1
|
D'Alonzo RA, Keam S, Gill S, Rowshanfarzad P, Nowak AK, Ebert MA, Cook AM. Fractionated low-dose radiotherapy primes the tumor microenvironment for immunotherapy in a murine mesothelioma model. Cancer Immunol Immunother 2025; 74:44. [PMID: 39751851 PMCID: PMC11699009 DOI: 10.1007/s00262-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025]
Abstract
Combination immune checkpoint inhibitors (nivolumab and ipilimumab) are currently a first-line treatment for mesothelioma; however, not all patients respond. The efficacy of treatment is influenced by the tumor microenvironment. Murine mesothelioma tumors were irritated with various radiotherapy doses. Radiotherapy induced vasculature changes were monitored by power Doppler and photoacoustic ultrasound and analyzed via mixed-effects models. Tissue staining was used to investigate the immune cell infiltrate of tumors. The optimal radiotherapy schedule was combined with immune checkpoint inhibitors, and the survival of mice was analyzed. Using low-dose, low-fraction radiotherapy allowed favorable modification of the murine mesothelioma tumor microenvironment. Irradiating tumors with 2 Gy × 5 fractions significantly improved blood flow and reduced hypoxia, consequently increasing the presence of CD8+ and regulatory T cells in the tumor. Understanding the transient nature of these changes is crucial for optimizing the timing of therapeutic delivery. The combination of radiotherapy with dual immunotherapy (anti-PD-1 plus anti-CTLA-4) proved highly curative when administered concurrently. A diminishing rate of cures was noted with an increasing delay between radiotherapy and subsequent immunotherapy. Concurrent low-dose, low-fraction radiotherapy emerges as a translatable approach for improving the efficacy of immune checkpoint inhibitors in patients.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia.
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
- Institute for Respiratory Health, Perth, Australia.
| | - Synat Keam
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia
- Institute for Respiratory Health, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia
- Institute for Respiratory Health, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Alistair M Cook
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
- Institute for Respiratory Health, Perth, Australia.
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
2
|
Kleinendorst SC, Oosterwijk E, Molkenboer-Kuenen J, Frielink C, Franssen GM, Boreel DF, Tamborino G, Gloudemans M, Hendrikx M, Kroon D, Hillen J, Bussink J, Muselaers S, Mulders P, Konijnenberg MW, Wheatcroft MP, Twumasi-Boateng K, Heskamp S. Towards effective CAIX-targeted radionuclide and checkpoint inhibition combination therapy for advanced clear cell renal cell carcinoma. Theranostics 2024; 14:3693-3707. [PMID: 38948062 PMCID: PMC11209717 DOI: 10.7150/thno.96944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.
Collapse
Affiliation(s)
- Simone C. Kleinendorst
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke Molkenboer-Kuenen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerben M. Franssen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daan F. Boreel
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giulia Tamborino
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manon Gloudemans
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel Hendrikx
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dennis Kroon
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jopp Hillen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stijn Muselaers
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark W. Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Zheng W, Qian C, Tang Y, Yang C, Zhou Y, Shen P, Chen W, Yu S, Wei Z, Wang A, Lu Y, Zhao Y. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade. Front Immunol 2022; 13:1035323. [PMID: 36439137 PMCID: PMC9684196 DOI: 10.3389/fimmu.2022.1035323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Immunotherapy has been recognized as an effective and important therapeutic modality for multiple types of cancer. Nevertheless, it has been increasing recognized that clinical benefits of immunotherapy are less than expected as evidenced by the fact that only a small population of cancer patients respond favorably to immunotherapy. The structurally and functionally abnormal tumor vasculature is a hallmark of most solid tumors and contributes to an immunosuppressive microenvironment, which poses a major challenge to immunotherapy. In turn, multiple immune cell subsets have profound consequences on promoting neovascularization. Vascular normalization, a promising anti-angiogenic strategy, can enhance vascular perfusion and promote the infiltration of immune effector cells into tumors via correcting aberrant tumor blood vessels, resulting in the potentiation of immunotherapy. More interestingly, immunotherapies are prone to boost the efficacy of various anti-angiogenic therapies and/or promote the morphological and functional alterations in tumor vasculature. Therefore, immune reprograming and vascular normalization appear to be reciprocally regulated. In this review, we mainly summarize how tumor vasculature propels an immunosuppressive phenotype and how innate and adaptive immune cells modulate angiogenesis during tumor progression. We further highlight recent advances of anti-angiogenic immunotherapies in preclinical and clinical settings to solidify the concept that targeting both tumor blood vessels and immune suppressive cells provides an efficacious approach for the treatment of cancer.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Bendavid J, Modesto A. Radiation therapy and antiangiogenic therapy: Opportunities and challenges. Cancer Radiother 2022; 26:962-967. [PMID: 35989153 DOI: 10.1016/j.canrad.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
The importance of tumoral vascularization as a therapeutic target was first described in 1971 by Folkman. Anarchic vascularization in response to tumour hypoxia, especially mediated by vascular endothelial growth factor, represents a major target in the management of many cancers. The contribution of systemic anti-angiogenic treatments including humanized anti-VEGF monoclonal antibodies (bevacizumab) and tyrosine kinase inhibitors, whose effect on vascular normalization and correction of tumour hypoxia has been shown in preclinical studies to be enhancing the effect of radiotherapy. Early trials combining radiotherapy and antiangiogenics with a small number of patients have contradictory results and tend to put into perspective the opportunity that this synergistic association represents. The efficiency found must be tempered by some toxicity described, especially in association with high doses per fraction. The aim of this article is to present the main studies reporting the efficiency and safety of the combination of antiangiogenic drugs and radiotherapy, as well as the expected opportunities.
