1
|
Wang C, Zhou C, Wang D, Zhang YF, Lv HX, He H, Ren YQ, Wang J, Zhou FH. Proangiogenic potential of plasma exosomes from prostate cancer patients. Cell Signal 2024; 124:111398. [PMID: 39265728 DOI: 10.1016/j.cellsig.2024.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Angiogenesis plays a pivotal role in the progression and metastasis of solid cancers, including prostate cancer (PCa). While small extracellular vesicles derived from PCa cell lines induce a proangiogenic phenotype in vascular endothelial cells, the contribution of plasma exosomes from patients with PCa to this process remains unclear. Here, we successfully extracted and characterized plasma exosomes. Notably, a ring of PKH67-labeled exosomes was observed around the HUVEC nucleus using fluorescence microscopy, indicating the uptake of exosomes by HUVEC. At the cellular level, PCa plasma exosomes enhanced angiogenesis, proliferation, invasion, and migration of HUVEC cells. Moreover, PCa plasma exosomes promoted angiogenesis and aortic sprouting. MicroRNAs are the most common genetic material in exosomes, and to identify miRNAs associated with the angiogenic response, we performed small RNA sequencing followed by RT-qPCR and bioinformatics analysis. These analyses revealed distinct miRNA profiles in plasma exosomes from patients with PCa compared to healthy individuals. Notably, hsa-miR-184 emerged as a potential regulator implicated in the proangiogenic effects of PCa plasma exosomes.
Collapse
Affiliation(s)
- Chao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Dong Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hao-Xuan Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Han He
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China
| | - Yong-Qi Ren
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jia Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Feng-Hai Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 73000, China; Department of Urology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
2
|
Fowler H, Clifford RE, Bowden D, Sutton PA, Govindarajah N, Fok M, Glenn M, Wall M, Rubbi C, Buczacki SJA, Mandal A, Francies H, Hughes J, Parsons JL, Vimalachandran D. Myoferlin: A Potential Marker of Response to Radiation Therapy and Survival in Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2024; 120:1111-1123. [PMID: 38866213 DOI: 10.1016/j.ijrobp.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Patients with locally advanced rectal cancer often require neoadjuvant chemoradiation therapy to downstage the disease, but the response is variable with no predictive biomarkers. We have previously revealed through proteomic profiling that myoferlin is associated with response to radiation therapy. The aims of this study were to further validate this finding and explore the potential for myoferlin to act as a prognostic and/or therapeutic target. METHODS AND MATERIALS Immunohistochemical analysis of a tissue microarray (TMA) for 111 patients was used to validate the initial proteomic findings. Manipulation of myoferlin was achieved using small interfering RNA, a small molecular inhibitor (wj460), and a CRISPR-Cas9 knockout cell line. Radiosensitization after treatment was assessed using 2-dimensional clonogenic assays, 3-dimensional spheroid models, and patient-derived organoids. Underlying mechanisms were investigated using electrophoresis, immunofluorescence, and immunoblotting. RESULTS Analysis of both the diagnostic biopsy and tumor resection samples confirmed that low myoferlin expression correlated with a good response to neoadjuvant long-course chemoradiation therapy. High myoferlin expression was associated with spread to local lymph nodes and worse 5-year survival (P = .01; hazard ratio, 3.5; 95% CI, 1.27-10.04). This was externally validated using the Stratification in Colorectal Cancer database. Quantification of myoferlin using immunoblotting in immortalized colorectal cancer cell lines and organoids demonstrated that high myoferlin expression was associated with increased radioresistance. Biological and pharmacologic manipulation of myoferlin resulted in significantly increased radiosensitivity across all cell lines in 2-dimensional and 3-dimensional models. After irradiation, myoferlin knockdown cells had a significantly impaired ability to repair DNA double-strand breaks. This appeared to be mediated via nonhomologous end-joining. CONCLUSIONS We have confirmed that high expression of myoferlin in rectal cancer is associated with poor response to neoadjuvant therapy and worse long-term survival. Furthermore, the manipulation of myoferlin led to increased radiosensitivity in vitro. This suggests that myoferlin could be targeted to enhance the sensitivity of patients with rectal cancer to radiation therapy, and further work is required.
