1
|
Jung J, Lee J, Kang H, Park K, Kim YS, Ha J, So S, Sung S, Yun JH, Jang JH, Choi SJ, Choung YH. miR-409-3p Regulates IFNG and p16 Signaling in the Human Blood of Aging-Related Hearing Loss. Cells 2024; 13:1595. [PMID: 39329776 PMCID: PMC11429563 DOI: 10.3390/cells13181595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Presbycusis, also referred to as age-related hearing loss (ARHL), is a multifaceted condition caused by the natural aging process affecting the auditory system. Genome-wide association studies (GWAS) in human populations can identify potential genes linked to ARHL. Despite this, our knowledge of the biochemical and molecular mechanisms behind the condition remains incomplete. This study aims to evaluate a potential protective tool for ARHL treatment by comparing human blood-based target gene-miRNA associations regulated in ARHL. To identify promising target genes for ARHL, we utilized an mRNA assay. To determine the role of miRNA in ARHL, we investigated the expression profile of miRNA in whole blood in ARHL patients with real-time polymerase chain reaction (RT-qPCR). A reporter gene assay was performed to confirm the regulation of candidate genes by microRNA. Through RT-qPCR validation analysis, we finally confirmed the relationship between ARHL and the role of the interferon-gamma (IFNG) gene. This gene can be regarded as an age-related gene. Through gene ontology (GO) analysis, it has been found that these genes are enriched in pathways related to apoptosis. Among them, IFNG induces an inflammatory response, apoptotic cell death, and cellular senescence. We found that miR-409-3p downregulates the expression of the IFNG in vitro. In addition, the downregulation of the IFNG by miRNA 409-3p promoted cell apoptosis and suppressed proliferation. In conclusion, our study produced gene signatures and associated microRNA regulation that could be a protective key for ARHL patients. IFNG genes and miR-409-3p should be investigated for their usefulness as a new biomarker for treatment modality.
Collapse
Affiliation(s)
- Junseo Jung
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jeongmin Lee
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyunsook Kang
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Kyeongjin Park
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Young Sun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Jungho Ha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Seongjun So
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Siung Sung
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hyeon Yun
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Seong Jun Choi
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| |
Collapse
|
2
|
Ebright B, Yu Z, Dave P, Dikeman D, Hamm-Alvarez S, de Paiva CS, Louie S. Effects of age on lacrimal gland bioactive lipids. Ocul Surf 2024; 33:64-73. [PMID: 38705236 PMCID: PMC12014011 DOI: 10.1016/j.jtos.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Polyunsaturated fatty acids (PUFA) are a source of bioactive lipids regulating inflammation and its resolution. METHODS Changes in PUFA metabolism were compared between lacrimal glands (LGs) from young and aged C57BL/6 J mice using a targeted lipidomics assay, as was the gene expression of enzymes involved in the metabolism of these lipids. RESULTS Global reduction in PUFAs and their metabolites was observed in aged LGs compared to young controls, averaging between 25 and 66 % across all analytes. ꞷ-6 arachidonic acid (AA) metabolites were all reduced in aged LGs, where the changes in prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) were statistically significant. Several other 5-lipoxygenase (5-LOX) mediated metabolites were significantly reduced in the aged LGs, including D-series resolvins (e.g., RvD4, RvD5, and RvD6). Along with the RvDs, several ꞷ-3 docosahexaenoic acid (DHA) metabolites such as 14-HDHA, neuroprotectin D1 (NPD1), Maresin 2 (MaR2), and MaR 1 metabolite (22-COOH-MaR1) were significantly reduced in aged LGs. Similarly, ꞷ-3 eicosapentaenoic acid (EPA) and its metabolites were significantly reduced in aged LGs, where the most significantly reduced was 18-HEPE. Using metabolite ratios (product:precursor) for specific metabolic conversions as surrogate enzymatic measures, reduced 12-LOX activity was identified in aged LGs. CONCLUSION In this study, global reduction of PUFAs and their metabolites was found in the LGs of aged female C57BL/6 J compared to young controls. A consistent reduction was observed across all detected lipid analytes except for ꞷ-3 docosapentaenoic acid (DPA) and its special pro-resolving mediator (SPM) metabolites in aged mice, suggesting an increased risk for LG inflammation.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Priyal Dave
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Dante Dikeman
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Sarah Hamm-Alvarez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; Department of Pharmaceutical Sciences, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Stan Louie
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| |
Collapse
|
3
|
Abu-Romman A, Scholand KK, Govindarajan G, Yu Z, Pal-Ghosh S, Stepp MA, de Paiva CS. Age-Related Differences in the Mouse Corneal Epithelial Transcriptome and Their Impact on Corneal Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38739085 PMCID: PMC11098051 DOI: 10.1167/iovs.65.5.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Aging is a risk factor for dry eye. We sought to identify changes in the aged mouse corneal epithelial transcriptome and determine how age affects corneal sensitivity, re-epithelialization, and barrier reformation after corneal debridement. Methods Corneal epithelium of female C57BL/6J (B6) mice of different ages (2, 12, 18, and 24 months) was collected, RNA extracted, and bulk RNA sequencing performed. Cornea sensitivity was measured with an esthesiometer in 2- to 3-month-old, 12- to 13-month-old, 18- to 19-month-old, and 22- to 25-month-old female and male mice. The 2-month-old and 18-month-old female and male mice underwent unilateral corneal debridement using a blunt blade. Wound size and fluorescein staining were visualized and photographed at different time points, and a re-epithelialization rate curve was calculated. Results There were 157 differentially expressed genes in aged mice compared with young mice. Several pathways downregulated with age control cell migration, proteoglycan synthesis, and collagen trimerization, assembly, biosynthesis, and degradation. Male mice had decreased corneal sensitivity compared with female mice at 12 and 24 months of age. Aged mice, irrespective of sex, had delayed corneal re-epithelialization in the first 48 hours and worse corneal fluorescein staining intensity at day 14 than young mice. Conclusions Aged corneal epithelium has an altered transcriptome. Aged mice regardless of sex heal more slowly and displayed more signs of corneal epithelial defects after wounding than young mice. These results indicate that aging significantly alters the corneal epithelium and its ability to coordinate healing.