Collapse
Affiliation(s)
- J Bendavid
- Département de radiothérapie, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France.
| | - A Modesto
- Département de radiothérapie, IUCT Oncopole, 1, avenue Irène-Jolio-Curie, 31100 Toulouse, France
| |
Collapse
|
6
|
Brooks J, Zuro D, Song JY, Madabushi SS, Sanchez JF, Guha C, Kortylewski M, Chen BT, Gupta K, Storme G, Froelich J, Hui SK. Longitudinal Preclinical Imaging Characterizes Extracellular Drug Accumulation After Radiation Therapy in the Healthy and Leukemic Bone Marrow Vascular Microenvironment. Int J Radiat Oncol Biol Phys 2022; 112:951-963. [PMID: 34767936 PMCID: PMC9038217 DOI: 10.1016/j.ijrobp.2021.10.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Recent initial findings suggest that radiation therapy improves blood perfusion and cellular chemotherapy uptake in mice with leukemia. However, the ability of radiation therapy to influence drug accumulation in the extracellular bone marrow tissue is unknown, due in part to a lack of methodology. This study developed longitudinal quantitative multiphoton microscopy (L-QMPM) to characterize the bone marrow vasculature (BMV) and drug accumulation in the extracellular bone marrow tissue before and after radiation therapy in mice bearing leukemia. METHODS AND MATERIALS We developed a longitudinal window implant for L-QMPM imaging of the calvarium BMV before, 2 days after, and 5 days after total body irradiation (TBI). Live time-lapsed images of a fluorescent drug surrogate were used to obtain measurements, including tissue wash-in slope (WIStissue) to measure extracellular drug accumulation. We performed L-QMPM imaging on healthy C57BL/6 (WT) mice, as well as mice bearing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). RESULTS Implants had no effects on calvarium dose, and parameters for wild-type untreated mice were stable during imaging. We observed decreased vessel diameter, vessel blood flow, and WIStissue with the onset of AML and ALL. Two to 10 Gy TBI increased WIStissue and vessel diameter 2 days after radiation therapy in all 3 groups of mice and increased single-vessel blood flow in mice bearing ALL and AML. Increased WIStissue was observed 5 days after 10 Gy TBI or 4 Gy split-dose TBI (2 treatments of 2 Gy spaced 3 days apart). CONCLUSIONS L-QMPM provides stable functional assessments of the BMV. Nonmyeloablative and myeloablative TBI increases extracellular drug accumulation in the leukemic bone marrow 2 to 5 days posttreatment, likely through improved blood perfusion and drug exchange from the BMV to the extravascular tissue. Our data show that neo-adjuvant TBI at doses from 2 Gy to 10 Gy conditions the BMV to improve drug transport to the bone marrow.
Collapse
Affiliation(s)
- Jamison Brooks
- Department of Radiation Oncology, City of Hope, Duarte, California; Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Darren Zuro
- Department of Radiation Oncology, City of Hope, Duarte, California; Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, California
| | | | - James F Sanchez
- Beckman Research Institute of City of Hope, Duarte, California
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope Medical Center, Duarte, California
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, North Hills, California; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Guy Storme
- Department of Radiotherapy, UZ Brussel, Jette, Belgium
| | - Jerry Froelich
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Susanta K Hui
- Department of Radiation Oncology, City of Hope, Duarte, California; Beckman Research Institute of City of Hope, Duarte, California.
| |
Collapse
|
7
|
Yamazaki T, Young KH. Effects of radiation on tumor vasculature. Mol Carcinog 2021; 61:165-172. [PMID: 34644811 DOI: 10.1002/mc.23360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Radiation has been utilized as a direct cytotoxic tumorcidal modality, however, the effect of radiation on tumor vasculature influences response to anticancer therapies. Although numerous reports have demonstrated vascular changes in irradiated tumors, the findings and implications are extensive and at times contradictory depending on the radiation dose, timing, and models used. In this review, we focus on the radiation-mediated effects on tumor vasculature with respect to doses used, timing postradiation, vasculogenesis, adhesion molecule expression, permeability, and pericyte coverage, including the latest findings.