Collapse
Affiliation(s)
- Hayley Fowler
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom.
| | - Rachael E Clifford
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - David Bowden
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom
| | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Naren Govindarajah
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Matthew Fok
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Michael Wall
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom
| | - Carlos Rubbi
- Faculty of Health, Social Care & Medicine, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP
| | - Simon J A Buczacki
- Nuffield Department of Surgical Sciences (NDS), University of Oxford, Oxford, United Kingdom
| | - Amit Mandal
- Nuffield Department of Surgical Sciences (NDS), University of Oxford, Oxford, United Kingdom
| | - Hayley Francies
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Hughes
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dale Vimalachandran
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| |
Collapse
|
3
|
Hallal SM, Sida LA, Tűzesi Á, Shivalingam B, Sim H, Buckland ME, Satgunaseelan L, Alexander KL. Size matters: Biomolecular compositions of small and large extracellular vesicles in the urine of glioblastoma patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70021. [PMID: 39554867 PMCID: PMC11565258 DOI: 10.1002/jex2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The promise of urinary extracellular vesicles (uEVs) in biomarker discovery is emerging. However, the characteristics and compositions of different uEV subpopulations across normal physiological and pathological states require rigorous explication. We recently reported proteomic signatures of small (s)-uEVs (<200 nm membranous nanoparticles) and described putative biomarkers corresponding to the diagnosis, tumour burden and recurrence of the lethal adult primary brain tumour, glioblastoma. Here, we comprehensively characterise uEV populations with significantly different mean and mode particle sizes obtained by differential centrifugation at 100,000 × g (100K-uEVs; smaller) and 17,000 × g (17K-uEVs; larger) using Fourier-transform infrared spectroscopy and quantitative data-independent acquisition mass spectrometry. We show distinct differences in protein and lipid content, prominent protein secondary structures, and proteome distributions between uEV populations that can distinguish glioblastoma patients from healthy controls and correspond to clinically relevant tumour changes (i.e., recurrence and treatment resistance). Among the key findings is a putative seven-protein biomarker panel associated with 17K-uEVs that could distinguish all glioblastoma patients from healthy controls and accurately classify 98.2% of glioblastoma samples. These novel, significant findings demonstrate that both uEV populations offer individual and combined biomarker potential. Further research is warranted to elucidate the complete diagnostic, prognostic, and predictive capabilities of often-neglected 17K-uEV populations.
Collapse
Affiliation(s)
- Susannah M. Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Liam A. Sida
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Ágota Tűzesi
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Brindha Shivalingam
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Neurosurgery DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Hao‐Wen Sim
- Department of Medical OncologyChris O'Brien LifehouseCamperdownNSWAustralia
- NHMRC Clinical Trials CentreThe University of SydneyCamperdownNSWAustralia
- Faculty of Medicine and HealthUniversity of New South WalesKensingtonNSWAustralia
| | - Michael E. Buckland
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Laveniya Satgunaseelan
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
4
|
Dowaidar M. Drug delivery based exosomes uptake pathways. Neurochem Int 2024; 179:105835. [PMID: 39147203 DOI: 10.1016/j.neuint.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Most cells secrete a material called extracellular vesicles (EVs), which play a crucial role in cellular communication. Exosomes are one of the most studied types of EVs. Recent research has shown the many functions and substrates of cellular exosomes. Multiple studies have shown the efficacy of exosomes in transporting a wide variety of cargo to their respective target cells. As a result, they are often utilized to transport medicaments to patients. Natural exosomes as well as exosomes modified with other compounds to enhance transport capabilities have been employed. In this article, we take a look at how different types of exosomes and modified exosomes may transport different types of cargo to their respective targets. Exosomes have a lot of potential as drug delivery vehicles for many synthetic compounds, proteins, nucleic acids, and gene repair specialists because they can stay in the body for a long time, are biocompatible, and can carry natural materials. A good way to put specific protein particles into exosomes is still not clear, though, and the exosomes can't be used in many situations yet. The determinants for exosome production, as well as ways for loading certain therapeutic molecules (proteins, nucleic acids, and small compounds), were covered in this paper. Further study and the development of therapeutic exosomes may both benefit from the information collected in this review.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
