1
|
Caddeo A, Serra M, Sedda F, Bacci A, Manera C, Rapposelli S, Columbano A, Perra A, Kowalik MA. Potential use of TG68 - A novel thyromimetic - for the treatment of non-alcoholic fatty liver (NAFLD)-associated hepatocarcinogenesis. Front Oncol 2023; 13:1127517. [PMID: 36910628 PMCID: PMC9996294 DOI: 10.3389/fonc.2023.1127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Several lines of evidence suggest that the thyroid hormone signaling pathway is altered in patients with NAFLD and that pharmacological strategies to target the thyroid hormone/thyroid hormone nuclear receptor axis (TH/THR) in the liver may exert beneficial effects. In this study, we investigated the effect of TG68, a novel THRβ agonist, on rat hepatic fat accumulation and NAFLD-associated hepatocarcinogenesis. Methods Male rats given a single dose of diethylnitrosamine (DEN) and fed a high fat diet (HFD) were co-treated with different doses of TG68. Systemic and hepatic metabolic parameters, immunohistochemistry and hepatic gene expression were determined to assess the effect of TG68 on THRβ activation. Results Irrespectively of the dose, treatment with TG68 led to a significant reduction in liver weight, hepatic steatosis, circulating triglycerides, cholesterol and blood glucose. Importantly, a short exposure to TG68 caused regression of DEN-induced preneoplastic lesions associated with a differentiation program, as evidenced by a loss of neoplastic markers and reacquisition of markers of differentiated hepatocytes. Finally, while an equimolar dose of the THRβ agonist Resmetirom reduced hepatic fat accumulation, it did not exert any antitumorigenic effect. Discussion The use of this novel thyromimetic represents a promising therapeutic strategy for the treatment of NAFLD-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Sedda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Bacci
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Serra M, Pal R, Puliga E, Sulas P, Cabras L, Cusano R, Giordano S, Perra A, Columbano A, Kowalik MA. mRNA-miRNA networks identify metabolic pathways associated to the anti-tumorigenic effect of thyroid hormone on preneoplastic nodules and hepatocellular carcinoma. Front Oncol 2022; 12:941552. [PMID: 36203462 PMCID: PMC9530455 DOI: 10.3389/fonc.2022.941552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Thyroid hormones (THs) inhibit hepatocellular carcinoma (HCC) through different mechanisms. However, whether microRNAs play a role in the antitumorigenic effect of THs remains unknown. Methods By next generation sequencing (NGS) we performed a comprehensive comparative miRNomic and transcriptomic analysis of rat hepatic preneoplastic lesions exposed or not to a short-term treatment with triiodothyronine (T3). The expression of the most deregulated miRs was also investigated in rat HCCs, and in human hepatoma cell lines, treated or not with T3. Results Among miRs down-regulated in preneoplastic nodules following T3, co-expression networks revealed those targeting thyroid hormone receptor-β (Thrβ) and deiodinase1, and Oxidative Phosphorylation. On the other hand, miRs targeting members of the Nrf2 Oxidative Pathway, Glycolysis, Pentose Phosphate Pathway and Proline biosynthesis – all involved in the metabolic reprogramming displayed by preneoplastic lesions– were up-regulated. Notably, while the expression of most miRs deregulated in preneoplastic lesions was not altered in HCC or in hepatoma cells, miR-182, a miR known to target Dio1 and mitochondrial complexes, was down-deregulated by T3 treatment at all stages of hepatocarcinogenesis and in hepatocarcinoma cell lines. In support to the possible critical role of miR-182 in hepatocarcinogenesis, exogenous expression of this miR significantly impaired the inhibitory effect of T3 on the clonogenic growth capacity of human HCC cells. Conclusions This work identified several miRNAs, so far never associated to T3. In addition, the precise definition of the miRNA-mRNA networks elicited by T3 treatment gained in this study may provide a better understanding of the key regulatory events underlying the inhibitory effect of T3 on HCC development. In this context, T3-induced down-regulation of miR-182 appears as a promising tool.