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Zhiyuan Yu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Mary A. Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
4
|
Harding D, Marelli-Berg F. Interferon-gamma signs off an old heart. Cardiovasc Res 2023; 119:2387-2389. [PMID: 37883721 DOI: 10.1093/cvr/cvad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Affiliation(s)
- Daniel Harding
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Federica Marelli-Berg
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
5
|
Kelagere Y, Scholand KK, DeJong EN, Boyd AI, Yu Z, Astley RA, Callegan MC, Bowdish DM, Makarenkova HP, de Paiva CS. TNF is a critical cytokine in age-related dry eye disease. Ocul Surf 2023; 30:119-128. [PMID: 37634571 PMCID: PMC10812879 DOI: 10.1016/j.jtos.2023.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex biological process that is characterized by low-grade inflammation, called inflammaging. Aging affects multiple organs including eye and lacrimal gland. Tumor necrosis factor (TNF) is a pleiotropic cytokine that participates in inflammation, activation of proteases such as cathepsin S, and formation of ectopic lymphoid organs. Using genetic and pharmacological approaches, we investigated the role of TNF in age-related dry eye disease, emphasizing the ocular surface and lacrimal gland inflammation. Our results show the increased protein and mRNA levels of TNF in aged lacrimal glands, accompanied by increased TNF, IL1β, IL-18, CCL5, CXCL1, IL-2, IL-2 receptor alpha (CD25), IFN-γ, IL-12p40, IL-17, and IL-10 proteins in tears of aged mice. Moreover, genetic loss of the Tnf-/- in mice decreased goblet cell loss and the development of ectopic lymphoid structures in the lacrimal gland compared to wild-type mice. This was accompanied by a decrease in cytokine production. Treatment of mice at an early stage of aging (12-14-month-old) with TNF inhibitor tanfanercept eye drops for eight consecutive weeks decreased cytokine levels in tears, improved goblet cell density, and decreased the marginal zone B cell frequency in the lacrimal gland compared to vehicle-treated animals. Our studies indicate that modulation of TNF during aging could be a novel strategy for age-related dry eye disease.
Collapse
Affiliation(s)
- Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Erica N DeJong
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Andrea I Boyd
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, USA.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Roger A Astley
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michelle C Callegan
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Dawn Me Bowdish
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
6
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
7
|
Zhao M, Yu Y, Ying GS, Asbell PA, Bunya VY. Age Associations with Dry Eye Clinical Signs and Symptoms in the Dry Eye Assessment and Management (DREAM) Study. OPHTHALMOLOGY SCIENCE 2023; 3:100270. [PMID: 36846104 PMCID: PMC9950493 DOI: 10.1016/j.xops.2023.100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Purpose To evaluate how increasing age is associated with dry eye disease (DED) signs and symptoms in the Dry Eye Assessment and Management (DREAM) study. This study was undertaken to better understand how DED signs and symptoms differ across decades of life with goals to help assess detection and treatment of DED. Design Secondary analysis of the DREAM study. Subjects One hundred twenty, 140, 185, and 90 participants aged < 50, 50 to 59, 60 to 69, and ≥ 70 years, respectively. Methods We performed a secondary analysis of data from the DREAM study, a multicenter randomized clinical trial, to evaluate the effect of omega-3 fatty acid supplementation for the treatment of DED. At baseline, 6 months, and 12 months follow-up, participants underwent an assessment of DED symptoms and signs using Ocular Surface Disease Index, Brief Pain Inventory, tear break-up time (TBUT) (in seconds), Schirmer test with anesthesia (mm/5 minutes), conjunctival staining, corneal staining, meibomian gland dysfunction evaluation, and tear osmolarity (mOsm/l). Multivariable generalized linear regression models were used to compare DED symptoms and signs across the 4 age groups among all participants and by sex. Main Outcome Measures Scores of DED symptoms, individual signs, and composite scores of DED signs. Results Among 535 patients with DED, increasing age was significantly associated with worse TBUT (P = 0.01), corneal staining (P < 0.001), a composite severity score of DED signs (P = 0.007), and tear osmolarity (P = 0.001). Similar significant differences were found across 4 age groups of 334 women in TBUT, corneal staining score, composite severity score of DED signs, and tear osmolarity (all P < 0.05) but not in men. Conclusion We found that corneal staining, TBUT, tear osmolarity, and a composite severity score of DED signs were significantly more severe with increasing age in women but not in men; worsening symptoms did not increase with increasing age. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Megan Zhao
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yinxi Yu
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gui-shuang Ying
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Penny A. Asbell
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Vatinee Y. Bunya
- Correspondence: Vatinee Y. Bunya, MD, MSCE, Scheie Eye Institute, 51 N 39th St, Philadelphia, PA 19104.