Collapse
Affiliation(s)
- Tomoko Yamazaki
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA.,Radiation Oncology Division, The Oregon Clinic, Portland, Oregon, USA
| |
Collapse
|
8
|
Sjoberg HT, Philippou Y, Magnussen AL, Tullis IDC, Bridges E, Chatrian A, Lefebvre J, Tam KH, Murphy EA, Rittscher J, Preise D, Agemy L, Yechezkel T, Smart SC, Kinchesh P, Gilchrist S, Allen DP, Scheiblin DA, Lockett SJ, Wink DA, Lamb AD, Mills IG, Harris A, Muschel RJ, Vojnovic B, Scherz A, Hamdy FC, Bryant RJ. Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer. Br J Cancer 2021; 125:534-546. [PMID: 34155340 PMCID: PMC8367986 DOI: 10.1038/s41416-021-01450-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. METHODS We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. RESULTS FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. CONCLUSION Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.
Collapse
Affiliation(s)
- Hanna T Sjoberg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Anette L Magnussen
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Esther Bridges
- Department of Oncology, University of Oxford, Oxford, UK
| | - Andrea Chatrian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Joel Lefebvre
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ka Ho Tam
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Emma A Murphy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, NDM Research Building, University of Oxford, Headington, UK
| | - Dina Preise
- Department of Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Yechezkel
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sean C Smart
- Department of Oncology, University of Oxford, Oxford, UK
| | - Paul Kinchesh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Danny P Allen
- Department of Oncology, University of Oxford, Oxford, UK
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - David A Wink
- Cancer and Inflammation Program, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Adrian Harris
- Department of Oncology, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Oxford, UK
| | - Boris Vojnovic
- Department of Oncology, University of Oxford, Oxford, UK
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Richard J Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Angiogenesis and immune checkpoint dual blockade in combination with radiotherapy for treatment of solid cancers: opportunities and challenges. Oncogenesis 2021; 10:47. [PMID: 34247198 PMCID: PMC8272720 DOI: 10.1038/s41389-021-00335-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Several immune checkpoint blockades (ICBs) capable of overcoming the immunosuppressive roles of the tumor immune microenvironment have been approved by the US Food and Drug Administration as front-line treatments of various tumor types. However, due to the considerable heterogeneity of solid tumor cells, inhibiting one target will only influence a portion of the tumor cells. One way to enhance the tumor-killing efficiency is to develop a multiagent therapeutic strategy targeting different aspects of tumor biology and the microenvironment to provide the maximal clinical benefit for patients with late-stage disease. One such strategy is the administration of anti-PD1, an ICB, in combination with the humanized monoclonal antibody bevacizumab, an anti-angiogenic therapy, to patients with recurrent/metastatic malignancies, including hepatocellular carcinoma, metastatic renal cell carcinoma, non-small cell lung cancer, and uterine cancer. Radiotherapy (RT), a critical component of solid cancer management, has the capacity to prime the immune system for an adaptive antitumor response. Here, we present an overview of the most recent published data in preclinical and clinical studies elucidating that RT could further potentiate the antitumor effects of immune checkpoint and angiogenesis dual blockade. In addition, we explore opportunities of triple combinational treatment, as well as discuss the challenges of validating biomarkers and the management of associated toxicity.