Collapse
Affiliation(s)
- Marina Serra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rajesh Pal
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Elisabetta Puliga
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Lavinia Cabras
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Roberto Cusano
- Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna (CRS4), Pula, Italy
| | - Silvia Giordano
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
- *Correspondence: Amedeo Columbano, ; Marta Anna Kowalik,
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
- *Correspondence: Amedeo Columbano, ; Marta Anna Kowalik,
| |
Collapse
|
3
|
Lasa M, Contreras-Jurado C. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front Endocrinol (Lausanne) 2022; 13:937099. [PMID: 36004343 PMCID: PMC9393327 DOI: 10.3389/fendo.2022.937099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Reciprocal crosstalk between endocrine and immune systems has been well-documented both in physiological and pathological conditions, although the connection between the immune system and thyroid hormones (THs) remains largely unclear. Inflammation and infection are two important processes modulated by the immune system, which have profound effects on both central and peripheral THs metabolism. Conversely, optimal levels of THs are necessary for the maintenance of immune function and response. Although some effects of THs are mediated by their binding to cell membrane integrin receptors, triggering a non-genomic response, most of the actions of these hormones involve their binding to specific nuclear thyroid receptors (TRs), which generate a genomic response by modulating the activity of a great variety of transcription factors. In this special review on THs role in health and disease, we highlight the relevance of these hormones in the molecular mechanisms linked to inflammation upon their binding to specific nuclear receptors. In particular, we focus on THs effects on different signaling pathways involved in the inflammation associated with various infectious and/or pathological processes, emphasizing those mediated by NF-kB, p38MAPK and JAK/STAT. The findings showed in this review suggest new opportunities to improve current therapeutic strategies for the treatment of inflammation associated with several infections and/or diseases, such as cancer, sepsis or Covid-19 infection.
Collapse
Affiliation(s)
- Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Constanza Contreras-Jurado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
4
|
Voutsadakis IA. The TSH/Thyroid Hormones Axis and Breast Cancer. J Clin Med 2022; 11:687. [PMID: 35160139 PMCID: PMC8836919 DOI: 10.3390/jcm11030687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Breast cancer, the most prevalent female carcinoma, is characterized by the expression of steroid nuclear receptors in a subset of cases. The most important nuclear receptor with prognostic and therapeutic implications is the Estrogen Receptor (ER), which is expressed in about three out of four breast cancers. The Progesterone Receptor (PR) and the Androgen Receptor (AR) are also commonly expressed. Moreover, non-steroid nuclear receptors, including the vitamin D receptor (VDR) and the thyroid receptors (TRs), are also present in breast cancers and have pathophysiologic implications. Circulating thyroid hormones may influence breast cancer risk and breast cancer cell survival, through ligating their canonical receptors TRα and TRβ but also through additional membrane receptors that are expressed in breast cancer. The expression of TR subtypes and their respective isotypes have diverse effects in breast cancers through co-operation with ER and influence on other cancer-associated pathways. Other components of the TSH/thyroid hormone axis, such as TSH and selenoiodinase enzymes, have putative effects in breast cancer pathophysiology. This paper reviews the pathophysiologic and prognostic implications of the thyroid axis in breast cancer and provides a brief therapeutic perspective.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON P6B 0A8, Canada; or
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON P6B 0A8, Canada
| |
Collapse
|
5
|
Davidson CD, Gillis NE, Carr FE. Thyroid Hormone Receptor Beta as Tumor Suppressor: Untapped Potential in Treatment and Diagnostics in Solid Tumors. Cancers (Basel) 2021; 13:4254. [PMID: 34503062 PMCID: PMC8428233 DOI: 10.3390/cancers13174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
There is compelling evidence that the nuclear receptor TRβ, a member of the thyroid hormone receptor (TR) family, is a tumor suppressor in thyroid, breast, and other solid tumors. Cell-based and animal studies reveal that the liganded TRβ induces apoptosis, reduces an aggressive phenotype, decreases stem cell populations, and slows tumor growth through modulation of a complex interplay of transcriptional networks. TRβ-driven tumor suppressive transcriptomic signatures include repression of known drivers of proliferation such as PI3K/Akt pathway, activation of novel signaling such as JAK1/STAT1, and metabolic reprogramming in both thyroid and breast cancers. The presence of TRβ is also correlated with a positive prognosis and response to therapeutics in BRCA+ and triple-negative breast cancers, respectively. Ligand activation of TRβ enhances sensitivity to chemotherapeutics. TRβ co-regulators and bromodomain-containing chromatin remodeling proteins are emergent therapeutic targets. This review considers TRβ as a potential biomolecular diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Cole D. Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Noelle E. Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Frances E. Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| |
Collapse
|
6
|
Martínez-Iglesias O, Ruiz-Llorente L, Jurado CC, Aranda A. Thyroid Hormone Receptors and their Role in Cell Proliferation and Cancer. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:229-246. [DOI: 10.1016/b978-0-12-819801-8.00011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco MDM, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A, Ricote M, Valledor AF. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol 2020; 73:58-75. [PMID: 33309851 DOI: 10.1016/j.semcancer.2020.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance.
