1
|
Peng Y, Gu J, Liu F, Wang P, Wang X, Si C, Gong J, Zhou H, Qin A, Song F. Integrated analysis of microbiota and gut microbial metabolites in blood for breast cancer. mSystems 2024; 9:e0064324. [PMID: 39422470 PMCID: PMC11575300 DOI: 10.1128/msystems.00643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Gut microbiota and associated metabolites have been linked to breast carcinogenesis. Evidences demonstrate blood microbiota primarily originates from the gut and may act as a biomarker for breast cancer. We aimed to characterize the microbiota-gut microbial metabolites cross-talk in blood and develop a composite diagnostic panel for breast cancer. We performed 16S rRNA gene sequencing and metabolomics profiling on blood samples from 107 breast cancer cases and 107 age-paired controls. We found that the alpha diversity of the blood microbiota was decreased in breast cancer compared to controls. There were significantly different profiles of microbiota and gut microbial metabolites in blood between these two groups, with nine bacterial genera and four gut microbial metabolites increased in patients, while thirty-nine bacterial genera and two gut microbial metabolites increased in controls. Some breast cancer-associated gut microbial metabolites were linked to differential blood microbiota, and a composite microbiota-metabolite diagnostic panel was further developed with an area under the curve of 0.963 for breast cancer. This study underscored the pivotal role of microbiota and gut microbial metabolites in blood and their interactions for breast carcinogenesis, as well as the potential of a composite diagnostic panel as a non-invasive biomarker for breast cancer.IMPORTANCEOur integrated analysis demonstrated altered profiles of microbiota and gut microbial metabolites in blood for breast cancer patients. The extensive correlation between microbiota and gut microbial metabolites in blood assisted the understanding of the pathogenesis of breast cancer. The good performance of a composite microbiota-gut microbial metabolites panel in blood suggested a non-invasive approach for breast cancer detection and a novel strategy for better diagnosis and prevention of breast cancer in the future.
Collapse
Affiliation(s)
- Yu Peng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiale Gu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fubin Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xixuan Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Changyu Si
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jianxiao Gong
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Huijun Zhou
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ailing Qin
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Wang F, Pang R, Zhao X, Zhou B, Tian Y, Ma Y, Rong L. Plasma metabolomics and lipidomics reveal potential novel biomarkers in early gastric cancer: An explorative study. Int J Biol Markers 2024; 39:226-238. [PMID: 38859802 DOI: 10.1177/03936155241258780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND Early identification and therapy can significantly improve the outcome for gastric cancer. However, there is still no perfect biomarker available for the detection of early gastric cancer. This study aimed to investigate the alterations in the plasma metabolites of early gastric cancer using metabolomics and lipidomics based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), which detected potential biomarkers that could be used for clinical diagnosis. METHODS To investigate the changes in metabolomics and lipidomics, a total of 30 plasma samples were collected, consisting of 15 patients with early gastric cancer and 15 healthy controls. Extensive HPLC-MS-based untargeted metabolomic and lipidomic investigations were conducted. Differential metabolites and metabolic pathways were uncovered through the utilization of statistical analysis and bioinformatics analysis. Candidate biomarker screening was performed using support vector machine-based multivariate receiver operating characteristic analysis. RESULTS A disturbance was observed in a combined total of 19 metabolites and 67 lipids of the early gastric cancer patients. The analysis of KEGG pathways showed that the early gastric cancer patients experienced disruptions in the arginine biosynthesis pathway, the pathway for alanine, aspartate, and glutamate metabolism, as well as the pathway for glyoxylate and dicarboxylate metabolism. Plasma metabolomics and lipidomics have identified multiple biomarker panels that can effectively differentiate early gastric cancer patients from healthy controls, exhibiting an area under the curve exceeding 0.9. CONCLUSION These metabolites and lipids could potentially serve as biomarkers for the screening of early gastric cancer, thereby optimizing the strategy for the detection of early gastric cancer. The disrupted pathways implicated in early gastric cancer provide new clues for additional understanding of gastric cancer's pathogenesis. Nonetheless, large-scale clinical data are required to prove our findings.
Collapse
Affiliation(s)
- Feng Wang
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Ruifang Pang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xudong Zhao
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Bin Zhou
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Yuan Tian
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Yongchen Ma
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Long Rong
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
López-López Á, López-Gonzálvez Á, Barbas C. Metabolomics for searching validated biomarkers in cancer studies: a decade in review. Expert Rev Mol Diagn 2024; 24:601-626. [PMID: 38904089 DOI: 10.1080/14737159.2024.2368603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION In the dynamic landscape of modern healthcare, the ability to anticipate and diagnose diseases, particularly in cases where early treatment significantly impacts outcomes, is paramount. Cancer, a complex and heterogeneous disease, underscores the critical importance of early diagnosis for patient survival. The integration of metabolomics information has emerged as a crucial tool, complementing the genotype-phenotype landscape and providing insights into active metabolic mechanisms and disease-induced dysregulated pathways. AREAS COVERED This review explores a decade of developments in the search for biomarkers validated within the realm of cancer studies. By critically assessing a diverse array of research articles, clinical trials, and studies, this review aims to present an overview of the methodologies employed and the progress achieved in identifying and validating biomarkers in metabolomics results for various cancer types. EXPERT OPINION Through an exploration of more than 800 studies, this review has allowed to establish a general idea about state-of-art in the search of biomarkers in metabolomics studies involving cancer which include certain level of results validation. The potential for metabolites as diagnostic markers to reach the clinic and make a real difference in patient health is substantial, but challenges remain to be explored.
Collapse
Affiliation(s)
- Ángeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
4
|
Orășeanu A, Brisc MC, Maghiar OA, Popa H, Brisc CM, Șolea SF, Maghiar TA, Brisc C. Landscape of Innovative Methods for Early Diagnosis of Gastric Cancer: A Systematic Review. Diagnostics (Basel) 2023; 13:3608. [PMID: 38132192 PMCID: PMC10742893 DOI: 10.3390/diagnostics13243608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
From a global perspective, gastric cancer (GC) persists as a significant healthcare issue. In the Western world, the majority of cases are discovered at late stages, when the treatment is generally unsuccessful. There are no organized screening programs outside of Asia (Japan and Republic of Korea). Traditional diagnosis techniques (such as upper endoscopy), conventional tumor markers (CEA, CA19-9, and CA72-4), radiographic imaging, and CT scanning all have drawbacks. The gold standard for the earliest detection of cancer and related premalignant lesions is still endoscopy with a proper biopsy follow-up. Since there are currently no clinically approved biomarkers for the early diagnosis of GC, the identification of non-invasive biomarkers is expected to help improve the prognosis and survival rate of these patients. The search for new screening biomarkers is currently underway. These include genetic biomarkers, such as circulating tumor cells, microRNAs, and exosomes, as well as metabolic biomarkers obtained from biofluids. Meanwhile, cutting-edge high-resolution endoscopic technologies are demonstrating promising outcomes in the visual diagnosis of mucosal lesions with the aid of linked color imaging and machine learning models. Following the PRISMA guidelines, this study examined the articles in databases such as PubMed, resulting in 167 included articles. This review discusses the currently available and emerging methods for diagnosing GC early on, as well as new developments in the endoscopic detection of early lesions of the stomach.