| | | |
Collapse
|
8
|
Scholand KK, Mack AF, Guzman GU, Maniskas ME, Sampige R, Govindarajan G, McCullough LD, de Paiva CS. Heterochronic Parabiosis Causes Dacryoadenitis in Young Lacrimal Glands. Int J Mol Sci 2023; 24:4897. [PMID: 36902330 PMCID: PMC10003158 DOI: 10.3390/ijms24054897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Aging is associated with inflammation and oxidative stress in the lacrimal gland (LG). We investigated if heterochronic parabiosis of mice could modulate age-related LG alterations. In both males and females, there were significant increases in total immune infiltration in isochronic aged LGs compared to that in isochronic young LGs. Male heterochronic young LGs were significantly more infiltrated compared to male isochronic young LGs. While both females and males had significant increases in inflammatory and B-cell-related transcripts in isochronic and heterochronic aged LGs compared to levels isochronic and heterochronic young LGs, females had a greater fold expression of some of these transcripts than males. Through flow cytometry, specific subsets of B cells were increased in the male heterochronic aged LGs compared to those in male isochronic aged LGs. Our results indicate that serum soluble factors from young mice were not enough to reverse inflammation and infiltrating immune cells in aged tissues and that there were specific sex-related differences in parabiosis treatment. This suggests that age-related changes in the LG microenvironment/architecture participate in perpetuating inflammation, which is not reversible by exposure to youthful systemic factors. In contrast, male young heterochronic LGs were significantly worse than their isochronic counterparts, suggesting that aged soluble factors can enhance inflammation in the young host. Therapies that aim at improving cellular health may have a stronger impact on improving inflammation and cellular inflammation in LGs than parabiosis.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Alexis F. Mack
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gary U. Guzman
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael E. Maniskas
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ritu Sampige
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Louise D. McCullough
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Yu Z, Mauduit O, Delcroix V, Makarenkova HP, de Paiva CS. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol 2023; 248:109251. [PMID: 36740002 PMCID: PMC10323865 DOI: 10.1016/j.clim.2023.109251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex biological process in which many organs are pathologically affected. We previously reported that aged C57BL/6J had increased lacrimal gland (LG) lymphoid infiltrates that suggest ectopic lymphoid structures. However, these ectopic lymphoid structures have not been fully investigated. Using C57BL/6J mice of different ages, we analyzed the transcriptome of aged murine LGs and characterized the B and T cell populations. Age-related changes in the LG include increased differentially expressed genes associated with B and T cell activation, germinal center formation, and infiltration by marginal zone-like B cells. We also identified an age-related increase in B1+ cells and CD19+B220+ cells. B220+CD19+ cells were GL7+ (germinal center-like) and marginal zone-like and progressively increased with age. There was an upregulation of transcripts related to T follicular helper cells, and the number of these cells also increased as mice aged. Compared to a mouse model of Sjögren syndrome, aged LGs have similar transcriptome responses but also unique ones. And lastly, the ectopic lymphoid structures in aged LGs are not exclusive to a specific mouse background as aged diverse outbred mice also have immune infiltration. Altogether, this study identifies a profound change in the immune landscape of aged LGs where B cells become predominant. Further studies are necessary to investigate the specific function of these B cells during the aged LGs.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Claudia M Trujillo-Vargas
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Autologous NK cells propagated and activated ex vivo decrease senescence markers in human PBMCs. Biochem Biophys Rep 2022; 32:101380. [DOI: 10.1016/j.bbrep.2022.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
|
11
|
Jiang Y, Lin S, Gao Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transplant 2022; 31:9636897221133818. [PMID: 36398793 PMCID: PMC9679336 DOI: 10.1177/09636897221133818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dry eye is one of the most common chronic diseases in ophthalmology. It affects quality of life and has become a public health problem that cannot be ignored. The current treatment methods mainly include artificial tear replacement therapy, anti-inflammatory therapy, and local immunosuppressive therapy. These treatments are mainly limited to improvement of ocular surface discomfort and other symptoms. In recent years, regenerative medicine has developed rapidly, and ophthalmologists are working on new methods to treat dry eye. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immune regulatory effects, and have become a promising tool for the treatment of dry eye. These effects can also be produced by MSC-derived exosomes (MSC-Exos). As a cell-free therapy, MSC-Exos are hypoimmunogenic, serve more stable entities, and compared with MSCs, reduce the safety risks associated with the injection of live cells. This article reviews current knowledge about MSCs and MSC-Exos, and highlights the latest progress and future prospects of MSC-based therapy in dry eye treatment.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Yingying Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Yingying Gao, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian, China.
| |
Collapse
|
12
|
Kitazawa K, Inotmata T, Shih K, Hughes JWB, Bozza N, Tomioka Y, Numa K, Yokoi N, Campisi J, Dana R, Sotozono C. Impact of aging on the pathophysiology of dry eye disease: A systematic review and meta-analysis. Ocul Surf 2022; 25:108-118. [PMID: 35753664 DOI: 10.1016/j.jtos.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Dry eye disease (DED) is a common age-related ocular surface disease. However, it is unknown how aging influences the ocular surface microenvironment. This systematic review aims to investigate how the aging process changes the ocular surface microenvironment and impacts the development of DED. METHODS An article search was performed in PubMed, EMBASE, and Web of Science. 44 studies reporting on age-related ocular changes and 14 large epidemiological studies involving the prevalence of DED were identified. 8 out of 14 epidemiological studies were further analyzed with meta-analysis. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines were followed. Study-specific estimates (impact of aging on the prevalence of DED) were combined using one-group meta-analysis in a random-effects model. RESULTS Meta-analysis revealed the prevalence of DED in the elderly aged 60 years old or older was 5519 of 60107 (9.2%) and the odds ratio of aging compared to younger age was 1.313 (95% confidence interval [CI]; 1.107, 1.557). With increasing age, the integrity of the ocular surface and tear film stability decreased. Various inflammatory cells, including senescent-associated T-cells, infiltrated the ocular surface epithelium, lacrimal gland, and meibomian gland, accompanied by senescence-related changes, including accumulation of 8-OHdG and lipofuscin-like inclusions, increased expression of p53 and apoptosis-related genes, and decreased Ki67 positive cells. CONCLUSIONS The aging process greatly impacts the ocular surface microenvironment, consequently leading to DED.