Collapse
Affiliation(s)
- Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Alba Jiménez-Panizo
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
| | - María dM Vivanco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Derio, 48160, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, 46010, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Eva Estébanez-Perpiñá
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain; Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Universidad de Las Palmas, Gran Canaria, 35001, Spain
| | - Mercedes Ricote
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain.
| |
Collapse
|
8
|
López-Mateo I, Alonso-Merino E, Suarez-Cabrera C, Park JW, Cheng SY, Alemany S, Paramio JM, Aranda A. Thyroid Hormone Receptor β Inhibits Self-Renewal Capacity of Breast Cancer Stem Cells. Thyroid 2020; 30:116-132. [PMID: 31760908 PMCID: PMC6998057 DOI: 10.1089/thy.2019.0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: A subpopulation of cancer stem cells (CSCs) with capacity for self-renewal is believed to drive initiation, progression, and relapse of breast tumors. Methods: Since the thyroid hormone receptor β (TRβ) appears to suppress breast tumor growth and metastasis, we have analyzed the possibility that TRβ could affect the CSC population using MCF-7 cells grown under adherent conditions or as mammospheres, as well as inoculation into immunodeficient mice. Results: Treatment of TRβ-expressing MCF-7 cells (MCF7-TRβ cells) with the thyroid hormone triiodothyronine (T3) decreased significantly CD44+/CD24- and ALDH+ cell subpopulations, the efficiency of mammosphere formation, the self-renewal capacity of CSCs in limiting dilution assays, the expression of the pluripotency factors in the mammospheres, and tumor initiating capacity in immunodeficient mice, indicating that the hormone reduces the CSC population present within the bulk MCF7-TRβ cultures. T3 also decreased migration and invasion, a hallmark of CSCs. Transcriptome analysis showed downregulation of the estrogen receptor alpha (ERα) and ER-responsive genes by T3. Furthermore, among the T3-repressed genes, there was an enrichment in genes containing binding sites for transcription factors that are key determinants of luminal-type breast cancers and are required for ER binding to chromatin. Conclusion: We demonstrate a novel role of TRβ in the biology of CSCs that may be related to its action as a tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Irene López-Mateo
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Elvira Alonso-Merino
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | | | - Jeong Won Park
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Susana Alemany
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, Hosp Univ. “12 de Octubre,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Aranda
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols,” Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Address correspondence to: Ana Aranda, PhD, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols”, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
9
|
Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev 2019; 144:16-34. [PMID: 31461662 DOI: 10.1016/j.addr.2019.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Although many solid tumors use the lymphatic system to metastasize, there are few treatment options that directly target cancer present in the lymphatic system, and those that do are highly invasive, uncomfortable, and/or have limitations. In this review we provide a brief overview of lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the mechanisms by which these changes occur, and highlight limitations of lymphatic drug delivery. We then go on to summarize relevant techniques and new research for targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, and actively targeted nanomedicine.