Collapse
|
10
|
González A, Alonso-González C, González-González A, Menéndez-Menéndez J, Cos S, Martínez-Campa C. Melatonin as an Adjuvant to Antiangiogenic Cancer Treatments. Cancers (Basel) 2021; 13:3263. [PMID: 34209857 PMCID: PMC8268559 DOI: 10.3390/cancers13133263] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a hormone with different functions, antitumor actions being one of the most studied. Among its antitumor mechanisms is its ability to inhibit angiogenesis. Melatonin shows antiangiogenic effects in several types of tumors. Combination of melatonin and chemotherapeutic agents have a synergistic effect inhibiting angiogenesis. One of the undesirable effects of chemotherapy is the induction of pro-angiogenic factors, whilst the addition of melatonin is able to overcome these undesirable effects. This protective effect of the pineal hormone against angiogenesis might be one of the mechanisms underlying its anticancer effect, explaining, at least in part, why melatonin administration increases the sensitivity of tumors to the inhibitory effects exerted by ordinary chemotherapeutic agents. Melatonin has the ability to turn cancer totally resistant to chemotherapeutic agents into a more sensitive chemotherapy state. Definitely, melatonin regulates the expression and/or activity of many factors involved in angiogenesis which levels are affected (either positively or negatively) by chemotherapeutic agents. In addition, the pineal hormone has been proposed as a radiosensitizer, increasing the oncostatic effects of radiation on tumor cells. This review serves as a synopsis of the interaction between melatonin and angiogenesis, and we will outline some antiangiogenic mechanisms through which melatonin sensitizes cancer cells to treatments, such as radiotherapy or chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain; (A.G.); (A.G.-G.); (J.M.-M.); (C.M.-C.)
| | | |
Collapse
|
11
|
Goedegebuure RSA, Kleibeuker EA, Buffa FM, Castricum KCM, Haider S, Schulkens IA, Ten Kroode L, van den Berg J, Jacobs MAJM, van Berkel AM, van Grieken NCT, Derks S, Slotman BJ, Verheul HMW, Harris AL, Thijssen VL. Interferon- and STING-independent induction of type I interferon stimulated genes during fractionated irradiation. J Exp Clin Cancer Res 2021; 40:161. [PMID: 33964942 PMCID: PMC8106844 DOI: 10.1186/s13046-021-01962-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Improvement of radiotherapy efficacy requires better insight in the dynamic responses that occur during irradiation. Here, we aimed to identify the molecular responses that are triggered during clinically applied fractionated irradiation. METHODS Gene expression analysis was performed by RNAseq or microarray analysis of cancer cells or xenograft tumors, respectively, subjected to 3-5 weeks of 5 × 2 Gy/week. Validation of altered gene expression was performed by qPCR and/or ELISA in multiple cancer cell lines as well as in pre- and on-treatment biopsies from esophageal cancer patients ( NCT02072720 ). Targeted protein inhibition and CRISPR/Cas-induced gene knockout was used to analyze the role of type I interferons and cGAS/STING signaling pathway in the molecular and cellular response to fractionated irradiation. RESULTS Gene expression analysis identified type I interferon signaling as the most significantly enriched biological process induced during fractionated irradiation. The commonality of this response was confirmed in all irradiated cell lines, the xenograft tumors and in biopsies from esophageal cancer patients. Time-course analyses demonstrated a peak in interferon-stimulated gene (ISG) expression within 2-3 weeks of treatment. The response was accompanied by a variable induction of predominantly interferon-beta and/or -lambda, but blocking these interferons did not affect ISG expression induction. The same was true for targeted inhibition of the upstream regulatory STING protein while knockout of STING expression only delayed the ISG expression induction. CONCLUSIONS Collectively, the presented data show that clinically applied fractionated low-dose irradiation can induce a delayed type I interferon response that occurs independently of interferon expression or STING signaling. These findings have implications for current efforts that aim to target the type I interferon response for cancer treatment.
Collapse
Affiliation(s)
- Ruben S A Goedegebuure
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Esther A Kleibeuker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | | | - Kitty C M Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Syed Haider
- Department of Molecular Oncology, University of Oxford, Oxford, UK
| | - Iris A Schulkens
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Luuk Ten Kroode
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Jaap van den Berg
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Maarten A J M Jacobs
- Department of Gastroenterology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Anne-Marie van Berkel
- Department of Gastroenterology, Noord West Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Nicole C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Adrian L Harris
- Department of Molecular Oncology, University of Oxford, Oxford, UK
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
van den Berg J, Castricum KCM, Meel MH, Goedegebuure RSA, Lagerwaard FJ, Slotman BJ, Hulleman E, Thijssen VLJL. Development of transient radioresistance during fractionated irradiation in vitro. Radiother Oncol 2020; 148:107-114. [PMID: 32344261 DOI: 10.1016/j.radonc.2020.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/10/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Effective combination treatments with fractionated radiotherapy rely on a proper understanding of the dynamic responses that occur during treatment. We explored the effect of clinical fractionated radiotherapy on the development and timing of radioresistance in tumor cells. METHODS AND MATERIALS Different colon (HT29/HCT116/COLO320/SW480/RKO) and high-grade astrocytoma (D384/U-251MG) cancer cell lines were treated for 6 weeks with daily fractions of 2 Gy, 5 days per week. Clonogenic survival was determined throughout the treatment period. In addition, the radiosensitivity of irradiated and non-irradiated was compared. Finally, the effect of different dose fractions on the development of radioresistance was determined. RESULTS All cell lines developed radioresistance within 2-3 weeks during fractionated radiotherapy. This was characterized by the occurrence of a steady state phase of clonogenic survival. In U-251MG cells this was accompanied by increased cell senescence and stemness. After recovering from six weeks of treatment, the radiosensitivity of fractionally irradiated and non-irradiated cells was similar. Including transient radioresistance, described as (α/β)-(d+1), as a factor in the classic LQ model resulted in a perfect fit with the experimental data observed during fractionated radiotherapy. This was confirmed when different dose fractions were applied. CONCLUSIONS Fractionated irradiation of cancer cells in vitro following clinical radiation schedules induces a reversible radioresistance response. This adaptive response can be included in the LQ model as a function of the dose fraction and the alpha/beta-ratio of a given cell line. These findings warrant further investigation of the mechanisms and clinical relevance of adaptive radioresistance.