5
|
Ambeskovic A, McCall MN, Woodsmith J, Juhl H, Land H. Exon-Skipping-Based Subtyping of Colorectal Cancers. Gastroenterology 2024:S0016-5085(24)05357-5. [PMID: 39181169 DOI: 10.1053/j.gastro.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS The identification of colorectal cancer (CRC) molecular subtypes has prognostic and potentially diagnostic value for patients, yet reliable subtyping remains unavailable in the clinic. The current consensus molecular subtype (CMS) classification in CRCs is based on complex RNA expression patterns quantified at the gene level. The clinical application of these methods, however, is challenging due to high uncertainty of single-sample classification and associated costs. Alternative splicing, which strongly contributes to transcriptome diversity, has rarely been used for tissue type classification. Here, we present an AS-based CRC subtyping framework sensitive to differential exon use that can be adapted for clinical application. METHODS Unsupervised clustering was used to measure the strength of association between different categories of alternative splicing and CMSs. To build a classifier, the ground truth for CMS labels was derived from expression data quantified at the gene level. Feature selection was achieved through bootstrapping and L1-penalized estimation. The resulting feature space was used to construct a subtype prediction framework applicable to single and multiple samples. The performance of the models was evaluated on unseen CRCs from 2 independent sources (Indivumed, n = 129; The Cancer Genome Atlas, n = 99). RESULTS We developed a CRC subtype identifier based on 29 exon-skipping events that accurately classifies unseen tumors and enables more precise differentiation of subtypes characterized by distinct biological and prognostic features as compared to classifiers based on gene expression. CONCLUSIONS Here, we demonstrate that a small number of exon-skipping events can reliably classify CRC subtypes using individual patient specimens in a manner suitable to clinical application.
Collapse
Affiliation(s)
- Aslihan Ambeskovic
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | | | | - Hartmut Land
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
6
|
Sanchez-Manas JM, Perez de Gracia N, Perales S, Martinez-Galan J, Torres C, Real PJ. Potential clinical applications of extracellular vesicles in pancreatic cancer: exploring untapped opportunities from biomarkers to novel therapeutic approaches. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:180-200. [PMID: 39698536 PMCID: PMC11648502 DOI: 10.20517/evcna.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 12/20/2024]
Abstract
Pancreatic cancer is a highly lethal and metastatic malignancy, mainly because it often remains undetected until advanced stages due to the limitations of current diagnostic methods, rendering currently available therapies ineffective. Therefore, it is imperative to identify useful biomarkers for early diagnosis and new therapeutic targets for pancreatic cancer. Recently, extracellular vesicles have emerged as promising biomarkers for the diagnosis and prognosis of pancreatic cancer. Given their presence in various bodily fluids, extracellular vesicles offer a non-invasive approach through liquid biopsy to detect and monitor cancer progression. In this review, we comprehensively examine the multifaceted roles of extracellular vesicles in the progression of cancer, while also exploring their potential as diagnostic, prognostic, and therapeutic biomarkers in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Jose Manuel Sanchez-Manas
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Authors contributed equally
| | - Natalia Perez de Gracia
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Authors contributed equally
| | - Sonia Perales
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
| | - Joaquina Martinez-Galan
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
- Department of Medical Oncology, Virgen de las Nieves University Hospital, Granada 18014, Spain
| | - Carolina Torres
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada 18016, Spain
| | - Pedro J. Real
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
