1
|
Mancarella D, Ellinghaus H, Sigismondo G, Veselinov O, Kühn A, Goyal A, Hartmann M, Fellenberg J, Krijgsveld J, Plass C, Popanda O, Schmezer P, Bakr A. Deposition of onco-histone H3.3-G34W leads to DNA repair deficiency and activates cGAS/STING-mediated immune responses. Int J Cancer 2024; 154:2106-2120. [PMID: 38353495 DOI: 10.1002/ijc.34883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 04/14/2024]
Abstract
Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.
Collapse
Affiliation(s)
- Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Henrik Ellinghaus
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Olivera Veselinov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Kühn
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Hartmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Fellenberg
- Department of Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Yan J, Wu J, Wang Y, Di X, Jiang H, Wen D, Li D, Zhang S. A novel RBBP8(p.E281*) germline mutation is a predisposing mutation in familial hereditary cancer syndrome. J Mol Med (Berl) 2023; 101:1255-1265. [PMID: 37615686 DOI: 10.1007/s00109-023-02354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/30/2023] [Accepted: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Screening tumor susceptibility genes helps in identifying powerful biomarkers for hereditary cancer monitoring, prevention, and diagnosis, providing opportunities for understanding potential molecular mechanisms and biomarkers for the precise treatment of hereditary cancer syndromes. Whole-exome sequencing of blood and bioinformatics analysis uncovered a novel RBBP8(p.E281*) germline mutation in a family with hereditary cancer syndrome, which was verified by Sanger sequencing. Cell proliferation, colony formation, cell migration, and in vivo tumorigenesis were investigated by CCK8, colony formation, Transwell, and in vivo xenograft assays. Protein localization and interaction were detected by immunofluorescence, nuclear and cytoplasmic protein extraction kits, and Co-IP. A new heterozygous germline mutation of the RBBP8(p.E281*) gene was found to be associated with familial hereditary cancer syndrome. RBBP8-WT was mainly detected in the nucleus and interacts with BRCA1. In contrast, RBBP8(p.E281*) is mainly located in the cytoplasm, with no interaction with BRCA1. RBBP8(p.E281*) variant plays an oncogenic role in the cytoplasm in addition to its loss of function in the nucleus, which promotes breast cancer proliferation, in vivo tumorigenesis, and migration. Compared with the control group, RBBP8(p.E281*) showed elevated cell death in response to cisplatin and olaparib treatment. A novel RBBP8(p.E281*) germline mutation was identified from familial hereditary cancer syndrome. RBBP8(p.E281*) is not able to enter the nucleus or interact with BRCA1 through the lost binding motif, and RBBP8(p.E281*) variant appears to promote tumorigenesis in the cytoplasm in addition to its loss of function in the nucleus. RBBP8(p.E281*) variant may promote tumor susceptibility and serve as a precision medicine biomarker in familial hereditary cancer syndrome. KEY MESSAGES: RBBP8(p.E281*) is a susceptibility gene in this familial hereditary cancer syndrome RBBP8(p.E281*) lost its ability to enter the nucleus and the BRCA1 binding motif A novel RBBP8(p.E281*) germline mutation promotes breast cancer tumorigenesis Patients with RBBP8(p.E281*) germline mutation may benefit from Olaparib, Cisplatin.