Collapse
|
10
|
Neuroevolution as a tool for microarray gene expression pattern identification in cancer research. J Biomed Inform 2018; 89:122-133. [PMID: 30521855 DOI: 10.1016/j.jbi.2018.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Microarrays are still one of the major techniques employed to study cancer biology. However, the identification of expression patterns from microarray datasets is still a significant challenge to overcome. In this work, a new approach using Neuroevolution, a machine learning field that combines neural networks and evolutionary computation, provides aid in this challenge by simultaneously classifying microarray data and selecting the subset of more relevant genes. The main algorithm, FS-NEAT, was adapted by the addition of new structural operators designed for this high dimensional data. In addition, a rigorous filtering and preprocessing protocol was employed to select quality microarray datasets for the proposed method, selecting 13 datasets from three different cancer types. The results show that Neuroevolution was able to successfully classify microarray samples when compared with other methods in the literature, while also finding subsets of genes that can be generalized for other algorithms and carry relevant biological information. This approach detected 177 genes, and 82 were validated as already being associated to their respective cancer types and 44 were associated to other types of cancer, becoming potential targets to be explored as cancer biomarkers. Five long non-coding RNAs were also detected, from which four don't have described functions yet. The expression patterns found are intrinsically related to extracellular matrix, exosomes and cell proliferation. The results obtained in this work could aid in unraveling the molecular mechanisms underlying the tumoral process and describe new potential targets to be explored in future works.
Collapse
|
11
|
Noblejas-López MDM, Morcillo-García S, Nieto-Jiménez C, Nuncia-Cantarero M, Győrffy B, Galan-Moya EM, Pandiella A, Ocaña A. Evaluation of transcriptionally regulated genes identifies NCOR1 in hormone receptor negative breast tumors and lung adenocarcinomas as a potential tumor suppressor gene. PLoS One 2018; 13:e0207776. [PMID: 30485330 PMCID: PMC6261593 DOI: 10.1371/journal.pone.0207776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Regulation of transcription is a key process in cellular homeostasis. It depends on regulators that either repress or stimulate the transcription of genes, therefore controlling different biological functions. The Nuclear Receptor Corepressor 1 (NCOR1) is one of those co-repressors that regulate the transcription by facilitating the recruitment of HDAC1, 2, 3, 4, 5 and 7. In our article, by using an in silico approach, we evaluate the mutational status of NCOR1 in breast and lung tumors. We identified that NORC1 is mutated in more than 3% of breast tumors and lung adenocarcinomas and linked this fact with detrimental outcome in some subtypes, particularly in those that are hormone receptor negative. In addition to these findings, as mutations in this gene are deleterious, we confirmed that high levels of this gene were linked with good prognosis in the same tumor subtypes. Findings in the same direction were identified in lung adenocarcinomas, with mutations associated with detrimental prognosis and high expression with better outcome. In conclusion, hereby we describe the presence and prognostic role of mutations in the NCOR1 gene in hormone receptor negative breast and lung adenocarcinomas, and we also confirm that NCOR1 is a tumor suppressor gene. Further studies should be performed to explore therapeutic mechanisms to restore its function.