| |
Collapse
|
7
|
Panda A, Falasca M, Ragunath K. Extracellular vesicles in pancreatic cancer: a new era in precision medicine. Transl Gastroenterol Hepatol 2024; 9:29. [PMID: 38716212 PMCID: PMC11074477 DOI: 10.21037/tgh-23-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/31/2023] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer (PC) is a lethal disease that presents a considerable challenge to healthcare providers and patients, given its low survival rate. However, recent advancements in precision medicine and innovative technologies have transformed the management of this disease. Among these advancements, extracellular vesicles (EVs) have emerged as crucial players in cancer progression. In PC, EVs play a pivotal role by facilitating cell-cell communication, impeding immune response, promoting cancer cell proliferation and survival, and supporting angiogenesis and chemoresistance. Cancer-derived EVs have a distinct oncogenic composition supporting tumour development and progression. Hence, they are critical biomarker candidates for various cancers, including PC. Notably, EVs can be isolated from diverse biological fluids such as blood, urine, and saliva, making them an ideal minimally invasive diagnostic and monitoring tool for PC patients. Despite the promising findings in the field of EVs, clinical validation as biomarkers is lacking. Furthermore, EVs being biocompatible, can act as drug carriers, delivering therapeutic molecules directly to cancer cells while minimizing toxicity to healthy cells. Therefore, understanding the role of EVs as biomarkers and their potential as drug cargo vehicles may revolutionise early detection, prognostication, and treatment in cancer. This mini-review summarises the latest understanding of their role in intercellular communication, involvement as potential biomarkers and drug carriers.
Collapse
Affiliation(s)
- Arunima Panda
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Marco Falasca
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Krish Ragunath
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Anania S, Farnir M, Peiffer R, Boumahd Y, Thiry M, Agirman F, Maloujahmoum N, Bellahcène A, Peulen O. Identification of myoferlin as a mitochondria-associated membranes component required for calcium signaling in PDAC cell lines. Cell Commun Signal 2024; 22:133. [PMID: 38368370 PMCID: PMC10874564 DOI: 10.1186/s12964-024-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is an aggressive cancer type with one of the lowest survival rates due to late diagnosis and the absence of effective treatments. A better understanding of PDAC biology will help researchers to discover the Achilles' heel of cancer cells. In that regard, our research team investigated the function of an emerging oncoprotein known as myoferlin. Myoferlin is overexpressed in PDAC and its silencing/targeting has been shown to affect cancer cell proliferation, migration, mitochondrial dynamics and metabolism. Nevertheless, our comprehension of myoferlin functions in cells remains limited. In this study, we aimed to understand the molecular mechanism linking myoferlin silencing to mitochondrial dynamics. METHODS Experiments were performed on two pancreas cancer cell lines, Panc-1 and MiaPaCa-2. Myoferlin localization on mitochondria was evaluated by immunofluorescence, proximity ligation assay, and cell fractionation. The presence of myoferlin in mitochondria-associated membranes was assessed by cell fractionation and its function in mitochondrial calcium transfer was evaluated using calcium flow experiments, proximity ligation assays, co-immunoprecipitation, and timelapse fluorescence microscopy in living cells. RESULTS Myoferlin localization on mitochondria was investigated. Our results suggest that myoferlin is unlikely to be located on mitochondria. Instead, we identified myoferlin as a new component of mitochondria-associated membranes. Its silencing significantly reduces the mitochondrial calcium level upon stimulation, probably through myoferlin interaction with the inositol 1,4,5-triphosphate receptors 3. CONCLUSIONS For the first time, myoferlin was specifically demonstrated to be located in mitochondria-associated membranes where it participates to calcium flow. We hypothesized that this function explains our previous results on mitochondrial dynamics. This study improves our comprehension of myoferlin localization and function in cancer biology.
Collapse
Affiliation(s)
- Sandy Anania
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Martin Farnir
- STAR Institute, Université de Liège, Allée du 6 Août 19, Liège, B-4000, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology L3, Université de Liège, Liège, B-4000, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Naima Maloujahmoum
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium.
- Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium.
| |
Collapse
|
9
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
10
|
Trinidad CV, Pathak HB, Cheng S, Tzeng SC, Madan R, Sardiu ME, Bantis LE, Deighan C, Jewell A, Rayamajhi S, Zeng Y, Godwin AK. Lineage specific extracellular vesicle-associated protein biomarkers for the early detection of high grade serous ovarian cancer. Sci Rep 2023; 13:18341. [PMID: 37884576 PMCID: PMC10603107 DOI: 10.1038/s41598-023-44050-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
High grade serous ovarian carcinoma (HGSOC) accounts for ~ 70% of ovarian cancer cases. Non-invasive, highly specific blood-based tests for pre-symptomatic screening in women are crucial to reducing the mortality associated with this disease. Since most HGSOCs typically arise from the fallopian tubes (FT), our biomarker search focused on proteins found on the surface of extracellular vesicles (EVs) released by both FT and HGSOC tissue explants and representative cell lines. Using mass spectrometry, 985 EV proteins (exo-proteins) were identified that comprised the FT/HGSOC EV core proteome. Transmembrane exo-proteins were prioritized because these could serve as antigens for capture and/or detection. With a nano-engineered microfluidic platform, six newly discovered exo-proteins (ACSL4, IGSF8, ITGA2, ITGA5, ITGB3, MYOF) plus a known HGSOC associated protein, FOLR1 exhibited classification performance ranging from 85 to 98% in a case-control study using plasma samples representative of early (including stage IA/B) and late stage (stage III) HGSOCs. Furthermore, by a linear combination of IGSF8 and ITGA5 based on logistic regression analysis, we achieved a sensitivity of 80% with 99.8% specificity and a positive predictive value of 13.8%. Importantly, these exo-proteins also can accurately discriminate between ovarian and 12 types of cancers commonly diagnosed in women. Our studies demonstrate that these lineage-associated exo-biomarkers can detect ovarian cancer with high specificity and sensitivity early and potentially while localized to the FT when patient outcomes are more favorable.
Collapse
Affiliation(s)
- Camille V Trinidad
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3040, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Rashna Madan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3040, Kansas City, KS, 66160, USA
| | - Mihaela E Sardiu
- University of Kansas Cancer Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Leonidas E Bantis
- University of Kansas Cancer Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Andrea Jewell
- University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3040, Kansas City, KS, 66160, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Andrew K Godwin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3040, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, Kansas City, KS, USA.
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
11
|
Novais AA, Tamarindo GH, Chuffa LGDA, Zuccari DAPDC. Decoding Hidden Messengers: Proteomic Profiling of Exosomes in Mammary Cancer Research. Biomedicines 2023; 11:2839. [PMID: 37893211 PMCID: PMC10604896 DOI: 10.3390/biomedicines11102839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a complex and heterogeneous disease, influenced by various factors that affect its progression and response to treatment. Although a histopathological diagnosis is crucial for identifying and classifying cancer, it may not accurately predict the disease's development and evolution in all cases. To address this limitation, liquid biopsy has emerged as a valuable tool, enabling a more precise and non-invasive analysis of cancer. Liquid biopsy can detect tumor DNA fragments, circulating tumor cells, and exosomes released by cancer cells into the bloodstream. Exosomes attracted significant attention in cancer research because of their specific protein composition, which can provide valuable insights into the disease. The protein profile of exosomes often differs from that of normal cells, reflecting the unique molecular characteristics of cancer. Analyzing these proteins can help identify cancer-associated markers that play important roles in tumor progression, invasion, and metastasis. Ongoing research and clinical validation are essential to advance and effectively utilize protein biomarkers in cancer. Nevertheless, their potential to improve diagnosis and treatment is highly promising. This review discusses several exosome proteins of interest in breast cancer, particularly focusing on studies conducted in mammary tissue and cell lines in humans and experimental animals. Unfortunately, studies conducted in canine species are scarce. This emphasis sheds light on the limited research available in this field. In addition, we present a curated selection of studies that explored exosomal proteins as potential biomarkers, aiming to achieve benefits in breast cancer diagnosis, prognosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Adriana Alonso Novais
- Health Sciences Institute (ICS), Universidade Federal de Mato Grosso (UFMT), Sinop 78550-728, Brazil;
| | - Guilherme Henrique Tamarindo
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil;
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, Brazil;
| | - Debora Aparecida Pires de Campos Zuccari
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| |
Collapse
|
12
|
El-Tanani M, Nsairat H, Matalka II, Aljabali AAA, Mishra V, Mishra Y, Naikoo GA, Chava SR, Charbe NB, Tambuwala MM. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol 2023; 40:225. [PMID: 37405480 PMCID: PMC10322774 DOI: 10.1007/s12032-023-02101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, in this concise review, we intend to summarize exosomes components and isolation, exosome secretion, function, importance of exosomes in the progression of pancreatic cancer and exosomal miRNAs as possible pancreatic cancer biomarkers. Finally, the application potential of exosomes in the treatment of pancreatic cancer, which provides theoretical supports for using exosomes to serve precise tumor treatment in the clinic, will be discussed.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK.