Collapse
Affiliation(s)
- Alexandra Orășeanu
- Clinic of Gastroenterology, Bihor Clinical County Emergency Hospital, 410169 Oradea, Romania; (A.O.); (S.F.Ș.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
| | | | - Octavian Adrian Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Horia Popa
- Clinical Emergency Hospital “Prof. Dr. Agrippa Ionescu”, 011356 Bucharest, Romania;
| | - Ciprian Mihai Brisc
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Sabina Florina Șolea
- Clinic of Gastroenterology, Bihor Clinical County Emergency Hospital, 410169 Oradea, Romania; (A.O.); (S.F.Ș.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
| | - Teodor Andrei Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Ciprian Brisc
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| |
Collapse
|
5
|
Xu Z, Huang Y, Hu C, Du L, Du YA, Zhang Y, Qin J, Liu W, Wang R, Yang S, Wu J, Cao J, Zhang J, Chen GP, Lv H, Zhao P, He W, Wang X, Xu M, Wang P, Hong C, Yang LT, Xu J, Chen J, Wei Q, Zhang R, Yuan L, Qian K, Cheng X. Efficient plasma metabolic fingerprinting as a novel tool for diagnosis and prognosis of gastric cancer: a large-scale, multicentre study. Gut 2023; 72:2051-2067. [PMID: 37460165 PMCID: PMC11883865 DOI: 10.1136/gutjnl-2023-330045] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE Metabolic biomarkers are expected to decode the phenotype of gastric cancer (GC) and lead to high-performance blood tests towards GC diagnosis and prognosis. We attempted to develop diagnostic and prognostic models for GC based on plasma metabolic information. DESIGN We conducted a large-scale, multicentre study comprising 1944 participants from 7 centres in retrospective cohort and 264 participants in prospective cohort. Discovery and verification phases of diagnostic and prognostic models were conducted in retrospective cohort through machine learning and Cox regression of plasma metabolic fingerprints (PMFs) obtained by nanoparticle-enhanced laser desorption/ionisation-mass spectrometry (NPELDI-MS). Furthermore, the developed diagnostic model was validated in prospective cohort by both NPELDI-MS and ultra-performance liquid chromatography-MS (UPLC-MS). RESULTS We demonstrated the high throughput, desirable reproducibility and limited centre-specific effects of PMFs obtained through NPELDI-MS. In retrospective cohort, we achieved diagnostic performance with areas under curves (AUCs) of 0.862-0.988 in the discovery (n=1157 from 5 centres) and independent external verification dataset (n=787 from another 2 centres), through 5 different machine learning of PMFs, including neural network, ridge regression, lasso regression, support vector machine and random forest. Further, a metabolic panel consisting of 21 metabolites was constructed and identified for GC diagnosis with AUCs of 0.921-0.971 and 0.907-0.940 in the discovery and verification dataset, respectively. In the prospective study (n=264 from lead centre), both NPELDI-MS and UPLC-MS were applied to detect and validate the metabolic panel, and the diagnostic AUCs were 0.855-0.918 and 0.856-0.916, respectively. Moreover, we constructed a prognosis scoring system for GC in retrospective cohort, which can effectively predict the survival of GC patients. CONCLUSION We developed and validated diagnostic and prognostic models for GC, which also contribute to advanced metabolic analysis towards diseases, including but not limited to GC.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Yida Huang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Lingbin Du
- Office of Cancer Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yi-An Du
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wanshan Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao Wu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Cao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juxiang Zhang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gui-Ping Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Zhao
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Weiyang He
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Xiaoliang Wang
- Department of General Surgery, Fenghua People's Hospital, Ningbo, China
| | - Min Xu
- Department of Gastroenterology, Tiantai People's Hospital, Taizhou, China
| | - Pingfang Wang
- Department of Gastroenterology, Xinchang People's Hospital, Shaoxing, China
| | - Chuanshen Hong
- Department of General Surgery, Daishan People's Hospital, Zhoushan, China
| | - Li-Tao Yang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qing Wei
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ruolan Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Li Yuan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Office of Cancer Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Han J, Gong S, Bian X, Qian Y, Wang G, Li N, Wu JL. Polarity-regulated derivatization-assisted LC-MS method for amino-containing metabolites profiling in gastric cancer. J Pharm Anal 2023; 13:1353-1364. [PMID: 38174119 PMCID: PMC10759254 DOI: 10.1016/j.jpha.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 01/05/2024] Open
Abstract
Amino-containing compounds, including amino acids, aliphatic amines, aromatic amines, small peptides and catecholamines, are involved in various biological processes and play vital roles in multiple metabolic pathways. Previous studies indicated that some amino-containing metabolites are significant diagnostic and prognostic biomarkers of gastric cancer. However, the discovery of precise biomarkers for the preoperative diagnosis of gastric cancer is still in an urgent need. Herein, we established a polarity-regulated derivatization method coupled with liquid chromatography-mass spectrometry (LC-MS) for amino-containing metabolites profiling in the serum samples of patients with gastric cancer and healthy controls, based on our newly designed and synthesized derivatization reagent (S)-3-(1-(diisopropoxyphosphoryl) pyrrolidine-2-carboxamido)-N-hydroxysuccinimidyl ester (3-DP-NHS). Enhanced separation efficiency and detection sensitivity for amino-containing metabolites were achieved after derivatization. This method exhibited good linearity, recovery, intra- and inter-day precision and accuracy. Only 5 μL serum is needed for untargeted analysis, enabling 202 amino-containing metabolites to be detected. Statistical analysis revealed altered amino acid metabolisms in patients with gastric cancer. Furthermore, ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) analysis quantification revealed increased serum levels of tryptamine and decreased concentrations of arginine and tryptophan in patients with gastric cancer. Receiver operating characteristic (ROC) curves indicated that an increased tryptamine/tryptophan ratio could serve as a potential biomarker for gastric cancer diagnosis. This study demostrated the possibility of using serum amino acid biomarkers for gastric cancer diagnosis, providing new avenues for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jie Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Yun Qian
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China
| | - Guilan Wang
- Department of Pediatrics, Zhongshan Boai Hospital, Zhongshan, Guangdong, 528403, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| |
Collapse
|
7
|
Lopes C, Chaves J, Ortigão R, Dinis‐Ribeiro M, Pereira C. Gastric cancer detection by non-blood-based liquid biopsies: A systematic review looking into the last decade of research. United European Gastroenterol J 2022; 11:114-130. [PMID: 36461757 PMCID: PMC9892482 DOI: 10.1002/ueg2.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) screening is arguable in most Western countries. Liquid biopsies are a great promise to answer the unmet need for less invasive diagnostic biomarkers in GC. Thus, we aimed at systematically reviewing the current knowledge on liquid biopsy-based biomarkers in GC screening. A systematic search on PubMed/MEDLINE and Scopus databases was performed on published articles reporting the use of non-blood specimen (saliva, gastric juice [GJ], urine and stool) on GC diagnosis. 3208 records were retrieved by June 2022. After removal of duplicate records, 2379 abstracts were screened, and 84 full texts included in this systematic review. More than 90% of studies were reported on Asian populations. Overall, 9 studies explored stool-, 12 saliva-, and 29 urine-derived biomarkers for GC detection. Additionally, 37 studies, representing the majority, analyzed GJ, focusing on nucleic acid molecules. Several miRNAs and lncRNA molecules have been associated with GC risk, particularly miR-21 (area under the curve [AUC] = 0.97, 95% CI: 0.94-1.00). Considering salivary biomarkers, the best described model in validation sets included the soybean agglutinin and Vicia villosa agglutinin lectins (AUC = 0.89, 95% CI: 0.80-0.99). Most studies in urine carried out metabolomic approaches, with two discriminatory models presenting AUC values superior to 0.97. This systematic review emphasizes the potential role of non-blood-based biomarkers, although further validation, particularly in Western countries, is mandatory, namely for non-invasive screening and/or monitoring, as well as the use of GJ as a tool to enhance upper gastrointestinal endoscopy accuracy.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,CINTESIS – Center for Health Technology and Services ResearchUniversity of PortoPortoPortugal,ICBAS‐UP – Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortoPortugal
| | - Jéssica Chaves
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Raquel Ortigão
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Mário Dinis‐Ribeiro
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,CINTESIS – Center for Health Technology and Services ResearchUniversity of PortoPortoPortugal
| |
Collapse
|
8
|
Brezmes J, Llambrich M, Cumeras R, Gumà J. Urine NMR Metabolomics for Precision Oncology in Colorectal Cancer. Int J Mol Sci 2022; 23:11171. [PMID: 36232473 PMCID: PMC9569997 DOI: 10.3390/ijms231911171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolomics is a fundamental approach to discovering novel biomarkers and their potential use for precision medicine. When applied for population screening, NMR-based metabolomics can become a powerful clinical tool in precision oncology. Urine tests can be more widely accepted due to their intrinsic non-invasiveness. Our review provides the first exhaustive evaluation of NMR metabolomics for the determination of colorectal cancer (CRC) in urine. A specific search in PubMed, Web of Science, and Scopus was performed, and 10 studies met the required criteria. There were no restrictions on the query for study type, leading to not only colorectal cancer samples versus control comparisons, but also prospective studies of surgical effects. With this review, all compounds in the included studies were merged into a database. In doing so, we identified up to 100 compounds in urine samples, and 11 were found in at least three articles. Results were analyzed in three groups: case (CRC and adenomas)/control, pre-/post-surgery, and combining both groups. When combining the case-control and the pre-/post-surgery groups, up to twelve compounds were found to be relevant. Seven down-regulated metabolites in CRC were identified, creatinine, 4-hydroxybenzoic acid, acetone, carnitine, d-glucose, hippuric acid, l-lysine, l-threonine, and pyruvic acid, and three up-regulated compounds in CRC were identified, acetic acid, phenylacetylglutamine, and urea. The pathways and enrichment analysis returned only two pathways significantly expressed: the pyruvate metabolism and the glycolysis/gluconeogenesis pathway. In both cases, only the pyruvic acid (down-regulated in urine of CRC patients, with cancer cell proliferation effect in the tissue) and acetic acid (up-regulated in urine of CRC patients, with chemoprotective effect) were present.