Collapse
Affiliation(s)
- Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan.
| | - Takenori Inotmata
- Juntendo University Graduate School of Medicine, Department of Ophthalmology, Tokyo, Japan; Juntendo University Graduate School of Medicine, Department of Hospital Administration, Tokyo, Japan; Juntendo University Graduate School of Medicine, Department of Digital Medicine, Tokyo, Japan
| | - Kendric Shih
- Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKUMed), Department of Ophthalmology, Hong Kong, China
| | | | - Niha Bozza
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Yasufumi Tomioka
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Kohsaku Numa
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Norihiko Yokoi
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Chie Sotozono
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| |
Collapse
|
13
|
Trujillo-Vargas CM, Mauk KE, Hernandez H, de Souza RG, Yu Z, Galletti JG, Dietrich J, Paulsen F, de Paiva CS. Immune phenotype of the CD4 + T cells in the aged lymphoid organs and lacrimal glands. GeroScience 2022; 44:2105-2128. [PMID: 35279788 DOI: 10.1007/s11357-022-00529-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with a massive infiltration of T lymphocytes in the lacrimal gland. Here, we aimed to characterize the immune phenotype of aged CD4+ T cells in this tissue as compared with lymphoid organs. To perform this, we sorted regulatory T cells (Tregs, CD4+CD25+GITR+) and non-Tregs (CD4+CD25negGITRneg) in lymphoid organs from female C57BL/6J mice and subjected these cells to an immunology NanoString® panel. These results were confirmed by flow cytometry, live imaging, and tissue immunostaining in the lacrimal gland. Importantly, effector T helper 1 (Th1) genes were highly upregulated on aged Tregs, including the master regulator Tbx21. Among the non-Tregs, we also found a significant increase in the levels of EOMESmed/high, TbetnegIFN-γ+, and CD62L+CD44negCD4+ T cells with aging, which are associated with cell exhaustion, immunopathology, and the generation of tertiary lymphoid tissue. At the functional level, aged Tregs from lymphoid organs are less able to decrease proliferation and IFN-γ production of T responders at any age. More importantly, human lacrimal glands (age range 55-81 years) also showed the presence of CD4+Foxp3+ cells. Further studies are needed to propose potential molecular targets to avoid immune-mediated lacrimal gland dysfunction with aging.
Collapse
Affiliation(s)
- Claudia M Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.,Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Kelsey E Mauk
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Rodrigo G de Souza
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA
| | - Jeremias G Galletti
- Institute of Experimental Medicine, CONICET-National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin Street, Houston, TX, NC 505G, USA.
| |
Collapse
|
14
|
Yu Z, Li J, Govindarajan G, Hamm-Alvarez S, Alam J, Li DQ, de Paiva CS. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res 2022; 214:108895. [PMID: 34910926 PMCID: PMC8908478 DOI: 10.1016/j.exer.2021.108895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - Jinmiao Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Sarah Hamm-Alvarez
- Department of Ophthalmology and Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - De-Quan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
15
|
de Paiva CS, Trujillo-Vargas CM, Schaefer L, Yu Z, Britton RA, Pflugfelder SC. Differentially Expressed Gene Pathways in the Conjunctiva of Sjögren Syndrome Keratoconjunctivitis Sicca. Front Immunol 2021; 12:702755. [PMID: 34349764 PMCID: PMC8326832 DOI: 10.3389/fimmu.2021.702755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune condition that targets the salivary and lacrimal glands, with cardinal clinical signs of dry eye (keratoconjunctivitis sicca, KCS) and dry mouth. The conjunctiva of SS patients is often infiltrated by immune cells that participate in the induction and maintenance of local inflammation. The purpose of this study was to investigate immune-related molecular pathways activated in the conjunctiva of SS patients. Female SS patients (n=7) and controls (n=19) completed a series of oral, ocular surface exams. Symptom severity scores were evaluated using validated questionnaires (OSDI and SANDE). All patients fulfilled the ACR/EULAR criteria for SS and the criteria for KCS. Fluorescein and lissamine green dye staining evaluated tear-break-up time (TBUT), corneal and conjunctival disease, respectively. Impression cytology of the temporal bulbar conjunctiva was performed to collect cells lysed and subjected to gene expression analysis using the NanoString Immunology Panel. 53/594 differentially expressed genes (DEGs) were observed between SS and healthy controls; 49 DEGs were upregulated, and 4 were downregulated (TRAF5, TGFBI, KLRAP1, and CMKLRI). The top 10 DEGs in descending order were BST2, IFITM1, LAMP3, CXCL1, IL19, CFB, LY96, MX1, IL4R, CDKN1A. Twenty pathways had a global significance score greater or equal to 2. Spearman correlations showed that 29/49 upregulated DEGs correlated with either TBUT (inverse) or OSDI or conjunctival staining score (positive correlations). Venn diagrams identified that 26/29 DEGs correlated with TBUT, 5/26 DEGs correlated with OSDI, and 16/26 correlated with conjunctival staining scores. Five upregulated DEGs (CFB, CFI, IL1R1, IL2RG, IL4R) were uniquely negatively correlated with TBUT. These data indicate that the conjunctiva of SS patients exhibits a phenotype of immune activation, although some genes could be inhibitory. Some of the DEGs and pathways overlap with previous DEGs in salivary gland biopsies, but new DEGs were identified, and some of these correlated with symptoms and signs of dry eye. Our results indicate that gene analysis of conjunctiva imprints is a powerful tool to understand the pathogenesis of SS and develop new therapeutic targets.