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | | | - Nitin B Charbe
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
13
|
Trinidad C, Pathak H, Cheng S, Tzeng SC, Madan R, Sardiu M, Bantis L, Deighan C, Jewell A, Zeng Y, Godwin A. Lineage specific extracellular vesicle-associated protein biomarkers for the early detection of high grade serous ovarian cancer. RESEARCH SQUARE 2023:rs.3.rs-2814022. [PMID: 37205573 PMCID: PMC10187430 DOI: 10.21203/rs.3.rs-2814022/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High grade serous ovarian carcinoma (HGSOC) accounts for ~ 70% of ovarian cancer cases. Non-invasive, highly specific blood-based tests for pre-symptomatic screening in women are crucial to reducing the mortality associated with this disease. Since most HGSOCs typically arise from the fallopian tubes (FT), our biomarker search focused on proteins found on the surface of extracellular vesicles (EVs) released by both FT and HGSOC tissue explants and representative cell lines. Using mass spectrometry, 985 EV proteins (exo-proteins) were identified that comprised the FT/HGSOC EV core proteome. Transmembrane exo-proteins were prioritized because these could serve as antigens for capture and/or detection. With a nano-engineered microfluidic platform, six newly discovered exo-proteins (ACSL4, IGSF8, ITGA2, ITGA5, ITGB3, MYOF) plus a known HGSOC associated protein, FOLR1 exhibited classification performance ranging from 85-98% in a case-control study using plasma samples representative of early (including stage IA/B) and late stage (stage III) HGSOCs. Furthermore, by linear combination of IGSF8 and ITGA5 based on logistic regression analysis, we achieved a sensitivity of 80% (99.8% specificity). These lineage-associated exo-biomarkers have potential to detect cancer while localized to the FT when patient outcomes are more favorable.
Collapse
|
14
|
Liu X, Li N. New thoughts and findings on invasion and metastasis of pancreatic ductal adenocarcinoma (PDAC) from comparative proteomics: multi-target therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03106-8. [PMID: 36745340 DOI: 10.1007/s12094-023-03106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
As one of the most aggressive malignant tumors, pancreatic ductal adenocarcinoma (PDAC) ranks as the fourth cancer-related mortality in the world. The extremely low survival rate is closely related to early invasion and distant metastasis. However, effective target therapy for weakening its malignant behavior remains limited. Over the past decades, many proteins correlating with invasion and metastasis of PDAC have been discovered using proteomics. The discovery of these proteins gives us a deeper understanding of the invasive and migratory processes of PDAC. This review is a systemic integration of these proteomics findings over the past 10 years. The discovered proteins were typically associated with the glycolytic process, hypoxic microenvironment, post-translational modification, extracellular matrix, exosomes, cancer stem cells, and immune escape. Some proteins were found to have multiple functions, and, cooperation between different proteins in the invasive and metastatic processes was found. This cooperation, and not just single protein function, may play a more significant role in the poor prognosis of PDAC. Therefore, multi-target therapy against these cooperative networks should be a primary choice in the future.