Collapse
Affiliation(s)
- Jaap van den Berg
- Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam, The Netherlands
| | - Kitty C M Castricum
- Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam, The Netherlands
| | - Michaël H Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ruben S A Goedegebuure
- Amsterdam UMC location VUmc, Department of Medical Oncology, Cancer Center Amsterdam, The Netherlands
| | - Frank J Lagerwaard
- Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam, The Netherlands
| | - Ben J Slotman
- Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam, The Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Victor L J L Thijssen
- Amsterdam UMC location VUmc, Department of Radiation Oncology, Cancer Center Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Goedegebuure RSA, Vonk C, Kooij LP, Derks S, Thijssen VLJL. Combining Radiation Therapy With Interferons: Back to the Future. Int J Radiat Oncol Biol Phys 2020; 108:56-69. [PMID: 32068114 DOI: 10.1016/j.ijrobp.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/27/2022]
Abstract
Radiation therapy has been linked to the induction of an intratumoral type I interferon (IFN) response, which positively affects the response to treatment. This has spiked the interest to combine radiation therapy with IFN-based treatment. Interestingly, this combination treatment has been considered previously, since preclinical studies demonstrated a radiosensitizing effect of interferons. As a result, multiple clinical trials have been performed combining radiation therapy with interferons in different tumor types. Although potential benefit has been suggested, the outcomes of the trials are diverse and challenging to interpret. In addition, increased grade ≥3 toxicity frequently resulted in a negative recommendation regarding the combination therapy. The latter appears premature because many studies were small and several aspects of the combination treatment have not yet been sufficiently explored to justify such a definite conclusion. This review summarizes the available literature on this combination therapy, with a focus on IFN-α and IFN-β. Based on preclinical studies and clinical trials, we evaluated the potential opportunities and describe the current challenges. In addition, we identify several issues that should be addressed to fully exploit the potential benefit of this combinatorial treatment approach.
Collapse
Affiliation(s)
- Ruben S A Goedegebuure
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Christian Vonk
- Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Laura P Kooij
- Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sarah Derks
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Victor L J L Thijssen
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Novel treatment planning approaches to enhance the therapeutic ratio: targeting the molecular mechanisms of radiation therapy. Clin Transl Oncol 2019; 22:447-456. [PMID: 31254253 DOI: 10.1007/s12094-019-02165-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/16/2019] [Indexed: 12/16/2022]
Abstract
Radiation acts not only through cell death but has also angiogenic, immunomodulatory and bystander effects. The realization of its systemic implications has led to extensive research on the combination of radiotherapy with systemic treatments, including immunotherapy and antiangiogenic agents. Parameters such as dose, fractionation and sequencing of treatments are key determinants of the outcome. However, recent high-quality research indicates that these are not the only radiation therapy parameters that influence its systemic effect. To effectively integrate systemic agents with radiation therapy, these new aspects of radiation therapy planning will have to be taken into consideration in future clinical trials. Our aim is to review these new treatment planning parameters that can influence the balance between contradicting effects of radiation therapy so as to enhance the therapeutic ratio.