Collapse
Affiliation(s)
- Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Laura Schaefer
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
16
|
Galletti JG, de Paiva CS. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunology 2021; 164:43-56. [PMID: 33837534 DOI: 10.1111/imm.13338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The ocular surface is the part of the visual system directly exposed to the environment, and it comprises the cornea, the first refractive tissue layer and its surrounding structures. The ocular surface has evolved to keep the cornea smooth and wet, a prerequisite for proper sight, and also protected. To this aim, the ocular surface is a bona fide mucosal niche with an immune system capable of fighting against dangerous pathogens. However, due to the potential harmful effects of uncontrolled inflammation, the ocular surface has several mechanisms to keep the immune response in check. Specifically, the ocular surface is maintained inflammation-free and functional by a particular form of peripheral tolerance known as mucosal tolerance, markedly different from the immune privilege of intraocular structures. Remarkably, conjunctival tolerance is akin to the oral and respiratory tolerance mechanisms found in the gut and airways, respectively. And also similarly, this form of immunoregulation in the eye is affected by ageing just as it is in the digestive and respiratory tracts. With ageing comes an increased prevalence of immune-based ocular surface disorders, which could be related to an age-related impairment of conjunctival tolerance. The purpose of this review was to summarize the present knowledge of ocular mucosal tolerance and how it is affected by the ageing process in the light of the current literature on mucosal immunoregulation of the gut and airways.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Zhang C, Ding H, He H, Jin H, Liu LP, Yang XW, Yang J, Zhong XW. Comparison of early changes in ocular surface markers and tear inflammatory mediators after femtosecond lenticule extraction and FS-LASIK. Int J Ophthalmol 2021; 14:283-291. [PMID: 33614459 DOI: 10.18240/ijo.2021.02.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
AIM To compare the short-term impacts of femtosecond lenticule extraction (FLEx) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) on ocular surface measures and tear inflammatory mediators. METHODS This prospective comparative nonrandomized clinical study comprised 75 eyes (75 patients). Totally 20 male and 15 female patients (age 21.62±3.25y) with 35 eyes underwent FLEx, and 26 male and 14 female patients (age 20.18±3.59y) with 40 eyes underwent FS-LASIK. Central corneal sensitivity, noninvasive tear breakup time, corneal fluorescein staining, Schirmer I test, tear meniscus height, and ocular surface disease index were evaluated in all patients. Tear concentrations of nerve growth factor (NGF), interleukin-1α (IL-1α), transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and matrix metalloproteinase-9 (MMP-9) were assessed by multiplex antibody microarray. All measurements were performed preoperatively, and 1d, 1wk, and 1mo postoperatively. RESULTS Patients who underwent FLEx exhibited a more moderate reduction in central corneal sensation and less corneal fluorescein staining than those in the FS-LASIK group 1wk after the procedure (P<0.01). NGF was significantly higher 1d and 1wk after surgery in the FS-LASIK group than in the FLEx group (P<0.01). By contrast, compared to those in the FLEx group, higher postoperative values and slower recovery of tear TGF-β1, IL-1α, and TNF-α concentrations were observed in the FS-LASIK group (P<0.01). Tear concentrations of NGF, TGF-β1, TNF-α, and IL-1α were correlated with ocular surface changes after FLEx or FS-LASIK surgery. CONCLUSION There is less early ocular surface disruption and a reduced inflammatory response after FLEx than after FS-LASIK. NGF, TGF-β1, TNF-α, and IL-1α may contribute to the process of ocular surface recovery.
Collapse
Affiliation(s)
- Chi Zhang
- Huaxia Eye Hospital of Foshan, Huaxia Eye Hospital Group, Foshan 528000, Guangdong Province, China.,Zhongshan Ophthalmic Center and State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Hui Ding
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou 570311, Hainan Province, China
| | - Hong He
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou 570311, Hainan Province, China
| | - He Jin
- Zhongshan Ophthalmic Center and State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Liang-Ping Liu
- Zhongshan Ophthalmic Center and State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Wei Yang
- Zhongshan Ophthalmic Center and State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Jun Yang
- Zhongshan Ophthalmic Center and State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xing-Wu Zhong
- Zhongshan Ophthalmic Center and State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China.,Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou 570311, Hainan Province, China
| |
Collapse
|
19
|
Trujillo-Vargas CM, Kutlehria S, Hernandez H, de Souza RG, Lee A, Yu Z, Pflugfelder SC, Singh M, de Paiva CS. Rapamycin Eyedrops Increased CD4 +Foxp3 + Cells and Prevented Goblet Cell Loss in the Aged Ocular Surface. Int J Mol Sci 2020; 21:ijms21238890. [PMID: 33255287 PMCID: PMC7727717 DOI: 10.3390/ijms21238890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED), one of the most prevalent conditions among the elderly, is a chronic inflammatory disorder that disrupts tear film stability and causes ocular surface damage. Aged C57BL/6J mice spontaneously develop DED. Rapamycin is a potent immunosuppressant that prolongs the lifespan of several species. Here, we compared the effects of daily instillation of eyedrops containing rapamycin or empty micelles for three months on the aged mice. Tear cytokine/chemokine profile showed a pronounced increase in vascular endothelial cell growth factor-A (VEGF-A) and a trend towards decreased concentration of Interferon gamma (IFN)-γ in rapamycin-treated groups. A significant decrease in inflammatory markers in the lacrimal gland was also evident (IFN-γ, IL-12, CIITA and Ctss); this was accompanied by slightly diminished Unc-51 Like Autophagy Activating Kinase 1 (ULK1) transcripts. In the lacrimal gland and draining lymph nodes, we also observed a significant increase in the CD45+CD4+Foxp3+ cells in the rapamycin-treated mice. More importantly, rapamycin eyedrops increased conjunctival goblet cell density and area compared to the empty micelles. Taken together, evidence from these studies indicates that topical rapamycin has therapeutic efficacy for age-associated ocular surface inflammation and goblet cell loss and opens the venue for new investigations on its role in the aging process of the eye.