Collapse
Affiliation(s)
- Jesús Brezmes
- Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Maria Llambrich
- Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Raquel Cumeras
- Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
| | - Josep Gumà
- Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43204 Reus, Spain
| |
Collapse
|
9
|
Lei C, Gong D, Zhuang B, Zhang Z. Alterations in the gastric microbiota and metabolites in gastric cancer: An update review. Front Oncol 2022; 12:960281. [PMID: 36081564 PMCID: PMC9445122 DOI: 10.3389/fonc.2022.960281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer mortality worldwide. Numerous studies have shown that the gastric microbiota can contribute to the occurrence and development of GC by generating harmful microbial metabolites, suggesting the possibility of discovering biomarkers. Metabolomics has emerged as an advanced promising analytical method for the analysis of microbiota-derived metabolites, which have greatly accelerated our understanding of host-microbiota metabolic interactions in GC. In this review, we briefly compiled recent research progress on the changes of gastric microbiota and its metabolites associated with GC. And we further explored the application of metabolomics and gastric microbiome association analysis in the diagnosis, prevention and treatment of GC.
Collapse
|
10
|
Chen Y, Hu L, Lin H, Yu H, You J. Serum metabolomic profiling for patients with adenocarcinoma of the esophagogastric junction. Metabolomics 2022; 18:26. [PMID: 35441991 DOI: 10.1007/s11306-022-01883-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The incidence of adenocarcinoma in the esophagogastric junction (AEG) has increased in the recent years. AEG is reported to have a worse prognosis compared with tumor confined to the stomach (non-AEG). Although the metabolic changes of non-AEG have been investigated in extensive studies, little effort focused on the metabolic profiling of AEG serum. OBJECTIVES Here we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to explore the abnormal metabolism underlying AEG. METHODS GC-MS-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of serum samples from AEG patients (n = 70), non-AEG patients (n = 70) and health controls (n = 71). RESULTS A novel serum metabolic profiling of 18 metabolites from patients of AEG and non-AEG was indicated, in comparison with health controls. Moreover, AEG and non-AEG were also well-classified with 9 distinguishing metabolites including hypoxanthine, alanine, proline, pyroglutamate, glycine, lactate, succinic acid, glutamate and kynurenine, which produced a discriminatory model with an area under the Receiver Operating Characteristic (ROC) curve of 0.852, suggesting a distinct metabolic signature of AEG. Importantly, lactate and glutamate disclosed outcome-prediction values by multivariate cox-proportional hazard model and Kaplan-Meier method based on follow-up information for 2-5 years. CONCLUSION This is the first metabolomics study to identify serum metabolic signature of AEG. The distinguishing metabolites show a promising application on clinical diagnose and outcome prediction, and allow us to unveil several key metabolic variations coexisting in AEG, which may aid to understand the underlying metabolic mechanisms.
Collapse
Affiliation(s)
- Yinan Chen
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Lei Hu
- Department of General Surgery, The First Affliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hexin Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Huangdao Yu
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jun You
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
11
|
Nava GM, Madrigal Perez LA. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev Mol Diagn 2022; 22:439-447. [PMID: 35395916 DOI: 10.1080/14737159.2022.2065196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Adaptations of eukaryotic cells to environmental changes are important for their survival. However, under some circumstances, microenvironmental changes promote that eukaryotic cells utilize a metabolic signature resembling a unicellular organism named the Warburg effect. Most cancer cells share the Warburg effect displaying lactic fermentation and high glucose uptake. The Warburg effect also induces a metabolic rewiring stimulating glutamine consumption and lipid synthesis, also considered cancer hallmarks. Amino acid metabolism alteration due to the Warburg effect increases plasma levels of proline and branched-chain amino acids in several cancer types. Proline and lipids are probably used as electron transfer molecules in carcinogenic cells. In addition, branched-chain amino acids fuel the Krebs cycle, protein synthesis, and signaling in cancer cells. AREAS COVERED This review covers how metabolomics studies describe changes in some metabolites and proteins associated with the Warburg effect and related metabolic pathways. EXPERT OPINION In this review, we analyze the metabolic signature of the Warburg effect and related phenotypes and propose some Warburg effect-related metabolites and proteins (lactate, glucose uptake, glucose transporters, glutamine, branched-chain amino acids, proline, and some lipogenic enzymes) as promising cancer biomarkers.
Collapse
Affiliation(s)
- Gerardo M Nava
- Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, 76010, México
| | - Luis Alberto Madrigal Perez
- Tecnológico Nacional de México/ Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez #2120, Ciudad Hidalgo, Michoacán, 61100, México
| |
Collapse
|
12
|
Chang JJ, Wang XY, Zhang W, Tan C, Sheng WQ, Xu MD. Comprehensive molecular characterization and identification of prognostic signature in stomach adenocarcinoma on the basis of energy-metabolism-related genes. World J Gastrointest Oncol 2022; 14:478-497. [PMID: 35317313 PMCID: PMC8919002 DOI: 10.4251/wjgo.v14.i2.478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a leading cause of cancer deaths, but its molecular and prognostic characteristics has never been fully illustrated. AIM To describe a molecular evaluation of primary STAD and develop new therapies and identify promising prognostic signatures. METHODS We describe a comprehensive molecular evaluation of primary STAD based on comprehensive analysis of energy-metabolism-related gene (EMRG) expression profiles. RESULTS On the basis of 86 EMRGs that were significantly associated to patients' progression-free survival (PFS), we propose a molecular classification dividing gastric cancer into two subtypes: Cluster 1, most of which are young patients and display more immune and stromal cell components in tumor microenvironment and lower tumor priority; and Cluster 2, which show early stages and better PFS. Moreover, we construct a 6-gene signature that can classify the prognostic risk of patients after a three-phase training test and validation process. Compared with patients with low-risk score, patients with high-risk score had shorter overall survival. Furthermore, calibration and DCA analysis plots indicate the excellent predictive performance of the 6-gene signature, and which present higher robustness and clinical usability compared with three previous reported prognostic gene signatures. According to gene set enrichment analysis, gene sets related to the high-risk group were participated in the ECM receptor interaction and hedgehog signaling pathway. CONCLUSION Identification of the EMRG-based molecular subtypes and prognostic gene model provides a roadmap for patient stratification and trials of targeted therapies.