Collapse
Affiliation(s)
- Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Na Li
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
15
|
Polakowski N, Sarker MAK, Hoang K, Boateng G, Rushing AW, Kendle W, Pique C, Green PL, Panfil AR, Lemasson I. HBZ upregulates myoferlin expression to facilitate HTLV-1 infection. PLoS Pathog 2023; 19:e1011202. [PMID: 36827461 PMCID: PMC9994761 DOI: 10.1371/journal.ppat.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Md Abu Kawsar Sarker
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Georgina Boateng
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Amanda W. Rushing
- Catawba College, Department of Biology, Salisbury, North Carolina, United States of America
| | - Wesley Kendle
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick L. Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda R. Panfil
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Rademaker G, Boumahd Y, Peiffer R, Anania S, Wissocq T, Liégeois M, Luis G, Sounni NE, Agirman F, Maloujahmoum N, De Tullio P, Thiry M, Bellahcène A, Castronovo V, Peulen O. Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells. Redox Biol 2022; 53:102324. [PMID: 35533575 PMCID: PMC9096673 DOI: 10.1016/j.redox.2022.102324] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Gilles Rademaker
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium
| | - Sandy Anania
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium
| | - Tom Wissocq
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Maude Liégeois
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège, B-4000, Liège, Belgium
| | - Géraldine Luis
- Laboratory of Tumor and Development Biology, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Pascal De Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics Group, University of Liège, B-4000, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, B-4000, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium.
| |
Collapse
|
17
|
Wang N, Pei B, Yuan X, Yi C, Wiredu Ocansey DK, Qian H, Mao F. Emerging roles of mesenchymal stem cell-derived exosomes in gastrointestinal cancers. Front Bioeng Biotechnol 2022; 10:1019459. [PMID: 36338118 PMCID: PMC9631450 DOI: 10.3389/fbioe.2022.1019459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal tumours are the most common solid tumours, with a poor prognosis and remain a major challenge in cancer treatment. Mesenchymal stem cells (MSC) are multipotent stromal cells with the potential to differentiate into multiple cell types. Several studies have shown that MSC-derived exosomes have become essential regulators of intercellular communication in a variety of physiological and pathological processes. Notably, MSC-derived exosomes support or inhibit tumour progression in different cancers through the delivery of proteins, RNA, DNA, and bioactive lipids. Herein, we summarise current advances in MSC-derived exosomes in cancer research, with particular reference to their role in gastrointestinal tumour development. MSC-derived exosomes are expected to be a novel potential strategy for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Naijian Wang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Hua Qian,
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
18
|
Elucidating the Role of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225669. [PMID: 34830825 PMCID: PMC8616095 DOI: 10.3390/cancers13225669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers worldwide. The chance of surviving more than 5 years after initial diagnosis is less than 10%. This is due to a lack of early diagnostics, where often at the time of initial detection the tumour has already spread to different parts of the body and has developed a propensity to develop drug resistance. Therefore, to tackle this devastating disease, it is necessary to identify the key players responsible for driving pancreatic cancer. Numerous studies have found that small bubble-like packages shed by cancer cells, called extracellular vesicles, play an important role in the progression of the disease. Our knowledge on how extracellular vesicles aid in the progression, spread and chemoresistance of pancreatic cancer is the focus of this review. Of note, these extracellular vesicles may serve as biomarkers for earlier detection of pancreatic cancer and could represent drug targets or drug delivery agents for the treatment of pancreatic cancer. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, with a 5-year survival rate of less than 10%. This dismal survival rate can be attributed to several factors including insufficient diagnostics, rapid metastasis and chemoresistance. To identify new treatment options for improved patient outcomes, it is crucial to investigate the underlying mechanisms that contribute to pancreatic cancer progression. Accumulating evidence suggests that extracellular vesicles, including exosomes and microvesicles, are critical players in pancreatic cancer progression and chemoresistance. In addition, extracellular vesicles also have the potential to serve as promising biomarkers, therapeutic targets and drug delivery tools for the treatment of pancreatic cancer. In this review, we aim to summarise the current knowledge on the role of extracellular vesicles in pancreatic cancer progression, metastasis, immunity, metabolic dysfunction and chemoresistance, and discuss their potential roles as biomarkers for early diagnosis and drug delivery vehicles for treatment of pancreatic cancer.