Collapse
Affiliation(s)
- Claudia M. Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín 050010, Colombia;
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Shallu Kutlehria
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (S.K.); (M.S.)
| | - Humberto Hernandez
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Rodrigo G. de Souza
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Andrea Lee
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (S.K.); (M.S.)
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (H.H.); (R.G.d.S.); (Z.Y.); (S.C.P.)
- Correspondence: ; Tel.: +1-713-798-2124
| |
Collapse
|
20
|
Modulation of Oxidative Stress and Inflammation in the Aged Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:294-308. [PMID: 33159886 DOI: 10.1016/j.ajpath.2020.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Inflammation and oxidative stress accompany aging. This study investigated the interplay between oxidative stress and inflammation in the lacrimal gland. C57BL/6 mice were used at 2 to 3, 12, and 24 months of age. Nuclear factor erythroid derived-2-related factor 2 (Nrf2)-/- and corresponding wild-type mice were used at 2 to 3 and 12 to 13 months of age. A separate group of 15.5 to 17 months of age C57BL/6 mice received a diet containing an Nrf2 inducer (Oltipraz) for 8 weeks. Aged C57BL/6 lacrimal glands showed significantly greater lymphocytic infiltration, higher levels of MHC II, IFN-γ, IL-1β, TNF-α, and cathepsin S (Ctss) mRNA transcripts, and greater nitrotyrosine and 4-hydroxynonenal protein. Young Nrf2-/- mice showed an increase in IL-1β, IFN-γ, MHC II, and Ctss mRNA transcripts compared with young wild-type mice and greater age-related changes at 12 to 13 months of age. Oltipraz diet significantly decreased nitrotyrosine and 4-hydroxynonenal and decreased the expression of IL-1β and TNF-α mRNA transcripts, while decreasing the frequency of CD45+CD4+ cells in lacrimal glands and significantly increasing conjunctival goblet cell density compared with a standard diet. The findings provide novel insight into the development of chronic, low-grade inflammation and oxidative stress in age-related dry eye. New therapies targeting oxidative stress pathways will be valuable in treating age-related dry eye.
Collapse
|
21
|
Hiraishi M, Masum MA, Namba T, Otani Y, Elewa YH, Ichii O, Kon Y. Histopathological changes in tear-secreting tissues and cornea in a mouse model of autoimmune disease. Exp Biol Med (Maywood) 2020; 245:999-1008. [PMID: 32438834 DOI: 10.1177/1535370220928275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Cornea, an outermost layer of mammalian eye, is protected by tear film and abnormalities of tear film causes dry eye. Dry eye injures the cornea which results lower vision in patients. Several factors cause dry eye, including altered systemic conditions, environment, and immunological abnormality of the patient in autoimmune disease like Sjögren's syndrome (SS). However, the detailed pathology of autoimmune abnormality-mediated dry eye is unclear. Here we demonstrated that systemic autoimmune abnormality in BXSB-Yaa mice was associated with histological changes in the exocrine glands and cornea of the eyes. We also showed that BXSB-Yaa mice developed mild or early stage dry eye-like disease and explain the existence of a compensatory mechanism associated with the dysfunction of these tissues. Thus, BXSB-Yaa could be a model for SS-like disease-associated dry eye and these data would contribute to the understanding of the pathogenesis of autoimmune-related dry eye disease.
Collapse
Affiliation(s)
- Masaya Hiraishi
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0618, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0618, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0618, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0618, Japan
| | - Yaser Ha Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0618, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0618, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0618, Japan
| |
Collapse
|
22
|
Lee HS, Han S, Seo JW, Jeon KJ. Exposure to Traffic-Related Particulate Matter 2.5 Triggers Th2-Dominant Ocular Immune Response in a Murine Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082965. [PMID: 32344779 PMCID: PMC7215477 DOI: 10.3390/ijerph17082965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/18/2023]
Abstract
Ambient particulate matter (PM), a major component of air pollution, aggravates ocular discomfort and inflammation, similarly to dry eye disease (DED) or allergies. However, the mechanism(s) by which PM induces the ocular inflammatory response is unknown. This study investigated the immunological response of traffic-related fine particulate matter (PM2.5) on the ocular surface in a murine model. C57BL/6 mice were exposed by topical application to PM2.5 or vehicle for 14 days to induce experimental environmental ocular disease. Corneal fluorescein staining and the number of ocular inflammatory cells were assessed in both groups. The expression of IL-1β, IL-6, tumor necrosis factor (TNF)-α, and mucin 5AC (MUC5AC) in the ocular surface were evaluated by real-time PCR. An immunohistochemical assay evaluated apoptosis and goblet cell density. ELISA was used to determine the levels of serum IgE and cytokines of Type 1 helper (Th1) and Type 2 helper (Th2) cells after in vitro stimulation of T cells in the draining lymph nodes (LNs). Exposure to traffic-related PM2.5 significantly increased corneal fluorescein staining and cellular toxicity in the corneal epithelium compared with the vehicle control. A significant increase in the number of CD11b+ cells on the central cornea and mast cells in the conjunctiva was observed in the PM2.5 group. Exposure to PM2.5 was associated with a significant increase in the corneal or conjunctival expression of IL-1β, IL-6, TNF, and MUC5AC compared to the vehicle, and increased maturation of dendric cells (DCs) (MHC-IIhighCD11c+) in draining LNs. In addition, PM2.5 exposure increased the level of serum IgE and Th2 cytokine production in draining LNs on day 14. In conclusion, exposure to traffic-related PM2.5 caused ocular surface damage and inflammation, which induced DC maturation and the Th2-cell-dominant allergic immune response in draining LNs.