Collapse
Affiliation(s)
- Jin-Jia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yu Wang
- Laboratory of Immunology and Virology, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Zhang
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Cong Tan
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Wei-Qi Sheng
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Mi-Die Xu
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Institute of Pathology, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Gęca K, Rawicz-Pruszyński K, Mlak R, Sadok I, Polkowski WP, Staniszewska M. Kynurenine and Anthranilic Acid in the Peritoneum Correlate With the Stage of Gastric Cancer Disease. Int J Tryptophan Res 2022; 15:11786469211065620. [PMID: 35140473 PMCID: PMC8819753 DOI: 10.1177/11786469211065620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to assess the importance of selected kynurenines measured in peritoneal fluid, lavage washings, and blood serum in patients with advanced gastric cancer (GC) based on the clinical and pathological staging of TNM for a more precise evaluation of the stage of the disease. METHODS Data were collected from a prospectively maintained database of all patients operated on advanced GC between July 2018 and August 2020. In total, 98 patients were eligible for the analysis according to the REMARK guidelines. RESULTS Among the various kynurenines analyzed in this study, we found that the median concentration of anthranilic acid (AA) in the peritoneal lavage washings was significantly higher in patients with positive nodes (pN1-3) compared to those with negative nodes (pN0) (P = 0.0100). Based on the ROC analysis, AA showed diagnostic utility in the differentiation of the pN staging (P = 0.0047). Furthermore, there was a positive correlation between AA in peritoneal fluid with stage pN (P = 0.0116) and a positive correlation between AA in peritoneal lavage washings with stage cT (P = 0.0101). We found that the median concentration of kynurenine (Kyn) in peritoneal lavage washings was significantly higher in patients with cM1 compared to cM0 patients (P = 0.0047). Based on the ROC analysis, Kyn showed diagnostic utility in cM staging differentiation (P < 0.0001). There was a positive correlation between peritoneal Kyn and stage of cM (P = 0.0079). CONCLUSIONS AA and Kyn measured in peritoneal lavage indicate advanced GC and may be considered in the future as valuable adjunct tools in TNM staging of advanced GC.
Collapse
Affiliation(s)
- Katarzyna Gęca
- Department of Surgical Oncology,
Medical University of Lublin, Lublin, Poland
| | | | - Radosław Mlak
- Department of Human Physiology, Medical
University of Lublin, Lublin, Poland
| | - Ilona Sadok
- Laboratory of Separation and
Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of
Science and Health, The John Paul II Catholic University of Lublin, Lublin,
Poland
| | | | - Magdalena Staniszewska
- Laboratory of Separation and
Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of
Science and Health, The John Paul II Catholic University of Lublin, Lublin,
Poland
| |
Collapse
|
14
|
Eroglu EC, Kucukgoz Gulec U, Vardar MA, Paydas S. GC-MS based metabolite fingerprinting of serous ovarian carcinoma and benign ovarian tumor. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2022; 28:12-24. [PMID: 35503418 DOI: 10.1177/14690667221098520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this study is to identify urinary metabolomic profile of benign and malign ovarian tumors patients. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and metabolomic tools to define biomarkers that cause differentiation between groups. 7 metabolites were found to be different in patients with ovarian cancer (OC) and benign tumors (BT). R2Y and Q2 values were found to be 0.670 and 0.459, respectively. L-tyrosine, glycine, stearic acid, turanose and L-threonine metabolites were defined as prominent biomarkers. The sensitivity of the model was calculated as 90.72% and the specificity as 82.09%. In the pathway analysis, glutathione metabolism, aminoacyl-tRNA biosynthesis, glycine serine and threonine metabolic pathway, primary bile acid biosynthesis pathways were found to be important. According to the t-test, 29 metabolites were found to be significant in urine samples of OC patients and healthy controls (HC). R2Y and Q2 values were found to be 0.8170 and 0.749, respectively. These results showed that the model has high compatibility and predictive power. Benzoic acid, L-threonine, L-pyroglutamic acid, creatinine and 3,4-dihydroxyphenylacetic acid metabolites were determined as prominent biomarkers. The sensitivity of the model was calculated as 93.81% and the specificity as 98.59%. Glycine serine and threonine metabolic pathway, glutathione metabolism and aminoacyl-tRNA biosynthesis pathways were determined important in OC patients and HC. The R2Y, Q2, sensitivity and specificity values in the urine samples of BT patients and HC were found to be 0.869, 0.794, 91.75, 97.01% and 97.18%, respectively. L-threonine, L-pyroglutamic acid, benzoic acid, creatinine and pentadecanol metabolites were determined as prominent biomarkers. Valine, leucine and isoleucine biosynthesis and aminoacyl-tRNA biosynthesis were significant. In this study, thanks to the untargeted metabolomic approach and chemometric methods, every group was differentiated from the others and prominent biomarkers were determined.
Collapse
Affiliation(s)
| | - Umran Kucukgoz Gulec
- Medical Faculty, Department of Gynecological Oncology, 63988Cukurova University, Adana, Turkey
| | - Mehmet Ali Vardar
- Medical Faculty, Department of Gynecological Oncology, 63988Cukurova University, Adana, Turkey
| | - Semra Paydas
- Medical Faculty, Department of Oncology, 63988Cukurova University, Adana, Turkey
| |
Collapse
|
15
|
Li D, Yan L, Lin F, Yuan X, Yang X, Yang X, Wei L, Yang Y, Lu Y. Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer. J Gastric Cancer 2022; 22:306-318. [DOI: 10.5230/jgc.2022.22.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dehong Li
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Fugui Lin
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Lu
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
16
|
Eroglu EC, Tunug S, Geckil OF, Gulec UK, Vardar MA, Paydas S. Discovery of metabolomic biomarkers for discriminating platinum-sensitive and platinum-resistant ovarian cancer by using GC-MS. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:235-248. [PMID: 34806450 DOI: 10.1177/14690667211057996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aims to determine ovarian cancer (OC) patients with platinum resistance for alternative treatment protocols by using metabolomic methodologies. Urine and serum samples of platinum-resistant and platinum-sensitive OC were analyzed using GC-MS. After data processing of GC-MS raw data, multivariate analyses were performed to interpret complex data for biologically meaningful information and to identify the biomarkers that cause differences between two groups. The biomarkers were verified after univariate, multivariate, and ROC analysis. Finally, metabolomic pathways related to group separations were specified. The results of biomarker analysis showed that 3,4-dihydroxyphenylacetic acid, 4-hydroxybutyric acid, L-threonine, D- mannose, and sorbitol metabolites were potential biomarkers in urine samples. In serum samples, L-arginine, linoleic acid, L-glutamine, and hypoxanthine were identified as important biomarkers. R2Y, Q2, AUC, sensitivity and specificity values of platinum-resistant and sensitive OC patients' urine and serum samples were 0.85, 0.545, 0.844, 91.30%, 81.08 and 0.570, 0.206, 0.743, 77.78%, 74.28%, respectively. In metabolic pathway analysis of urine samples, tyrosine metabolism and fructose and mannose metabolism were found to be statistically significant (p < 0.05) for the discrimination of the two groups. While 3,4-dihydroxyphenylacetic acid, L-tyrosine, and fumaric acid metabolites were effective in tyrosine metabolism. D-sorbitol and D-mannose metabolites were significantly important in fructose and mannose metabolism. However, seven metabolomic pathways were significant (p < 0.05) in serum samples. In terms of p-value, L-glutamine in the nitrogen metabolic pathway from the first three pathways; L-glutamine and pyroglutamic acid metabolites in D-glutamine and D-glutamate metabolism. In the arginine and proline metabolic pathway, L-arginine, L-proline, and L-ornithine metabolites differed significantly between the two groups.