Collapse
Affiliation(s)
- Jinhua Yan
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jinzheng Wu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yang Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Duo Li
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Averbeck NB, Barent C, Jakob B, Syzonenko T, Durante M, Taucher-Scholz G. The Ubiquitin Ligase RNF138 Cooperates with CtIP to Stimulate Resection of Complex DNA Double-Strand Breaks in Human G1-Phase Cells. Cells 2022; 11:cells11162561. [PMID: 36010636 PMCID: PMC9406464 DOI: 10.3390/cells11162561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) represent the molecular origin of ionizing-radiation inflicted biological effects. An increase in the ionization density causes more complex, clustered DSBs that can be processed by resection also in G1 phase, where repair of resected DSBs is considered erroneous and may contribute to the increased biological effectiveness of heavy ions in radiotherapy. To investigate the resection regulation of complex DSBs, we exposed G1 cells depleted for different candidate factors to heavy ions or α-particle radiation. Immunofluorescence microscopy was used to monitor the resection marker RPA, the DSB marker γH2AX and the cell-cycle markers CENP-F and geminin. The Fucci system allowed to select G1 cells, cell survival was measured by clonogenic assay. We show that in G1 phase the ubiquitin ligase RNF138 functions in resection regulation. RNF138 ubiquitinates the resection factor CtIP in a radiation-dependent manner to allow its DSB recruitment in G1 cells. At complex DSBs, RNF138′s participation becomes more relevant, consistent with the observation that also resection is more frequent at these DSBs. Furthermore, deficiency of RNF138 affects both DSB repair and cell survival upon induction of complex DSBs. We conclude that RNF138 is a regulator of resection that is influenced by DSB complexity and can affect the quality of DSB repair in G1 cells.
Collapse
Affiliation(s)
- Nicole B. Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Correspondence:
| | - Carina Barent
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 11, 64287 Darmstadt, Germany
| | - Tatyana Syzonenko
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Department of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6–8, 64289 Darmstadt, Germany
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 11, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Moyret-Lalle C, Prodhomme MK, Burlet D, Kashiwagi A, Petrilli V, Puisieux A, Seimiya H, Tissier A. Role of EMT in the DNA damage response, double-strand break repair pathway choice and its implications in cancer treatment. Cancer Sci 2022; 113:2214-2223. [PMID: 35534984 PMCID: PMC9277259 DOI: 10.1111/cas.15389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Numerous epithelial–mesenchymal transition (EMT) characteristics have now been demonstrated to participate in tumor development. Indeed, EMT is involved in invasion, acquisition of stem cell properties, and therapy‐associated resistance of cancer cells. Together, these mechanisms offer advantages in adapting to changes in the tumor microenvironment. However, recent findings have shown that EMT‐associated transcription factors (EMT‐TFs) may also be involved in DNA repair. A better understanding of the coordination between the DNA repair pathways and the role played by some EMT‐TFs in the DNA damage response (DDR) should pave the way for new treatments targeting tumor‐specific molecular vulnerabilities, which result in selective destruction of cancer cells. Here we review recent advances, providing novel insights into the role of EMT in the DDR and repair pathways, with a particular focus on the influence of EMT on cellular sensitivity to damage, as well as the implications of these relationships for improving the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Caroline Moyret-Lalle
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Mélanie K Prodhomme
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Delphine Burlet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Ayaka Kashiwagi
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Virginie Petrilli
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Alain Puisieux
- Institut Curie, Versailles Saint-Quentin-en-Yvelines University, PSL Research University, Paris, France
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Agnès Tissier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
5
|