Collapse
|
15
|
Goedegebuure RSA, de Klerk LK, Bass AJ, Derks S, Thijssen VLJL. Combining Radiotherapy With Anti-angiogenic Therapy and Immunotherapy; A Therapeutic Triad for Cancer? Front Immunol 2019; 9:3107. [PMID: 30692993 PMCID: PMC6339950 DOI: 10.3389/fimmu.2018.03107] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy has been used for the treatment of cancer for over a century. Throughout this period, the therapeutic benefit of radiotherapy has continuously progressed due to technical developments and increased insight in the biological mechanisms underlying the cellular responses to irradiation. In order to further improve radiotherapy efficacy, there is a mounting interest in combining radiotherapy with other forms of therapy such as anti-angiogenic therapy or immunotherapy. These strategies provide different opportunities and challenges, especially with regard to dose scheduling and timing. Addressing these issues requires insight in the interaction between the different treatment modalities. In the current review, we describe the basic principles of the effects of radiotherapy on tumor vascularization and tumor immunity and vice versa. We discuss the main strategies to combine these treatment modalities and the hurdles that have to be overcome in order to maximize therapeutic effectivity. Finally, we evaluate the outstanding questions and present future prospects of a therapeutic triad for cancer.
Collapse
Affiliation(s)
- Ruben S A Goedegebuure
- Amsterdam UMC, Location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Leonie K de Klerk
- Amsterdam UMC, Location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Sarah Derks
- Amsterdam UMC, Location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Victor L J L Thijssen
- Amsterdam UMC, Location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands.,Amsterdam UMC, Location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Kanthou C, Tozer G. Targeting the vasculature of tumours: combining VEGF pathway inhibitors with radiotherapy. Br J Radiol 2019; 92:20180405. [PMID: 30160184 PMCID: PMC6435061 DOI: 10.1259/bjr.20180405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
The development of blood vessels by the process of angiogenesis underpins the growth and metastasis of many tumour types. Various angiogenesis inhibitors targeted against vascular endothelial growth factor A (VEGF-A) and its receptors have entered the clinic more than a decade ago. However, despite substantial clinical improvements, their overall efficacy proved to be significantly lower than many of the pre-clinical studies had predicted. Antiangiogenic agents have been combined with chemotherapy, radiotherapy and more recently immunotherapy in many pre-clinical and clinical studies in an effort to improve their efficacy. To date, only their use alongside chemotherapy is approved as part of standard treatment protocols. Most pre-clinical studies have reported improved tumour control from the addition of antiangiogenic therapies to radiotherapy and progress has been made in unravelling the complex mechanisms through which VEGF inhibition potentiates radiotherapy responses. However, the efficacy of this combination is variable, and many questions still remain as to how best to administer the two modalities to achieve optimal response and minimal toxicity. One important limiting factor is that, unlike some other targeted therapies, antiangiogenic agents are not administered to selected patient populations, since biomarkers for identifying responders have not yet been established. Here, we outline VEGF biology and review current approaches that aim to identify biomarkers for stratifying patients for treatment with angiogenesis inhibitors. We also discuss current progress in elucidating mechanisms of interaction between radiotherapy and VEGF inhibitors. Ongoing clinical trials will determine whether these combinations will ultimately improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Chryso Kanthou
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Gillian Tozer
- Department of Oncology and Metabolism, Tumour Microcirculation Group, University of Sheffield, School of Medicine, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
17
|
Kannan P, Kretzschmar WW, Winter H, Warren D, Bates R, Allen PD, Syed N, Irving B, Papiez BW, Kaeppler J, Markelc B, Kinchesh P, Gilchrist S, Smart S, Schnabel JA, Maughan T, Harris AL, Muschel RJ, Partridge M, Sharma RA, Kersemans V. Functional Parameters Derived from Magnetic Resonance Imaging Reflect Vascular Morphology in Preclinical Tumors and in Human Liver Metastases. Clin Cancer Res 2018; 24:4694-4704. [PMID: 29959141 PMCID: PMC6171743 DOI: 10.1158/1078-0432.ccr-18-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Purpose: Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes in vivo using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology in vivo Experimental Design: Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (iAUC, K trans, and BATfrac) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer.Results: Functional parameters iAUC and K trans primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated with iAUC and K trans For iAUC, structural parameters also modified each other's effect.Conclusions: Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers in vivo to improve their biological interpretation and clinical utility. Clin Cancer Res; 24(19); 4694-704. ©2018 AACR.