Collapse
Affiliation(s)
- Evren C Eroglu
- Department of Biotechnology, 37506Cukurova University, Adana, Turkey
- Alata Horticultural Research Institute, Mersin, Turkey
| | - Sule Tunug
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Omer Faruk Geckil
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | | | - Mehmet Ali Vardar
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Semra Paydas
- Department of Oncology, 37506Cukurova University, Adana, Turkey
| |
Collapse
|
17
|
Huang R, Shen K, He Q, Hu Y, Sun C, Guo C, Pan Y. Metabolic Profiling of Urinary Chiral Amino-Containing Biomarkers for Gastric Cancer Using a Sensitive Chiral Chlorine-Labeled Probe by HPLC-MS/MS. J Proteome Res 2021; 20:3952-3962. [PMID: 34229439 DOI: 10.1021/acs.jproteome.1c00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Screening of characteristic biomarkers from chiral amino-containing metabolites in biological samples is difficult and important for the noninvasive diagnosis of gastric cancer (GC). Here, an enantiomeric pair of chlorine-labeled probes d-BPCl and l-BPCl was synthesized to selectively label d- and l-amino-containing metabolites in biological samples, respectively. Incorrect structural annotations were excluded according to the characteristic 3:1 abundance ratio of natural chlorine isotopes (35Cl and 37Cl) derived from the probes. A sensitive C18 HPLC-QQQ-MS/MS method in combination with the probes was then developed and applied in metabolomic analysis of amino-containing metabolites in urine samples. A total of 161 amino-containing metabolites were rapidly separated and determined, and 28 chiral amino acids and achiral glycine were quantified with good precision and accuracy. A total of 18 differential variables were discriminated by analyzing chiral amino-containing metabolites in urine samples of the GC patient and healthy person using the probe-based HPLC-MS/MS-MRM method combined with the orthogonal partial least squares discriminant analysis and Mann-Whitney U test with false discovery rate correction for multiple hypotheses. A diagnostic regression model including d-isoleucine, d-serine, and β-(pyrazol-1-yl)-l-alanine and age was then constructed with an average prediction correctness of 88.9% in the validation set. This work established a close connection between gastric cancer and chiral amino-containing metabolites. The mass spectrometry data analyzed in the study are publicly available via Mendeley Data (DOI: 10.17632/4bd93j9yrr.1).
Collapse
Affiliation(s)
- Rongrong Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kexin Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
18
|
Abstract
Gastric cancer is the fourth most common malignancy worldwide and the third leading cause of cancer deaths. Recent metabolomics research has advanced our understanding of the relationship between metabolic reprogramming and gastric cancer progression and led to the discovery of metabolic targets for potential clinical applications and therapeutic interventions. As a powerful tool for metabolite and flux measurement, metabolomics not only allows a comprehensive analysis of metabolites and related metabolic pathways but also can investigate the interactions between gastric cancer cells and tumour microenvironment as well as between the cancer cells and gastric microbiome. In this chapter, we aim to summarize the recent advances in gastric cancer metabolism and discuss the applications of metabolomics for target discovery in gastric cancer.
Collapse
Affiliation(s)
| | - Bowen Wei
- UCLA School of Medicine, Los Angeles, CA, USA
| | - Feng Li
- UCLA School of Dentistry, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Aftabi Y, Soleymani J, Jouyban A. Efficacy of Analytical Technologies in Metabolomics Studies of the Gastrointestinal Cancers. Crit Rev Anal Chem 2021; 52:1593-1605. [PMID: 33757389 DOI: 10.1080/10408347.2021.1901646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
According to the reports of the World Health Organization and the International Agency for Research on Cancer, cancer is the second leading cause of human death worldwide. However, early-stage detection of cancers can efficiently enhance the chance of therapy and saving lives. Metabolomics strategies apply a variety of approaches to discover new potential diagnoses, prognoses, and/or therapeutic biomarkers of various diseases. Metabolomics aims to identify and measure different low-molecular-weight biomolecules in physiological environments. In these studies, special metabolites are extracted from biological samples and identified using analytical techniques. Afterward, using data processing programs discovering significantly associated biomarkers is pursued. In the present review, we aimed to discuss recently reported analytical approaches on the metabolomics studies of gastrointestinal cancers including gastric, colorectal, and esophageal cancers. The gas- and liquid-chromatography with different detectors have been shown that are the main analytical techniques and for metabolites quantification, nuclear magnetic resonance has been utilized as a master method.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Ren Z, Rajani C, Jia W. The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13040720. [PMID: 33578739 PMCID: PMC7916516 DOI: 10.3390/cancers13040720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer of the stomach, esophagus and colon are often fatal. Ways are being sought to establish patient-friendly screening tests that would allow these cancers to be detected earlier. Examination of the metabolomics results of cancer patient’s serum for certain metabolites unique for a particular cancer was the goal of this review. From studies conducted within the past five years several metabolites were found to be changed in cancer compared to non-cancer patients for each of the three cancers. Further confirmation of what was discovered in this review coupled with establishment of standard protocols may allow for cancer screening on patient blood samples to become routine clinical tests. Abstract Three of the most lethal cancers in the world are the gastrointestinal cancers—gastric (GC), esophageal (EC) and colorectal cancer (CRC)—which are ranked as third, sixth and fourth in cancer deaths globally. Early detection of these cancers is difficult, and a quest is currently on to find non-invasive screening tests to detect these cancers. The reprogramming of energy metabolism is a hallmark of cancer, notably, an increased dependence on aerobic glycolysis which is often referred to as the Warburg effect. This metabolic change results in a unique metabolic profile that distinguishes cancer cells from normal cells. Serum metabolomics analyses allow one to measure the end products of both host and microbiota metabolism present at the time of sample collection. It is a non-invasive procedure requiring only blood collection which encourages greater patient compliance to have more frequent screenings for cancer. In the following review we will examine some of the most current serum metabolomics studies in order to compare their results and test a hypothesis that different tumors, notably, from EC, GC and CRC, have distinguishing serum metabolite profiles.
Collapse
Affiliation(s)
- Zhenxing Ren
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
| | - Cynthia Rajani
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Correspondence: (C.R.); or (W.J.)
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Correspondence: (C.R.); or (W.J.)
| |
Collapse
|
21
|
Wen Q, Boshier P, Myridakis A, Belluomo I, Hanna GB. Urinary Volatile Organic Compound Analysis for the Diagnosis of Cancer: A Systematic Literature Review and Quality Assessment. Metabolites 2020; 11:17. [PMID: 33383923 PMCID: PMC7824454 DOI: 10.3390/metabo11010017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The analysis of urinary volatile organic compounds (VOCs) is a promising field of research with the potential to discover new biomarkers for cancer early detection. This systematic review aims to summarise the published literature concerning cancer-associated urinary VOCs. A systematic online literature search was conducted to identify studies reporting urinary VOC biomarkers of cancers in accordance with the recommendations of the Cochrane Library and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Thirteen studies comprising 1266 participants in total were included in the review. Studies reported urinary VOC profiles of five cancer subtypes: prostate cancer, gastrointestinal cancer, leukaemia/lymphoma, lung cancer, and bladder cancer. Forty-eight urinary VOCs belonging to eleven chemical classes were identified with high diagnostic performance. VOC profiles were distinctive for each cancer type with limited cross-over. The metabolic analysis suggested distinctive phenotypes for prostate and gastrointestinal cancers. The heterogenicity of study design, methodological and reporting quality may have contributed to inconsistencies between studies. Urinary VOC analysis has shown promising performance for non-invasive diagnosis of cancer. However, limitations in study design have resulted in inconsistencies between studies. These limitations are summarised and discussed in order to support future studies.
