodulatory effects of dietary vitamin D3 on the head kidney of yellow catfish after E. ictaluri challenge. Current results showed that increasing the content of dietary vitamin D3 within the experimental concentration range (1120IU/kg-16600IU/kg) could reduce the mortality of the yellow catfish after E. ictaluri challenge. Results of the next-generation sequencing showed that dietary vitamin D3 regulates the immune mechanism of the head kidney mainly through three pathways i.e. negative regulation of interferon-β production, negative regulation of interleukin-6 production and neutrophil chemotaxis. Proteins HSPA8, MAP4K4 and MRC1 may be involved in vitamin D3-mediated immunoregulation in the head kidney. qPCR results showed that increasing the content of dietary vitamin D3 can improve the immune function of the yellow catfish by down-regulating ifn-β and pro-inflammatory factors tnf-α, il1-β, il-6, il-8 and up-regulating the anti-inflammatory factor il-10. The above results indicated that dietary addition of vitamin D3 regulated the immune response in head kidney of yellow catfish and helped the fish to resist the negative effects of infection by E. ictaluri in a dose-dependent manner.
Collapse
Affiliation(s)
- Ke Cheng
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Tang
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, 10461, USA
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Xiaoling Liu
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | - Chunfang Wang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Sun SL, Liu LM. Urotensin II: an inflammatory cytokine. J Endocrinol 2019; 240:JOE-18-0505.R2. [PMID: 30601760 DOI: 10.1530/joe-18-0505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a polypeptide molecule with neurohormone-like activity. It has been confirmed that UII is widely distributed in numerous organs of different animal species from fish to mammals, including humans. The UII receptor is orphan G-protein coupled receptor 14, also known as UT. The tissue distribution of UII and UT is highly consistent, and their expression may be regulated by autocrine and paracrine mechanisms. In the body, UII has many physiological and pathophysiological activities, such as vasoconstrictor and vasodilatory actions, cell proliferation, pro-fibrosis, neuroendocrine activity, insulin resistance, and carcinogenic and inflammatory effects, which have been recognized only in recent years. In fact, UII is involved in the process of inflammatory injury and plays a key role in the onset and development of inflammatory diseases. In this paper, we will review the roles UII plays in inflammatory diseases.
Collapse
Affiliation(s)
- Sui-Lin Sun
- S Sun, Department of Infection, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China, Nanchang, China
| | - Liang-Ming Liu
- L Liu, Department of Infection, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiaotong University, Shanghai, 201600, China
| |
Collapse
|
12
|
Chen X, Tang L, Feng J, Wang Y, Han Z, Meng J. Downregulation of Paralemmin-3 Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Rats by Regulating Inflammatory Response and Inhibiting Formation of TLR4/MyD88 and TLR4/TRIF Complexes. Inflammation 2018; 40:1983-1999. [PMID: 28801798 PMCID: PMC7102376 DOI: 10.1007/s10753-017-0639-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated paralemmin-3 (PALM3) participates in Toll-like receptor (TLR) signaling. This study investigated the effect of PALM3 knockdown on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its underlying mechanisms. We constructed a recombinant adenoviral vector containing short hairpin RNA for PALM3 to knockdown PALM3 expression. A transgene-free adenoviral vector was used as a negative control. The ALI rat model was established by LPS peritoneal injection at 48-h post-transfection. Results showed that downregulation of PALM3 improved the survival rate, attenuated lung pathological changes, alleviated pulmonary edema, lung vascular leakage and neutrophil infiltration, inhibited the production of proinflammatory cytokines and activation of nuclear factor κB and interferon β regulatory factor 3, and promoted the secretion of anti-inflammatory cytokine interleukin-10 and expression of suppressor of cytokine signaling-3 in the ALI rat model. However, PALM3 knockdown had no effect on TLR4, myeloid differentiation factor 88 (MyD88), and Toll-interleukin-1 receptor domain-containing adaptor inducing interferon β (TRIF) expression. Moreover, PALM3 knockdown reduced the interaction of TLR4 with MyD88 or TRIF induced by LPS in rat lungs. Therefore, the downregulation of PALM3 protected rats from LPS-induced ALI and its mechanisms were partially associated with the modulation of inflammatory responses and inhibition of TLR4/MyD88 and TLR4/TRIF complex formation.