Collapse
Affiliation(s)
- Pavitra Kannan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom.
| | - Warren W Kretzschmar
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Helen Winter
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Daniel Warren
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Russell Bates
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Philip D Allen
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nigar Syed
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NHS, Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Benjamin Irving
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bartlomiej W Papiez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jakob Kaeppler
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bosjtan Markelc
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Julia A Schnabel
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tim Maughan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J Muschel
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mike Partridge
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ricky A Sharma
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, University College London, London, United Kingdom
| | - Veerle Kersemans
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Fiore M, D Apos Angelillo RM, Greco C, Fioroni I, Ippolito E, Santini D, Ramella S. Radiotherapy and Vascular Endothelial Growth Factor Receptor-Tyrosine Kinase Inhibitors in Renal Cancer. Chemotherapy 2018; 63:83-89. [PMID: 29554654 DOI: 10.1159/000488252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 12/25/2022]
Abstract
Treatment of metastatic renal cell carcinoma (mRCC) has seen substantial progress over the last decade. A number of targeted therapies have been shown to improve clinical outcome. Vascular endothelial growth factor receptor (VEGFR)-tyrosine kinase inhibitors (TKIs) are an effective option in treating mRCC. RCC is traditionally perceived to be a radioresistant malignancy with a limited role of radiotherapy (RT) in the management of localized disease. While RCC appears to be radioresistant using conventionally fractionated RT, preclinical data suggest increased radiosensitivity when an ablative, hypofractionated schedule is used. RT is a common treatment for metastases; therefore, it is important to understand how best to use the combination of RT with targeted therapies. Preclinical studies have suggested that the combination of anti-angiogenic drugs with RT enhances the therapeutic effect compared with ionizing radiation alone. However, clinical data gave rise to warnings due to an increased incidence of severe gastrointestinal side effects. This article reviews the literature behind the preclinical and clinical data of the combination of RT with VEGFR-TKIs currently approved for RCC (sunitinib, sorafenib, pazopanib, and axitinib), with a focus on dose schedules as well as efficacy and toxicity.
Collapse
Affiliation(s)
- Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | | | - Carlo Greco
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Iacopo Fioroni
- Medical Oncology Unit, Campus Bio-Medico University, Rome, Italy
| | - Edy Ippolito
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Daniele Santini
- Medical Oncology Unit, Campus Bio-Medico University, Rome, Italy
| | - Sara Ramella
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
19
|
Keil VC, Pintea B, Gielen GH, Hittatiya K, Datsi A, Simon M, Fimmers R, Schild HH, Hadizadeh DR. Meningioma assessment: Kinetic parameters in dynamic contrast-enhanced MRI appear independent from microvascular anatomy and VEGF expression. J Neuroradiol 2018; 45:242-248. [PMID: 29410063 DOI: 10.1016/j.neurad.2018.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Kinetic parameters of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are considered to be influenced by microvessel environment. This study was performed to explore the extent of this association for meningiomas. MATERIALS AND METHODS DCE-MRI kinetic parameters (contrast agent transfer constants Ktrans and kep, volume fractions vp and ve) were determined in pre-operative 3T MRI of meningioma patients for later biopsy sites (19 patients; 15 WHO Io, no previous radiation, and 4 WHO IIIo pre-radiated recurrent tumors). Sixty-three navigated biopsies were consecutively retrieved. Biopsies were immunohistochemically investigated with endothelial marker CD34 and VEGF antibodies, stratified in a total of 4383 analysis units and computationally assessed for VEGF expression and vascular parameters (vessel density, vessel quantity, vascular fraction within tissue [vascular area ratio], vessel wall thickness). Derivability of kinetic parameters from VEGF expression or microvascularization was determined by mixed linear regression analysis. Tissue kinetic and microvascular parameters were tested for their capacity to identify the radiation status in a subanalysis. RESULTS Kinetic parameters were neither significantly related to the corresponding microvascular parameters nor to tissue VEGF expression. There was no significant association between microvessel density and its presumed correlate vp (P=0.07). The subgroup analysis of high-grade radiated meningiomas showed a significantly reduced microvascular density (AUC 0.91; P<0.0001) and smaller total vascular fraction (AUC 0.73; P=0.01). CONCLUSIONS In meningioma, DCE-MRI kinetic parameters neither allow for a reliable prediction of tumor microvascularization, nor for a prediction of VEGF expression. Kinetic parameters seem to be determined from different independent factors.
Collapse
Affiliation(s)
- Vera C Keil
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany.