Collapse
Affiliation(s)
| | | | | | | | - George B. Hanna
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London W2 1NY, UK; (Q.W.); (P.B.); (A.M.); (I.B.)
| |
Collapse
|
22
|
Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease. Metabolites 2020; 10:metabo10090370. [PMID: 32942543 PMCID: PMC7570292 DOI: 10.3390/metabo10090370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Renal diets are recommended for dogs with chronic kidney disease (CKD). This study examined the effects of foods with added betaine and fiber on the plasma and fecal metabolome and fecal microbiome in dogs with early stage CKD. At baseline, several metabolites differed between healthy dogs and those with CKD. Dogs with CKD (n = 28) received a control food, low soluble fiber plus betaine food (0.5% betaine, 0.39% oat beta-glucan, and 0.27% short-chain fructooligosaccharides (scFOS)), or high soluble fiber plus betaine food (0.5% betaine, 0.59% oat beta-glucan, and 0.41% scFOS) each for 10 weeks in different sequences. Consumption of test foods led to several favorable, significant changes in the plasma metabolome, including decreases of several uremic toxins and other deleterious metabolites, and increases in favorable metabolites compared with the control food. Only 7 fecal metabolites significantly changed with consumption of the test foods compared with the control food, largely increases in polyphenols and lignans. Few changes were seen in the fecal microbiome, though some taxa that significantly changed in response to the test foods have beneficial effects on health, with some negatively correlating with uremic toxins. Overall, foods with added betaine and soluble fiber showed positive effects on the plasma and fecal metabolomes.
Collapse
|
23
|
Derruau S, Robinet J, Untereiner V, Piot O, Sockalingum GD, Lorimier S. Vibrational Spectroscopy Saliva Profiling as Biometric Tool for Disease Diagnostics: A Systematic Literature. Molecules 2020; 25:E4142. [PMID: 32927716 PMCID: PMC7570680 DOI: 10.3390/molecules25184142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Saliva is a biofluid that can be considered as a "mirror" reflecting our body's health status. Vibrational spectroscopy, Raman and infrared, can provide a detailed salivary fingerprint that can be used for disease biomarker discovery. We propose a systematic literature review based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to evaluate the potential of vibrational spectroscopy to diagnose oral and general diseases using saliva as a biological specimen. Literature searches were recently conducted in May 2020 through MEDLINE-PubMed and Scopus databases, without date limitation. Finally, over a period of 10 years, 18 publications were included reporting on 10 diseases (three oral and seven general diseases), with very high diagnostic performance rates in terms of sensitivity, specificity, and accuracy. Thirteen articles were related to six different cancers of the following anatomical sites: mouth, nasopharynx, lung, esophagus, stomach, and breast. The other diseases investigated and included in this review were periodontitis, Sjögren's syndrome, diabetes, and myocardial infarction. Moreover, most articles focused on Raman spectroscopy (n = 16/18) and more specifically surface-enhanced Raman spectroscopy (n = 12/18). Interestingly, vibrational spectroscopy appears promising as a rapid, label-free, and non-invasive diagnostic salivary biometric tool. Furthermore, it could be adapted to investigate subclinical diseases-even if developmental studies are required.
Collapse
Affiliation(s)
- Stéphane Derruau
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 45 rue Cognacq-Jay, 51092 Reims, France
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
| | - Julien Robinet
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
| | - Valérie Untereiner
- Université de Reims Champagne-Ardenne, PICT, 51 rue Cognacq-Jay, 51097 Reims, France;
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
- Université de Reims Champagne-Ardenne, PICT, 51 rue Cognacq-Jay, 51097 Reims, France;
| | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
| | - Sandrine Lorimier
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 45 rue Cognacq-Jay, 51092 Reims, France
- Université de Reims Champagne-Ardenne, GRESPI-EA4694, UFR Sciences Exactes et Naturelles, 51687 Reims, France
| |
Collapse
|
24
|
Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin's lymphoma urinary metabolite markers. Anal Bioanal Chem 2020; 412:7469-7480. [PMID: 32897412 DOI: 10.1007/s00216-020-02881-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Non-Hodgkin's lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients (N = 15) and compare them to healthy controls (N = 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease. Graphical Abstract.
Collapse
|
25
|
Li J, Xue H, Xiang Z, Song S, Yan R, Ji J, Zhu Z, Wei C, Yu Y. Genetic Profiles Affect the Biological Effects of Serine on Gastric Cancer Cells. Front Pharmacol 2020; 11:1183. [PMID: 32848786 PMCID: PMC7411129 DOI: 10.3389/fphar.2020.01183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
A high serine content in body fluid was identified in a portion of patients with gastric cancer, but its biological significance was not clear. Here, we investigated the biological effect of serine on gastric cancer cells. Serine was added into the culture medium of MGC803 and HGC27 cancer cells, and its influence on multiple biological functions, such as cell growth, migration and invasion, and drug resistance was analyzed. We examined the global transcriptomic profiles in these cultured cells with high serine content. Both MGC803 and HGC27 cell lines were originated from male patients, however, their basal gene expression patterns were very different. The finding of cell differentiation-associated genes, ALPI, KRT18, TM4SF1, KRT81, A2M, MT1E, MUC16, BASP1, TUSC3, and PRSS21 in MGC803 cells suggested that this cell line was more poorly differentiated, compared to HGC27 cell line. When the serine concentration was increased to 150mg/ml in medium, the response of these two gastric cancer cell lines was different, particularly on cell growth, cell migration, and invasion and 5-FU resistance. In animal experiment, administration of high concentration of serine promoted cancer cell metastasis to local lymph node. Taken together, we characterized the basal gene expressing profiles of MGC803 and HGC27. The HGC27 cells were more differentiated than MGC803 cells. MGC803 cells were more sensitive to the change of serine content. Our results suggested that the responsiveness of cancer cells to microenvironmental change is associated with their genetic background.
Collapse
Affiliation(s)
- Jun Li
- Department of Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhang Xue
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Xiang
- Department of Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzheng Song
- Department of Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranlin Yan
- Department of Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ji
- Department of Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochun Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyan Yu
- Department of Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Xiao S, Li S, Yuan Z, Zhou L. Pyrroline-5-carboxylate reductase 1 (PYCR1) upregulation contributes to gastric cancer progression and indicates poor survival outcome. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:937. [PMID: 32953737 PMCID: PMC7475402 DOI: 10.21037/atm-19-4402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Proline levels are significantly increased in tumor specimens and urine samples from gastric cancer (GC) patients, and we previously showed that intracellular proline levels significantly differ between human GC cell lines and normal gastric epithelial cells. Pyrroline-5-carboxylate reductase 1 (PYCR1) is the key enzyme in intracellular proline synthesis, but its role in GC remains largely unknown. Methods Bioinformatic analysis and immunohistochemical (IHC) staining with a tissue microarray were conducted to assess the association between PYCR1 expression and clinical parameters. PYCR1 downregulation and overexpression were then established in two GC cell lines (AGS and MKN28 cells) to determine whether PYCR1 promotes malignant behavior in GC. Gene set enrichment analysis (GSEA) was further performed to investigate the pathway regulating PYCR1 in GC. Results PYCR1 expression was up-regulated in different GC cohorts. High PYCR1 protein expression was correlated with advanced tumor stage, aggressive histological type and high Ki-67 index. High PYCR1 expression in GC tissues was an indicator of poor outcome in GC patients. In vitro, PYCR1 knockdown markedly attenuated GC cells growth and promoted apoptosis, while overexpression produced the opposite effects. GSEA analysis indicated PI3K/Akt axis was strongly correlated with PYCR1 expression and that PIK3CB and AKT1 mRNA expression was positively associated with PYCR1 in GC tissues. PI3K inhibition further significantly reduced PYCR1 mRNA and protein expression. Moreover, as PYCR1 is a mitochondrial endomembrane protein, nutrient stress induced by glucose deprivation also regulated PYCR1 expression. Conclusions PYCR1 is highly expressed in GC and acts as a mitochondrial oncogene to induce cancer progression by enhancing tumor proliferation and responding to metabolic stress. PYCR1 is a novel prognostic marker and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Sizhu Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Ziying Yuan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Li S, Zhang Y, Mu S, Ma M, Liu X, Zhang H. Magnetic organic porous polymer as a solid-phase extraction adsorbent for enrichment and quantitation of gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) in urine samples by UPLC. Mikrochim Acta 2020; 187:388. [PMID: 32542460 DOI: 10.1007/s00604-020-04362-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/31/2020] [Indexed: 01/15/2023]
Abstract