Gong L, Zhang Y, Zhao J, Zhang Y, Tu K, Jiao L, Xu Q, Zhang M, Han S. All-In-One Biomimetic Nanoplatform Based on Hollow Polydopamine Nanoparticles for Synergistically Enhanced Radiotherapy of Colon Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107656. [PMID: 35150039 DOI: 10.1002/smll.202107656] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Even though radiotherapy is the most important therapeutic strategy for colon cancer treatment, there is an enormous demand to improve radiosensitivity in solid tumor destruction. For this purpose, a biomimetic nanoplatform based on hollow polydopamine nanoparticles (HP) with homologous targeting and pH-responsive drug release properties is designed. In this work, HP is constructed by using a chelation competition-induced polymerization strategy and then modified with the cancer cell membrane. Hollow polydopamine integrated with Pt nanoparticles (Pt@HP) has a catalase-like activity, which can be used to trigger endogenous H2 O2 into O2 , relieving hypoxia of the tumor microenvironment (TME). With mesoporous shells and large cavities, Pt@HP shows efficient apoptin100-109 (AP) and verteporfin (VP) loading to form AVPt@HP@M. Under X-ray irradiation, AVPt@HP@M exerts a radiosensitization effect via multiple strategies, including relieving hypoxia (Pt NPs), enhancing tumor apoptosis (AP), and X-ray-induced photodynamic therapy (X-PDT) (VP). Further metabonomics analysis shows that the specific mechanism of the AVPt@HP@M is through influencing purine metabolism. Without appreciable systemic toxicity, this nanoplatform highlights a new strategy for effective radiosensitization and provides a reference for treating malignant tumors.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Radiotherapy, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Jing Zhao
- Department of Radiotherapy, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yilei Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lianying Jiao
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Suxia Han
- Department of Radiotherapy, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
6
|
Bakr A, Hey J, Sigismondo G, Liu CS, Sadik A, Goyal A, Cross A, Iyer RL, Müller P, Trauernicht M, Breuer K, Lutsik P, Opitz C, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms and its loss confers sensitivity to PARP inhibition. Nucleic Acids Res 2021; 49:11666-11689. [PMID: 34718742 PMCID: PMC8599806 DOI: 10.1093/nar/gkab964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The inhibitor of DNA-binding 3 (ID3) is a transcriptional regulator that limits interaction of basic helix-loop-helix transcription factors with their target DNA sequences. We previously reported that ID3 loss is associated with mutational signatures linked to DNA repair defects. Here we demonstrate that ID3 exhibits a dual role to promote DNA double-strand break (DSB) repair, particularly homologous recombination (HR). ID3 interacts with the MRN complex and RECQL helicase to activate DSB repair and it facilitates RAD51 loading and downstream steps of HR. In addition, ID3 promotes the expression of HR genes in response to ionizing radiation by regulating both chromatin accessibility and activity of the transcription factor E2F1. Consistently, analyses of TCGA cancer patient data demonstrate that low ID3 expression is associated with impaired HR. The loss of ID3 leads to sensitivity of tumor cells to PARP inhibition, offering new therapeutic opportunities in ID3-deficient tumors.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Imperial College London, London, SW7 2AZ, UK
| | - Ramya Lakshmana Iyer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Patrick Müller
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Max Trauernicht
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, INF672, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Blasiak J, Szczepańska J, Sobczuk A, Fila M, Pawlowska E. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:11440. [PMID: 34768871 PMCID: PMC8583789 DOI: 10.3390/ijms222111440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Szczepańska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| |
Collapse
|
8
|
Sharma AB, Erasimus H, Pinto L, Caron MC, Gopaul D, Peterlini T, Neumann K, Nazarov PV, Fritah S, Klink B, Herold-Mende CC, Niclou SP, Pasero P, Calsou P, Masson JY, Britton S, Van Dyck E. XAB2 promotes Ku eviction from single-ended DNA double-strand breaks independently of the ATM kinase. Nucleic Acids Res 2021; 49:9906-9925. [PMID: 34500463 PMCID: PMC8464071 DOI: 10.1093/nar/gkab785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Hélène Erasimus
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lia Pinto
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Thibaut Peterlini
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Katrin Neumann
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Multiomics Data Science Group, LIH, Luxembourg
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg.,Functional Tumour Genetics Group, Department of Oncology, LIH, Luxembourg
| | | | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, LIH, Luxembourg.,Department of Biomedicine, University of Bergen, Norway
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France, Equipe Labellisée Ligue Nationale Contre le Cancer 2018
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
9
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
10
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
11
|
Ku70 suppresses alternative end joining in G1-arrested progenitor B cells. Proc Natl Acad Sci U S A 2021; 118:2103630118. [PMID: 34006647 DOI: 10.1073/pnas.2103630118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.