Collapse
Affiliation(s)
- Hyun Soo Lee
- Department of Ophthalmology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea
- Correspondence: ; Tel.: +82-2-2258-6861; Fax: +82-2-533-3801
| | - Sehyun Han
- Department of Environmental Engineering, Inha University, Incheon 22212, Korea; (S.H.); (K.-J.J.)
| | - Jeong-Won Seo
- Department of Ophthalmology, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Gyeonggi-do 18450, Korea;
| | - Ki-Joon Jeon
- Department of Environmental Engineering, Inha University, Incheon 22212, Korea; (S.H.); (K.-J.J.)
| |
Collapse
|
23
|
Regional Comparison of Goblet Cell Number and Area in Exposed and Covered Dry Eyes and Their Correlation with Tear MUC5AC. Sci Rep 2020; 10:2933. [PMID: 32076085 PMCID: PMC7031519 DOI: 10.1038/s41598-020-59956-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
To compare goblet cell (GC) number and area in the covered superior (SB) versus exposed temporal (TB) bulbar conjunctiva in control versus aqueous tear deficient eyes (ATD) and evaluate correlation with tear MUC5AC protein. SB and TB impression cytology performed on control eyes, Sjögren syndrome (SS) ATD, and non-SS ATD was stained with period acid Schiff. GC number and area were measured with image analysis software. Protein-normalized MUC5AC level was measured in Schirmer strip-collected tears. Compared to control conjunctiva, GC number and area were significantly lower in SS, non-SS, and combined ATD groups in exposed TB, and were also significantly lower in SS and combined ATD groups in covered SB. In all ATD, GC number and area were significantly correlated, but differences between SB and TB were non-significant. Normalized tear MUC5AC protein was lower in all ATD groups versus control eyes, and correlated only with GC area. GCs are significantly decreased in the covered and exposed conjunctiva in SS. GC area may be a better disease measure than number for ATD. Correlation between tear MUC5AC concentration and GC area suggests tear MUC5AC mucin can be used as a disease-relevant biomarker for conjunctiva GC health.
Collapse
|
24
|
Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva. Ocul Surf 2020; 18:326-334. [PMID: 31953222 DOI: 10.1016/j.jtos.2019.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
The conjunctiva is a goblet cell rich mucosal tissue. Goblet cells are supported by tear growth factors and IL-13 produced by resident immune cells. Goblet cell secretions are essential for maintaining tear stability and ocular surface homeostasis. In addition to producing tear stabilizing mucins, they also produce cytokines and retinoic acid that condition monocyte-derived phagocytic cells in the conjunctiva. Aqueous tear deficiency from lacrimal gland disease and systemic inflammatory conditions results in goblet cell loss that amplifies dry eye severity. Reduced goblet cell density is correlated with more severe conjunctival disease, increased IFN-γ expression and antigen presenting cell maturation. Sterile Alpha Motif (SAM) pointed domain epithelial specific transcription factor (Spdef) gene deficient mice that lack goblet cells have increased infiltration of monocytes and dendritic cells with greater IL-12 expression in the conjunctiva. Similar findings were observed in the conjunctiva of aged mice. Reduced retinoic acid receptor (RXRα) signaling also increases conjunctival monocyte infiltration, IFN-γ expression and goblet cell loss. Evidence suggests that dry eye therapies that suppress IFN-γ expression preserve conjunctival goblet cell number and function and should be considered in aqueous deficiency.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
25
|
Di Zazzo A, Micera A, Coassin M, Varacalli G, Foulsham W, De Piano M, Bonini S. InflammAging at Ocular Surface: Clinical and Biomolecular Analyses in Healthy Volunteers. Invest Ophthalmol Vis Sci 2019; 60:1769-1775. [PMID: 31022299 DOI: 10.1167/iovs.18-25822] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the ocular surface in volunteers who consider themselves as healthy, in order to evaluate how para-inflammatory mechanisms fail with age, and thus investigate the phenomenon of "InflammAging." Methods In this observational prospective cohort study, volunteers were categorized into three groups according to age: young (19-40 years), middle-aged (41-60 years), and older adults (61-93 years). Clinical assessments included tear breakup time (T-BUT) and Schirmer test type I. Dry eye symptoms were evaluated by the Ocular Surface Disease Index (OSDI) questionnaire. Conjunctival mRNA and protein expression of intercellular adhesion molecule-1 (ICAM-1), MUC5AC, and IL-8 were measured by real-time PCR and immunofluorescence. Results A total of 82 volunteers (38 males and 44 females) were enrolled. T-BUT decreased significantly with increasing age (young: 11.13 ± 0.18 seconds; middle-aged: 10.83 ± 0.56 seconds; older: 9.00 ± 1.00 seconds, P < 0.05). Schirmer test values decreased significantly with age (young: 20.6 ± 1.0 mm; middle-aged: 19.2 ± 1.2 mm; older: 16.0 ± 1.1 mm, P < 0.05). OSDI scores increased with age in both groups, but they were substantially higher in women. Conjunctival expression of inflammatory markers ICAM-1, IL-8, and MUC5AC increased with age. Conclusions Clinical signs, symptoms, and biomarkers of chronic inflammation increased with age in a cohort of volunteers who considered themselves healthy, indicating an age-related progressive impairment of ocular surface system function.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - Alessandra Micera
- Research laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - Giuseppe Varacalli
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Maria De Piano
- Research laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Stefano Bonini
- Ophthalmology Complex Operative Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
26
|