| | - Bogdan Pintea
- Department of Neurosurgery, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Gerrit H Gielen
- Department of Neuropathology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Kanishka Hittatiya
- Center for Pathology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Angeliki Datsi
- Department of Neurosurgery, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Matthias Simon
- Department of Neurosurgery, Evangelisches Krankenhaus Bielefeld, Kantensiek 11, 33617 Bielefeld, Germany
| | - Rolf Fimmers
- IMBIE (Statistics), University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Hans H Schild
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Dariusch R Hadizadeh
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| |
Collapse
|
20
|
Vale S. Re: Cesare Cozzarini. Whole-pelvis Radiotherapy in the Radiation Treatment of Intermediate- and High-risk Prostate Cancer: How to Improve the Therapeutic Ratio of a Potentially Effective but still Unsatisfactory Treatment? Eur Urol 2017;71:44–5. Eur Urol 2017; 72:e32-e33. [DOI: 10.1016/j.eururo.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 02/01/2017] [Indexed: 11/15/2022]
|
21
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 1002] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
22
|
van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, Griffioen AW. miRNAs: micro-managers of anticancer combination therapies. Angiogenesis 2017; 20:269-285. [PMID: 28474282 PMCID: PMC5519663 DOI: 10.1007/s10456-017-9545-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer progression and as such has been considered a target of therapeutic interest. However, single targeted agents have not fully lived up to the initial promise of anti-angiogenic therapy. Therefore, it has been suggested that combining therapies and agents will be the way forward in the oncology field. In recent years, microRNAs (miRNAs) have received considerable attention as drivers of tumor development and progression, either acting as tumor suppressors or as oncogenes (so-called oncomiRs), as well as in the process of tumor angiogenesis (angiomiRs). Not only from a functional, but also from a therapeutic view, miRNAs are attractive tools. Thus far, several mimics and antagonists of miRNAs have entered clinical development. Here, we review the provenance and promise of miRNAs as targets as well as therapeutics to contribute to anti-angiogenesis-based (combination) treatment of cancer.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Dennis Poel
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Hamming LC, Slotman BJ, Verheul HMW, Thijssen VL. The clinical application of angiostatic therapy in combination with radiotherapy: past, present, future. Angiogenesis 2017; 20:217-232. [PMID: 28364160 PMCID: PMC5437175 DOI: 10.1007/s10456-017-9546-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
Although monotherapy with angiostatic drugs is still far from effective, there is abundant evidence that angiostatic therapy can improve the efficacy of conventional treatments like radiotherapy. This has instigated numerous efforts to optimize and clinically implement the combination of angiostatic drugs with radiation treatment. The results from past and present clinical trials that explored this combination therapy indeed show encouraging results. However, current findings also show that the combination has variable efficacy and is associated with increased toxicity. This indicates that combining radiotherapy with angiostatic drugs not only holds opportunities but also provides several challenges. In the current review, we provide an update of the most recent insights from clinical trials that evaluated the combination of angiostatic drugs with radiation treatment. In addition, we discuss the outstanding questions for future studies in order to improve the clinical benefit of combining angiostatic therapy with radiation therapy.
Collapse
Affiliation(s)
- Lisanne C Hamming
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Sun R, Zhu G, Wang J, Tong L, Zhai J. Indirect effects of X-irradiation on proliferation and osteogenic potential of bone marrow mesenchymal stem cells in a local irradiated rat model. Mol Med Rep 2017; 15:3706-3714. [PMID: 28440500 PMCID: PMC5436268 DOI: 10.3892/mmr.2017.6464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer survivors after radiotherapy may suffer a variety of bone-related adverse side effects, including radioactive osteoporosis and fractures. Localized irradiation is a common treatment modality for malignancies. Recently, a series of reactions and injuries called indirect effects (remote changes in bone when other parts of the body are irradiated) have been reported on the indirect irradiated area of bone tissue after radiotherapy. To address this issue, we developed a rat localized irradiation model. Rats were irradiated with a single dose of X-rays to the left hind limbs, and bone marrow mesenchymal stem cells (BMMSCs) were isolated from bone marrow of the left (direct irradiated) and right (indirect irradiated) hind limbs 3, 7 and 14 days after irradiation, and assayed for the proliferation ability and osteogenic potential by alkaline phosphatase (ALP) activity, mineralization assay, RT-PCR and western blot analysis. The results showed that there were significant morphology changes in the BMMSCs from direct and indirect irradiated bone tissue with bigger cell bodies and increased granules. The proliferation of BMMSCs decreased both in the direct irradiated and non-irradiated bone tissue. The ALP expression and activities of BMMSCs from direct irradiated bone was consistently defected following a transient enhancement, the mRNA levels of RUNX2 and OCN, the protein expression of RUNX2, and the mineralization ability also showed the same trend. Simultaneously, in indirect irradiated group, the osteogenic potential indicators of BMMSCs decreased in the early stage of post-irradiation and were still impaired 14 days after irradiation. Our data demonstrate that localized irradiation may have both direct and indirect adverse effects on BMMSCs' proliferation and osteogenic potential into osteoblast, which may be the mechanism of radiation-induced abscopal impairment to the skeleton in the cancer radiotherapy-induced bone loss.
Collapse
Affiliation(s)
- Ruilian Sun
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Guoying Zhu
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Jianping Wang
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Ling Tong
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Jianglong Zhai
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|