Collapse
|
12
|
Anglada T, Genescà A, Martín M. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Aging (Albany NY) 2020; 12:24872-24893. [PMID: 33361520 PMCID: PMC7803562 DOI: 10.18632/aging.202419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
DNA repair mechanisms play a crucial role in maintaining genome integrity. However, the increased frequency of DNA double-strand breaks (DSBs) and genome rearrangements in aged individuals suggests an age-associated DNA repair deficiency. Previous work from our group revealed a delayed firing of the DNA damage response in human mammary epithelial cells (HMECs) from aged donors. We now report a decreased activity of the main DSB repair pathways, the canonical non-homologous end-joining (c-NHEJ) and the homologous recombination (HR) in these HMECs from older individuals. We describe here a deficient recruitment of 53BP1 to DSB sites in G1 cells, probably influenced by an altered epigenetic regulation. 53BP1 absence at some DSBs is responsible for the age-associated DNA repair defect, as it permits the ectopic formation of BRCA1 foci while still in the G1 phase. CtIP and RPA foci are also formed in G1 cells from aged donors, but RAD51 is not recruited, thus indicating that extensive DNA-end resection occurs in these breaks although HR is not triggered. These results suggest an age-associated switch of DSB repair from canonical to highly mutagenic alternative mechanisms that promote the formation of genome rearrangements, a source of genome instability that might contribute to the aging process.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
13
|
Ahmed EA, Alzahrani AM, Scherthan H. Parp1-Dependent DNA Double-Strand Break Repair in Irradiated Late Pachytene Spermatocytes. DNA Cell Biol 2020; 40:209-218. [PMID: 33337266 DOI: 10.1089/dna.2020.5727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerase-1 (Parp1) is a member of nuclear enzymes family involved in to the response to genotoxic stresses, DNA repair, and is critical for the maintenance of genome stability. During gametogenesis, genome stability is essential for inheritance and formation of healthy gametes. The latter involves DNA double-strand break (DSB)-driven pairing of homologous chromosomes in first meiotic prophase. By analysis of DSB repair kinetics in male meiotic prophase cells of homologous recombination (HR) and nonhomologous end joining (NHEJ)-deficient mouse models, we previously demonstrated an interplay between HR and the conventional NHEJ repair pathway. In the current work, we evaluate the relative contribution of Parp1-dependent NHEJ to the repair of ectopic ionizing radiation (IR)-induced DSBs in control and Parp1-inhibited mouse pachytene spermatocytes before and after the completion of meiotic recombination in stages VI-XI. The disappearance of large, exogenous DSB-related γ-H2AX foci was quantified 1 and 8 h after 1 Gy γ-irradiation of control and 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)quinolinone (DPQ) Parp1-inhibited mice. Late pachytene control spermatocytes obtained 8 h after IR had repaired >80% of DSBs observed at 1 h after IR. However, only 64% of DSBs were repaired in late spermatocytes of DPQ-treated (Parp1-inhibited) mice. Thus, it appears that Parp1 contributes to the repair of a fraction of DSBs in late prophase I, providing further insights in DNA repair pathway choreography during spermatogenic differentiation.
Collapse
Affiliation(s)
- Emad A Ahmed
- Biological Sciences Department, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Abdullah M Alzahrani
- Biological Sciences Department, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Munich, Germany
| |
Collapse
|
14
|
Saha T, Sundaravinayagam D, Di Virgilio M. Charting a DNA Repair Roadmap for Immunoglobulin Class Switch Recombination. Trends Biochem Sci 2020; 46:184-199. [PMID: 33250286 DOI: 10.1016/j.tibs.2020.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the process occurring in mature B cells that diversifies the effector component of antibody responses. CSR is initiated by the activity of the B cell-specific enzyme activation-induced cytidine deaminase (AID), which leads to the formation of programmed DNA double-strand breaks (DSBs) at the Ig heavy chain (Igh) locus. Mature B cells use a multilayered and complex regulatory framework to ensure that AID-induced DNA breaks are channeled into productive repair reactions leading to CSR, and to avoid aberrant repair events causing lymphomagenic chromosomal translocations. Here, we review the DNA repair pathways acting on AID-induced DSBs and their functional interplay, with a particular focus on the latest developments in their molecular composition and mechanistic regulation.