A novel magnetic organic porous polymer (denoted as Fe3O4@PC-POP) was developed for magnetic solid-phase extraction (MSPE) of two gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) from urine samples prior to high-performance liquid chromatographic analysis. The adsorbent was characterized by scanning electron microscope, transmission electron microscope, FTIR, powder X-ray diffraction, and other techniques. The result of dynamic light scattering shows that the particle size of the adsorbent is mainly distributed around 400 nm. Based on the design concept of the Fe3O4@PC-POP, the proposed material can effectively capture the target analytes through electrostatic and hydrophobic interaction mechanism. Furthermore, the enrichment conditions were optimized by the response surface method, and the method was utilized for the determination of P-cresol and 4-hydroxybenzoic acid in real urine samples from health and gastric cancer patients with high enrichment factors (34.8 times for P-cresol and 38.7 times for 4-hydroxybenzoic acid), low limit of detection (0.9-5.0 μg L-1), wide linear ranges (3.0-1000 μg L-1), satisfactory relative standard deviation (2.5%-8.5%), and apparent recoveries (85.3-112% for healthy people's and 86.0-112% for gastric cancer patients' urine samples). This study provides a guided principle for design of the versatile polymer with specific capturing of the target compounds from complex biological samples. Graphical abstract.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Minrui Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
28
|
Zhang W, Zhang XJ, Chao SY, Chen SJ, Zhang ZJ, Zhao J, Lv YN, Yao JJ, Bai YY. Update on urine as a biomarker in cancer: a necessary review of an old story. Expert Rev Mol Diagn 2020; 20:477-488. [PMID: 32212972 DOI: 10.1080/14737159.2020.1743687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cancer causes thousands of deaths worldwide each year. Therefore, monitoring of health status and the early diagnosis of cancer using noninvasive assays, such as the analysis of molecular biomarkers in urine, is essential. However, effective biomarkers for early diagnosis of cancer have not been established in many types of cancer.Areas covered: In this review, we discuss recent findings with regard to the use of urine composition as a biomarker in eleven types of cancer. We also highlight the use of urine biomarkers for improving early diagnosis.Expert opinion: Urinary biomarkers have been applied for clinical application of early diagnosis. The main limitation is a lack of integrated approaches for identification of new biomarkers in most cancer. The utilization of urinary biomarker detection will be promoted by improved detection methods and new data from different types of cancers. With the development of precision medicine, urinary biomarkers will play an increasingly important clinical role. Future early diagnosis would benefit from changes in the utilization of urinary biomarkers.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao Jian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shen Yan Chao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Su Juan Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Sciences and Technology, Xinxiang Medical University, Henan, China
| | - Zi Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China
| | - Jian Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ya Nan Lv
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing Jie Yao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yue Yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, PR China
| |
Collapse
|
29
|
Yu J, Zhao J, Zhang M, Guo J, Liu X, Liu L. Metabolomics studies in gastrointestinal cancer: a systematic review. Expert Rev Gastroenterol Hepatol 2020; 14:9-25. [PMID: 31786962 DOI: 10.1080/17474124.2020.1700112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023]
Abstract
Introduction: This systemic review provides an overview of metabolic perturbations and possible mechanisms in gastrointestinal cancer. The authors discuss emerging challenges of technical and clinical applications.Areas covered: In this systemic review, the authors summarized the currently available results of metabolomic biomarkers linked to GI cancer, and discussed the altered metabolism pathways including carbohydrate metabolism, amino acid metabolism, lipids, and nucleotide metabolism and other metabolisms. Furthermore, future efforts need to adhere to normalize analysis procedures, validate with the larger cohort and utilize multiple-omics technologies. The search was conducted in PubMed with the following search terms (biomarker, gastrointestinal cancer, colorectal cancer, and esophageal cancer) from 2013 to 2019.Expert opinion: This systemic review summarized the currently available results of metabolomic biomarkers linked to gastrointestinal cancer, and discussed the altered metabolism pathways. The authors believe that metabolomics will benefit deeper understandings of the pathogenic mechanism, discovery of biomarkers and aid the search for drug targets as we move toward the era of personalized medicine. Personalized medication for tumors can improve the curative effect, avoid side effects and medical resource waste. As a promisingtool, metabolomics that targets the entire cancer-specific metabolite network should be applied more widely in cancer research.
Collapse
Affiliation(s)
- Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Mingjia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jing Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Xiaowei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
30
|
Li J, Wang Q, Zheng Y, Zhou P, Xu X, Liu X, Zhao L, Liu H. Development of a mass spectrometry-based pseudotargeted metabolomics strategy to analyze hormone-stimulated gastric cancer cells. J Pharm Biomed Anal 2019; 180:113041. [PMID: 31855724 DOI: 10.1016/j.jpba.2019.113041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023]
Abstract
Gastric cancer (GC) is the third most common cause of cancer death worldwide, and the incidence of GC is higher in males than females. To investigate the gastric cellular response to hormone therapy, we developed a cell pseudotargeted metabolomics method based on liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry (LC-QTRAP MS). Chromatographic separation, sample analysis and metabolite extraction were optimized in an integrated manner. The established pseudotargeted method, which combined nontargeted and targeted analyses, exhibited high selectivity, good repeatability and wide metabolome coverage. The method was then applied to discover differential metabolites from hormone-stimulated gastric cancer cells compared with the controls for the first time. The results demonstrated that hormone had subtle but phenotypically important alterations in nucleotide metabolism, amino acid metabolism, glycolysis, tricarboxylic acid (TCA) cycle, aminoacyl-tRNA biosynthesis and so on, which indicate that the developed method is a powerful tool for effective screening of endogenous polar metabolites in cell samples.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China
| | - Qingli Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yichao Zheng
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China
| | - Piao Zhou
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xia Xu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China
| | - Xueqi Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Longfei Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China.
| |
Collapse
|
31
|
Li J, Wang QL, Liu Y, Ke Y, Fan QQ, Zhou P, An MC, Liu HM. Simultaneous determination of 24 free amino acids in MGC803 cells by hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121792. [DOI: 10.1016/j.jchromb.2019.121792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
|
32
|
Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu C, Raduly L, Cojocneanu R, Pruteanu LL, Iuga CA, Coza O, Berindan-Neagoe I. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer "Omics". Int J Mol Sci 2019; 20:ijms20102576. [PMID: 31130665 PMCID: PMC6567119 DOI: 10.3390/ijms20102576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mass spectrometry (MS) is an essential analytical technology on which the emerging omics domains; such as genomics; transcriptomics; proteomics and metabolomics; are based. This quantifiable technique allows for the identification of thousands of proteins from cell culture; bodily fluids or tissue using either global or targeted strategies; or detection of biologically active metabolites in ultra amounts. The routine performance of MS technology in the oncological field provides a better understanding of human diseases in terms of pathophysiology; prevention; diagnosis and treatment; as well as development of new biomarkers; drugs targets and therapies. In this review; we argue that the recent; successful advances in MS technologies towards cancer omics studies provides a strong rationale for its implementation in biomedicine as a whole.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Mihail Buse
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lavinia Lorena Pruteanu
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cristina Adela Iuga
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca.
| | - Ovidiu Coza
- Department of Oncology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca.
| | - Ioana Berindan-Neagoe
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuțǎ Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca.
| |
Collapse
|
33
|
Shi Y, Zhang J, He J, Liu D, Meng X, Huang T, He H. A method of detecting two tumor markers (p-hydroxybenzoic acid and p-cresol) in human urine using a porous magnetic <beta>-cyclodextrine polymer as solid phase extractant, an alternative for early gastric cancer diagnosis. Talanta 2018; 191:133-140. [PMID: 30262042 DOI: 10.1016/j.talanta.2018.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
Abstract
Analyzing of tumor markers has become an important means for cancer diagnosis and prevention. In this study, a novel solid phase extraction based on porous magnetic cyclodextrin polymer (MA-CD) was developed and used for detection of trace small molecule gastric tumor markers in urine samples. The adsorption properties of the magnetic cyclodextrin polymer were tested. Through experiments of the solid phase extraction (SPE) at the different condition, the optimal condition was selected to test the two tumor markers by High-performance-liquid chromatography -Diode array detector (HPLC-DAD). The analytical performance of the method showed good accuracy (88.82%-104.34%) and precision (< 3.55%), appropriated detection limits (1.016 and 5.714 μg L-1) and linear ranges (0.6-24.0 μg L-1) with convenient determination coefficients (> 0.9994). The results demonstrated that the developed approach is efficient, low-cost for gastric tumor markers detection.