Collapse
Affiliation(s)
- Xuxin Chen
- Department of Respiratory Medicine, Navy General Hospital of the PLA, No. 6 Fucheng Road, Beijing, 100037, China
| | - Lu Tang
- Department of Neurology, The First Hospital of Changsha, Changsha, 430100, People's Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yi Wang
- Department of Respiratory Medicine, The Sixth People's Hospital of Jinan City Affiliated to Jining Medical College, Jinan, 250200, People's Republic of China
| | - Zhihai Han
- Department of Respiratory Medicine, Navy General Hospital of the PLA, No. 6 Fucheng Road, Beijing, 100037, China.
| | - Jiguang Meng
- Department of Respiratory Medicine, Navy General Hospital of the PLA, No. 6 Fucheng Road, Beijing, 100037, China.
| |
Collapse
|
13
|
Role of selective blocking of bradykinin B1 receptor in attenuating immune liver injury in trichloroethylene-sensitized mice. Cytokine 2018; 108:71-81. [PMID: 29579546 DOI: 10.1016/j.cyto.2018.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
Trichloroethylene (TCE) is able to induce trichloroethylene hypersensitivity syndrome (THS) with multi-system immune injuries. In our previous study, we found kallikrein-kinin system (KKS) activation, including the bradykinin B1 receptor (B1R), which contributed to immune organ injury in TCE sensitized mice. However, the mechanism of B1R mediating immune dysfunction is not clarified. The present study initiates to investigate the potential mechanism of B1R on liver injury. We establish a TCE sensitized BALB/c mouse model to explore the mechanism with or without a B1R inhibitor R715. We found B1R expression was increased in TCE sensitization-positive mice. As expect, hepatocyte intracellular organelles and mitochondria disappeared, glycogen particles reduced significantly as well in TCE sensitization-positive mice via the transmission electron microscopic examination, meanwhile, R715 alleviated the deteriorate above. The blockade of B1R resulted in a significant decreased p-ERK1/2 and increased p-AKT expression. The expression of CD68 kupffer cell and its relative cytokine, including IL-6 and TNF-α, increased in TCE sensitization-positive mice and decreased in R715 pretreatment TCE sensitization-positive mice. Together, the results demonstrate B1R plays a key role in ERK/MAPK and PI3K/AKT signal pathway activation and inflammation cytokine expression in immune liver injury induced by TCE. B1R exerts a pivotal role in the development of TCE induced liver injury.
Collapse
|
14
|
Chen XX, Tang L, Fu YM, Wang Y, Han ZH, Meng JG. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-Toll-like receptor-4 signaling in alveolar macrophages. Int J Mol Med 2017; 40:1921-1931. [PMID: 29039447 DOI: 10.3892/ijmm.2017.3161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Alveolar macrophages (AMs) are the first line of defense against foreign stimulation in alveoli, and they participate in inflammatory responses during acute lung injury (ALI). Previous studies indicated that paralemmin-3 (PALM3) expression is induced by lipopolysaccharides (LPS) and may be involved in LPS-Toll-like receptor 4 (TLR4) signaling in alveolar epithelial cells. The aim of the present study was to investigate the effect of PALM3 on LPS-induced inflammation and its underlying mechanisms in rat AMs. For this purpose, the authors detected the expression of PALM3 in AMs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting following LPS stimulation. Following this, a recombinant adenovirus expressing short hairpin RNA (shRNA) for PALM3 was constructed, as well as a recombinant adenovirus carrying the rat PALM3 gene to modulate the expression of PALM3 in rat AMs. At 48 h after transfection, the PALM3 expression in AMs was detected by RT-qPCR and western blotting. The levels of several cytokines and the activity of nuclear factor-κB and interferon regulatory factor 3 in AMs were measured after LPS stimulation. The localization of PALM3 and LPS-TLR4 signaling adaptor molecules in AMs was analyzed by confocal microscopy, and the physical interactions of PALM3 with these adaptors were assessed by co-immunoprecipitation assays. LPS induced PALM3 expression in AMs and that PALM3 expression promoted the LPS-induced inflammatory response, while PALM3 downregulation suppressed the LPS-induced inflammatory response in AMs. In addition, the results demonstrated that PALM3 could interact with TLR4, myeloid differentiation factor 88, interleukin (IL)-1 receptor associated kinase-1, tumor necrosis factor receptor associated factor-6, and Toll-IL-1 receptor containing adapter molecule-2 in AMs after LPS stimulation. These results suggested that PALM3 contributes to the LPS-induced inflammatory response and participates in LPS-TLR4 signaling in AMs. These data may provide the basis for the development of novel targeted therapeutic strategies of treating ALI.
Collapse
Affiliation(s)
- Xu-Xin Chen
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing 100037, P.R. China
| | - Lu Tang
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan 430100, P.R. China
| | - Yu-Mei Fu
- Department of Emergency, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yi Wang
- Department of Respiratory Medicine, The Sixth People's Hospital of Jinan City Affiliated to Jining Medical College, Jinan, Shandong 250200, P.R. China
| | - Zhi-Hai Han
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing 100037, P.R. China
| | - Ji-Guang Meng
- Department of Respiratory Medicine, Navy General Hospital of the PLA, Beijing 100037, P.R. China
| |
Collapse
|