Collapse
Affiliation(s)
- Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
15
|
Limiting the DNA Double-Strand Break Resectosome for Genome Protection. Trends Biochem Sci 2020; 45:779-793. [PMID: 32513599 DOI: 10.1016/j.tibs.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly channel the resected DNA to the appropriate DNA repair pathway. Herein, we review the mechanisms of regulation of DNA resection, with an emphasis on negative regulators that prevent single-strand (ss)DNA accumulation to maintain genome stability. Interest in targeting DNA resection inhibitors is emerging because their inactivation leads to poly(ADP-ribose) polymerase inhibitor (PARPi) resistance. We also present detailed regulation of DNA resection machineries, their analysis by functional assays, and their impact on disease and PARPi resistance.
Collapse
|
16
|
Eke I, Zong D, Aryankalayil MJ, Sandfort V, Bylicky MA, Rath BH, Graves EE, Nussenzweig A, Coleman CN. 53BP1/RIF1 signaling promotes cell survival after multifractionated radiotherapy. Nucleic Acids Res 2020; 48:1314-1326. [PMID: 31822909 DOI: 10.1093/nar/gkz1139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Multifractionated irradiation is the mainstay of radiation treatment in cancer therapy. Yet, little is known about the cellular DNA repair processes that take place between radiation fractions, even though understanding the molecular mechanisms promoting cancer cell recovery and survival could improve patient outcome and identify new avenues for targeted intervention. To address this knowledge gap, we systematically characterized how cells respond differentially to multifractionated and single-dose radiotherapy, using a combination of genetics-based and functional approaches. We found that both cancer cells and normal fibroblasts exhibited enhanced survival after multifractionated irradiation compared with an equivalent single dose of irradiation, and this effect was entirely dependent on 53BP1-mediated NHEJ. Furthermore, we identified RIF1 as the critical effector of 53BP1. Inhibiting 53BP1 recruitment to damaged chromatin completely abolished the survival advantage after multifractionated irradiation and could not be reversed by suppressing excessive end resection. Analysis of the TCGA database revealed lower expression of 53BP1 pathway genes in prostate cancer, suggesting that multifractionated radiotherapy might be a favorable option for radio-oncologic treatment in this tumor type. We propose that elucidation of DNA repair mechanisms elicited by different irradiation dosing regimens could improve radiotherapy selection for the individual patient and maximize the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dali Zong
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veit Sandfort
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara H Rath
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
17
|
Densham RM, Morris JR. Moving Mountains-The BRCA1 Promotion of DNA Resection. Front Mol Biosci 2019; 6:79. [PMID: 31552267 PMCID: PMC6733915 DOI: 10.3389/fmolb.2019.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
Collapse
Affiliation(s)
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Kohutova A, Raška J, Kruta M, Seneklova M, Barta T, Fojtik P, Jurakova T, Walter CA, Hampl A, Dvorak P, Rotrekl V. Ligase 3–mediated end‐joining maintains genome stability of human embryonic stem cells. FASEB J 2019; 33:6778-6788. [DOI: 10.1096/fj.201801877rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aneta Kohutova
- Department of BiologyMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center (ICRC)St. Anne's University HospitalBrnoCzech Republic
| | - Jan Raška
- Department of BiologyMasaryk UniversityBrnoCzech Republic
| | - Miriama Kruta
- Department of BiologyMasaryk UniversityBrnoCzech Republic
| | | | - Tomas Barta
- Department of BiologyMasaryk UniversityBrnoCzech Republic
| | - Petr Fojtik
- Department of BiologyMasaryk UniversityBrnoCzech Republic
| | | | - Christi A. Walter
- Department of Cell Systems and AnatomyThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Ales Hampl
- Department of Histology and EmbryologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center (ICRC)St. Anne's University HospitalBrnoCzech Republic
| | - Petr Dvorak
- Department of BiologyMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center (ICRC)St. Anne's University HospitalBrnoCzech Republic
| | - Vladimir Rotrekl