Collapse
Affiliation(s)
- María del Mar Noblejas-López
- Translational Research Unit, Albacete University Hospital, and CIBERONC, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Sara Morcillo-García
- Translational Research Unit, Albacete University Hospital, and CIBERONC, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Cristina Nieto-Jiménez
- Translational Research Unit, Albacete University Hospital, and CIBERONC, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Miriam Nuncia-Cantarero
- Translational Research Unit, Albacete University Hospital, and CIBERONC, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Balázs Győrffy
- Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Eva M. Galan-Moya
- Translational Research Unit, Albacete University Hospital, and CIBERONC, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail: (AO); (EMGM)
| | | | - Alberto Ocaña
- Translational Research Unit, Albacete University Hospital, and CIBERONC, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail: (AO); (EMGM)
| |
Collapse
|
12
|
Xiong Y, Liu Z, Zhao X, Ruan S, Zhang X, Wang S, Huang T. CPT1A regulates breast cancer-associated lymphangiogenesis via VEGF signaling. Biomed Pharmacother 2018; 106:1-7. [PMID: 29940537 DOI: 10.1016/j.biopha.2018.05.112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Lymphangiogenesis is critical for metastasis of a variety of cancers, including breast cancer. CPT1A (carnitine palmitoyltransferase 1a) has been reported to play a critical role in breast cancer progress. However, the molecular mechanism remains elusive. METHODS In order to investigate the role of CPT1A in HDLEC cells, short hairpin RNA approach was utilized to knock down the CPT1A gene expression. We employed transwell and lymphatic vessel formation assay to examine invasion and lymphangiogenesis of HDLEC (Human dermal lymphatic endothelial cells). RT-qPCR and westernblot analyses were used to determine genes expression in HDLEC and breast cancer cells. Finally, we determined the relative rate of acetyl-CoA/CoA in shNC and shCPT1A HDLEC cells by LC-MS approach. RESULTS Knockdown of CPT1A in breast cancer cells (MCF-7 and MDA-MB-231) abolished invasion and lymphangiogenesis of HDLEC cells. Mechanistically, CPT1A depletion suppressed the expression of VEGF-C and VEGF-D in MCF-7 and MDA-MB-231 cells. Interestingly, CPT1A knockdown in HDLEC cells exhibited attenuated expression of lymphangiogenic markers (podoplanin, VEGFR-3, VEGF-C, VEGF-D and PROX-1). Consistently, CPT1A -null HDLEC cells displayed compromised invasion and lymphangiogenesis compared with negative control. Further investigation revealed that CPT1A regulated VEGFR3 via acetyl-CoA mediated H3K9ac, which could be abrogated by supplement of acetate. CONCLUSIONS In present study, we revealed the mechanism by which CPT1A regulates breast cancer-associated invasion and lymphangiogenesis. Our findings provide insights into CPT1A -promoted breast tumor metastasis and provide rationale for understanding breast cancer metastasis.
Collapse
Affiliation(s)
- Yiquan Xiong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zeming Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiangwang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shengnan Ruan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ximeng Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shi Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
13
|
Peng X, Zhou Y, Sun Y, Song W, Meng X, Zhao C, Zhao R. Overexpression of modified human TRβ1 suppresses the growth of hepatocarcinoma SK-hep1 cells in vitro and in xenograft models. Mol Cell Biochem 2018; 449:207-218. [PMID: 29679278 PMCID: PMC6223806 DOI: 10.1007/s11010-018-3357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Association studies suggest that TRβ1 functions as a tumor suppressor. Thyroid hormone receptors (TRs) mediate transcriptional responses through a highly conserved DNA-binding domain (DBD). We previously constructed an artificially modified human TRβ1 (m-TRβ1) via the introduction of a 108-bp exon sequence into the corresponding position of the wild-type human TRβ1 (TRβ1) DBD. Studies confirmed that m-TRβ1 was functional and could inhibit the proliferation of breast cancer MDA-MB-468 cells in vitro. To understand the role of m-TRβ1 in liver tumor development, we adopted a gain-of-function approach by stably expressing TRβ (m-TRβ1 and TRβ1) genes in a human hepatocarcinoma cell line, SK-hep1 (without endogenous TRβ), and then evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. In the presence of 3,5,3-l-triiodothyronine (T3), the expression of TRβ in SK-hep1 cells inhibited cancer cell proliferation and impeded tumor cell migration through the up-regulation of 4-1BB, Caspase-3, and Bak gene expression; down-regulation of Bcl-2 gene expression; and activation of the Caspase-3 protein. TRβ expression in SK-hep1 led to less tumor growth in xenograft models. Additionally, the anti-tumor effect of m-TRβ1 was stronger than that of TRβ1. These data indicate that m-TRβ1 can act as a tumor suppressor in hepatocarcinoma and its role was significantly better than that of TRβ1.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yuntao Zhou
- Central Hospital of Zibo, Zibo, 255020, Shandong, China
| | - Yanli Sun
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wei Song
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Chunling Zhao
- Key Laboratory of Biological Medicine in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China.
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|