Collapse
Affiliation(s)
- Yi Shi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Jingyi Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Jia He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Donghao Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaoyan Meng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Tao Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
34
|
López-López Á, López-Gonzálvez Á, Barker-Tejeda TC, Barbas C. A review of validated biomarkers obtained through metabolomics. Expert Rev Mol Diagn 2018; 18:557-575. [PMID: 29808702 DOI: 10.1080/14737159.2018.1481391] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Studying changes in the whole set of small molecules, final products of biochemical reactions in living systems or metabolites, is extremely appealing because they represent the best approach to identifying what occurs in an organism when samples are collected. However, their usefulness as potential biomarkers is limited by discoveries obtained in small groups without proper validation or even confirmation of the chemical structure. Areas covered: During the past 5 years, more than 900 papers have been published on metabolomics for biomarker discovery, but the numbers are much lower when some criteria of validation are applied. In total, 102 papers have been included in this review. The most frequent disease areas in which these markers have been discovered include the following: cancer, diabetes, and related diseases and neurodegenerative, cardiovascular, autoimmune, liver, and kidney diseases. Expert commentary: Metabolomics has been demonstrated as rapidly growing due to the improvements in instrumentation, mainly mass spectrometry, and data mining software. For application in the clinic, the results should be validated in different stages, from analytical validation to validation in independent sets of samples, using thousands of samples from different sources.
Collapse
Affiliation(s)
- Ángeles López-López
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| | - Ángeles López-Gonzálvez
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| | - Tomás Clive Barker-Tejeda
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| | - Coral Barbas
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| |
Collapse
|
35
|
Liu J, Lin S, Li Z, Zhou L, Yan X, Xue Y, Meng L, Lu J, Suo B, Jiang W. Free amino acid profiling of gastric juice as a method for discovering potential biomarkers of early gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2323-2336. [PMID: 31938344 PMCID: PMC6958230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/20/2018] [Indexed: 06/10/2023]
Abstract
Background: Prior studies showed that aromatic amino acids (AAAs) could be used as potential gastric juice biomarkers in screening gastric cancer (GC). To identify new biomarkers for early diagnosis of GC, the characteristics of gastric juice free amino acid (GJFAA) profiling was determined. Method: First, gastric juice was collected from 130 consecutive patients who underwent gastroscopy. They were divided into GC group (n = 47) and non-neoplastic gastric disease (NGD) group (n = 83) according to the pathological diagnosis. The concentrations of 34 GJFAAs were examined by amino acid analyzer. Multivariate and univariate analyses were used for comparing the alterations of GJFAA profiles between the two groups. Then candidate differential GJFAAs were verified by LC-MS/MS in another set of patients, which included 32 GC patients and 38 NGD patients. The diagnostic performance of GJFAAs was evaluated by ROC curve. Results: Significant alterations in GJFAA profiles were observed in GC patients compared to NGD patients in the training set. A total of 14 amino acids were screened as differential GJFAAs. Leucine, threonine and serine were the most frequently altered. Combined AUC of the three non-AAAs [0.869 (95% CI, 0.805-0.934)] was superior to the combined three AAAs [0.841 (95% CI, 0.773-0.908)]. In addition, a combined AUC comprisingthe six ones was further improved to 0.871 (95% CI, 0.809-0.933) in the diagnosis of GC. A similar variation trend and diagnostic value were observed in the validation set. Conclusion: This study indicates the potential of GJFAA profiling as a promising approach for the early detection and screening of GC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
- Department of Gastroenterology, Beijing Jishuitan HospitalBeijing, China
| | - Sanren Lin
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| | - Zhengpeng Li
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
- Department of General Surgery, 306 Hospital of PLABeijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| | - Xiue Yan
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| | - Yan Xue
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| | - Lingmei Meng
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| | - Jingjing Lu
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| | - Baojun Suo
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| | - Wenjun Jiang
- Department of Gastroenterology, Peking University Third HospitalBeijing 100191, China
| |
Collapse
|
36
|
Plasma sample based analysis of gastric cancer progression using targeted metabolomics. Sci Rep 2017; 7:17774. [PMID: 29259332 PMCID: PMC5736578 DOI: 10.1038/s41598-017-17921-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/02/2017] [Indexed: 12/16/2022] Open
Abstract
Gastric carcinogenesis is a multifactorial process described as a stepwise progression from non-active gastritis (NAG), chronic active gastritis (CAG), precursor lesions of gastric cancer (PLGC) and gastric adenocarcinoma. Gastric cancer (GC) 5-year survival rate is highly dependent upon stage of disease at diagnosis, which is based on endoscopy, biopsy and pathological examinations. Non-invasive GC biomarkers would facilitate its diagnosis at early stages leading to improved GC prognosis. We analyzed plasma samples collected from 80 patients diagnosed with NAG without H. pylori infection (NAG−), CAG with H. pylori infection (CAG+), PLGC and GC. A panel of 208 metabolites including acylcarnitines, amino acids and biogenic amines, sphingolipids, glycerophospholipids, hexoses, and tryptophan and phenylalanine metabolites were quantified using two complementary quantitative approaches: Biocrates AbsoluteIDQ®p180 kit and a LC-MS method designed for the analysis of 29 tryptophan pathway and phenylalanine metabolites. Significantly altered metabolic profiles were found in GC patients that allowing discrimination from NAG−, CAG+ and PLGC patients. Pathway analysis showed significantly altered tryptophan and nitrogen metabolic pathways (FDR P < 0.01). Three metabolites (histidine, tryprophan and phenylacetylglutamine) discriminated between non-GC and GC groups. These metabolic signatures open new possibilities to improve surveillance of PLGC patients using a minimally invasive blood analysis.
Collapse
|
37
|
Xiao S, Zhou L. Gastric cancer: Metabolic and metabolomics perspectives (Review). Int J Oncol 2017; 51:5-17. [PMID: 28535006 DOI: 10.3892/ijo.2017.4000] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most malignant tumors worldwide and remains a major health threat in Asia-Pacific regions, while its pathological mechanism is generally unknown. Recent research has advanced the understanding of the relationship between metabolic reprogramming and carcinogenesis. In particular, metabolic regulation and cancer research are being further brought into sharp focus with the emergence of metabolomics. Not only can metabolomics provide global information on metabolic profiles of specific tumors, but it can also act as a promising tool to discover biomarkers regarding diagnosis, metastatic surveillance and chemotherapeutic sensitivity prediction. Meanwhile, metabolism-based anticancer therapies will be further discovered. Up to now, accumulative studies have highlighted the application of metabolomics in gastric cancer research regarding different aspects; therefore we summarized the current available results of how metabolic changes are linked to gastric carcinogenesis, and how metabolomics holds promise for the diagnosis, metastatic surveillance, treatment and prognosis prediction of gastric cancer.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| |
Collapse
|
38
|
Song Q, Zhang AH, Yan GL, Liu L, Wang XJ. Technological advances in current metabolomics and its application in tradition Chinese medicine. RSC Adv 2017. [DOI: 10.1039/c7ra02056b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the last few years, many metabolomics technologies have been established in biomedical research for analyzing the changes of metabolite levels.
Collapse
Affiliation(s)
- Qi Song
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau University of Science and Technology
- Macau
- China
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|