- Department of BiologyMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center (ICRC)St. Anne's University HospitalBrnoCzech Republic
| |
Collapse
|
19
|
Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 2018. [PMID: 29530982 DOI: 10.1074/jbc.tm117.000375] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative end-joining (a-EJ) pathways, which repair DNA double-strand breaks (DSBs), are initiated by end resection that generates 3' single strands. This reaction is shared, at least in part, with homologous recombination but distinguishes a-EJ from the major nonhomologous end-joining pathway. Although the a-EJ pathways make only a minor and poorly understood contribution to DSB repair in nonmalignant cells, there is growing interest in these pathways, as they generate genomic rearrangements that are hallmarks of cancer cells. Here, we review and discuss the current understanding of the mechanisms and regulation of a-EJ pathways, the role of a-EJ in human disease, and the potential utility of a-EJ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Annahita Sallmyr
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
20
|
Loss of PTEN-assisted G2/M checkpoint impedes homologous recombination repair and enhances radio-curability and PARP inhibitor treatment response in prostate cancer. Sci Rep 2018; 8:3947. [PMID: 29500400 PMCID: PMC5834544 DOI: 10.1038/s41598-018-22289-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Here we report that PTEN contributes to DNA double-strand break (DSB) repair via homologous recombination (HR), as evidenced by (i) inhibition of HR in a reporter plasmid assay, (ii) enhanced sensitivity to mitomycin-C or olaparib and (iii) reduced RAD51 loading at IR-induced DSBs upon PTEN knockdown. No association was observed between PTEN-status and RAD51 expression either in-vitro or in-vivo in a tissue microarray of 1500 PTEN-deficient prostate cancer (PC) samples. PTEN depletion and sustained activation of AKT sequestered CHK1 in the cytoplasm, thus impairing the G2/M-checkpoint after irradiation. Consistently, AKT inhibition recovered the G2/M-checkpoint and restored HR efficiency in PTEN-depleted cells. We show that, although PTEN loss correlates with a worse prognosis, it may predict for improved response of PC patients to radiotherapy. Further, we provide evidence for the use of PTEN as a biomarker for predicting the response to PARP inhibitors as radiosensitizing agents in prostate cancer. Collectively, these data implicate PTEN in maintaining genomic stability by delaying G2/M-phase progression of damaged cells, thus allowing time for DSB repair by HR. Furthermore, we identify PTEN-status in PC as a putative predictor of (i) radiotherapy response and (ii) response to treatment with PARP inhibitor alone or combined with radiotherapy.
Collapse
|
21
|
Loss of PTEN-assisted G2/M checkpoint impedes homologous recombination repair and enhances radio-curability and PARP inhibitor treatment response in prostate cancer. Sci Rep 2018. [PMID: 29500400 DOI: 10.1038/s41598-018-22289-7.pmid:29500400;pmcid:pmc5834544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Here we report that PTEN contributes to DNA double-strand break (DSB) repair via homologous recombination (HR), as evidenced by (i) inhibition of HR in a reporter plasmid assay, (ii) enhanced sensitivity to mitomycin-C or olaparib and (iii) reduced RAD51 loading at IR-induced DSBs upon PTEN knockdown. No association was observed between PTEN-status and RAD51 expression either in-vitro or in-vivo in a tissue microarray of 1500 PTEN-deficient prostate cancer (PC) samples. PTEN depletion and sustained activation of AKT sequestered CHK1 in the cytoplasm, thus impairing the G2/M-checkpoint after irradiation. Consistently, AKT inhibition recovered the G2/M-checkpoint and restored HR efficiency in PTEN-depleted cells. We show that, although PTEN loss correlates with a worse prognosis, it may predict for improved response of PC patients to radiotherapy. Further, we provide evidence for the use of PTEN as a biomarker for predicting the response to PARP inhibitors as radiosensitizing agents in prostate cancer. Collectively, these data implicate PTEN in maintaining genomic stability by delaying G2/M-phase progression of damaged cells, thus allowing time for DSB repair by HR. Furthermore, we identify PTEN-status in PC as a putative predictor of (i) radiotherapy response and (ii) response to treatment with PARP inhibitor alone or combined with radiotherapy.
Collapse
|