Bian F, Xiao Y, Barbosa FL, de Souza RG, Hernandez H, Yu Z, Pflugfelder SC, de Paiva CS. Age-associated antigen-presenting cell alterations promote dry-eye inducing Th1 cells. Mucosal Immunol 2019; 12:897-908. [PMID: 30696983 PMCID: PMC6599474 DOI: 10.1038/s41385-018-0127-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 02/04/2023]
Abstract
Aging is a significant risk factor for dry eye. Here we used a murine aging model to investigate the effects of aging on antigen presenting cells (APCs) and generation of pathogenic T helper (Th)-1 cells. Our results showed that APCs from aged mice accumulate at the conjunctiva, have higher levels of co-activation marker CD86 and lower aldehyde dehydrogenase activity. Using topical ovalbumin peptide as a surrogate antigen, we observed an increased number of antigen-loaded APCs in the draining cervical lymph nodes in the aged group and loss of tight junction protein occludin in the conjunctiva. Aged cervical lymph nodes APCs showed a greater generation of Th1 cells than young APCs in antigen-presentation assays in vitro. Aged lacrimal glands, and draining nodes showed an accumulation of IFN-γ producing CD4+T cells, while Th-17 cells were present only in aged draining nodes. There was also an age-related increase in CD4+CXCR3+IFN-γ+ cells in the conjunctiva, nodes, and lacrimal glands while CD4+CCR6+IL-17A+ cells increased in the draining nodes of aged mice. Adoptive transfer of aged CD4+CXCR3+ cells into young, naive immunodeficient recipients caused greater goblet cell loss than young CD4+CXCR3+ donor cells. Our results demonstrate that age-associated changes in APCs are critical for the pathogenesis of age-related dry eye.
Collapse
Affiliation(s)
- Fang Bian
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Yangyan Xiao
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Flavia L Barbosa
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Rodrigo G de Souza
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | | | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
de Souza RG, de Paiva CS, Alves MR. Age-related Autoimmune Changes in Lacrimal Glands. Immune Netw 2019; 19:e3. [PMID: 30838158 PMCID: PMC6399097 DOI: 10.4110/in.2019.19.e3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023] Open
Abstract
Aging is a complex process associated with dysregulation of the immune system and low levels of inflammation, often associated with the onset of many pathologies. The lacrimal gland (LG) plays a vital role in the maintenance of ocular physiology and changes related to aging directly affect eye diseases. The dysregulation of the immune system in aging leads to quantitative and qualitative changes in antibodies and cytokines. While there is a gradual decline of the immune system, there is an increase in autoimmunity, with a reciprocal pathway between low levels of inflammation and aging mechanisms. Elderly C57BL/6J mice spontaneously show LGs infiltration that is characterized by Th1 but not Th17 cells. The aging of the LG is related to functional alterations, reduced innervation and decreased secretory activities. Lymphocytic infiltration, destruction, and atrophy of glandular parenchyma, ductal dilatation, and secretion of inflammatory mediators modify the volume and composition of tears. Oxidative stress, the capacity to metabolize and eliminate toxic substances decreased in aging, is also associated with the reduction of LG functionality and the pathogenesis of autoimmune diseases. Although further studies are required for a better understanding of autoimmunity and aging of the LG, we described anatomic and immunology aspects that have been described so far.
Collapse
Affiliation(s)
- Rodrigo G de Souza
- University of Sao Paulo, Sao Paulo, Brazil.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Cintia S de Paiva
- University of Sao Paulo, Sao Paulo, Brazil.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
28
|
|
29
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams A, Pflugfelder SC, de Paiva CS. Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice. Exp Eye Res 2018; 169:91-98. [PMID: 29407221 PMCID: PMC5949876 DOI: 10.1016/j.exer.2018.01.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
Dry Eye disease causes discomfort and pain in millions of patients. Using a mouse acute desiccating stress (DS) model we show that DS induces a reduction in intraepithelial corneal nerve (ICN) density, corneal sensitivity, and apical extension of the intraepithelial nerve terminals (INTs) that branch from the subbasal nerves (SBNs). Topical application of 0.02% Mitomycin C (MMC) or vehicle alone has no impact on the overall loss of axon density due to acute DS. Chronic dry eye, which develops progressively as C57BL/6 mice age, is accompanied by significant loss of the ICNs and corneal sensitivity between 2 and 24 months of age. QPCR studies show that mRNAs for several proteins that regulate axon growth and extension are reduced in corneal epithelial cells by 24 months of age but those that regulate phagocytosis and autophagy are not altered. Taken together, these data demonstrate that dry eye disease is accompanied by alterations in intraepithelial sensory nerve morphology and function and by reduced expression in corneal epithelial cells of mRNAs encoding genes mediating axon extension. Précis: Acute and chronic mouse models of dry eye disease are used to evaluate the pathologic effects of dry eye on the intraepithelial corneal nerves (ICNs) and corneal epithelial cells. Data show reduced numbers of sensory nerves and alterations in nerve morphology, sensitivity, corneal epithelial cell proliferation, and expression of mRNAs for proteins mediating axon extension accompany the pathology induced by dry eye.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Alexa Williams
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|