Collapse
|
19
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
20
|
Chang CH, Pauklin S. Extracellular vesicles in pancreatic cancer progression and therapies. Cell Death Dis 2021; 12:973. [PMID: 34671031 PMCID: PMC8528925 DOI: 10.1038/s41419-021-04258-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK.
| |
Collapse
|
21
|
Hussain Z, Nigri J, Tomasini R. The Cellular and Biological Impact of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13123040. [PMID: 34207163 PMCID: PMC8235245 DOI: 10.3390/cancers13123040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increased incidence and global failure of ongoing therapies project pancreatic cancer as the second deadliest cancer worldwide. While our knowledge of pancreatic cancer cells’ abilities and specificities has drastically improved based on multi-scaled omics, one must consider that much more remains to be uncovered on the role and impact of stromal cells and the established network of communication with tumor cells. This review article discusses how tumor cells communicate with the various cells composing the stroma and its implication in tumor cells’ abilities, PDA (pancreatic ductal adenocarcinoma) carcinogenesis and therapeutic response. We will focus on extracellular vesicles-mediated crosstalk and how this multifaceted dialogue impacts both cellular compartments and its subsequent impact on PDA biology. Abstract Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.
Collapse
|
22
|
Romano R, Picca A, Eusebi LHU, Marzetti E, Calvani R, Moro L, Bucci C, Guerra F. Extracellular Vesicles and Pancreatic Cancer: Insights on the Roles of miRNA, lncRNA, and Protein Cargos in Cancer Progression. Cells 2021; 10:1361. [PMID: 34205944 PMCID: PMC8226820 DOI: 10.3390/cells10061361] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer (PC) is among the most devastating digestive tract cancers worldwide. This cancer is characterized by poor diagnostic detection, lack of therapy, and difficulty in predicting tumorigenesis progression. Although mutations of key oncogenes and oncosuppressor involved in tumor growth and in immunosurveillance escape are known, the underlying mechanisms that orchestrate PC initiation and progression are poorly understood or still under debate. In recent years, the attention of many researchers has been concentrated on the role of extracellular vesicles and of a particular subset of extracellular vesicles, known as exosomes. Literature data report that these nanovesicles are able to deliver their cargos to recipient cells playing key roles in the pathogenesis and progression of many pancreatic precancerous conditions. In this review, we have summarized and discussed principal cargos of extracellular vesicles characterized in PC, such as miRNAs, lncRNAs, and several proteins, to offer a systematic overview of their function in PC progression. The study of extracellular vesicles is allowing to understand that investigation of their secretion and analysis of their content might represent a new and potential diagnostic and prognostic tools for PC.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Leonardo Henry Umberto Eusebi
- Gastroenterology and Endoscopy Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Gastroenterology and Endoscopy Unit, Sant’Orsola University Hospital, 40138 Bologna, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (E.M.); (R.C.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, 171 77 Stockholm, Sweden
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; or
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
23
|
Tan Y, Luo X, Lv W, Hu W, Zhao C, Xiong M, Yi Y, Wang D, Wang Y, Wang H, Wu Y, Zhang Q. Tumor-derived exosomal components: the multifaceted roles and mechanisms in breast cancer metastasis. Cell Death Dis 2021; 12:547. [PMID: 34039961 PMCID: PMC8155106 DOI: 10.1038/s41419-021-03825-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023]
Abstract
Breast cancer (BC) is the most frequently invasive malignancy and the leading cause of tumor-related mortality among women worldwide. Cancer metastasis is a complex, multistage process, which eventually causes tumor cells to colonize and grow at the metastatic site. Distant organ metastases are the major obstacles to the management of advanced BC patients. Notably, exosomes are defined as specialized membrane-enclosed extracellular vesicles with specific biomarkers, which are found in a wide variety of body fluids. Recent studies have demonstrated that exosomes are essential mediators in shaping the tumor microenvironment and BC metastasis. The transferred tumor-derived exosomes modify the capability of invasive behavior and organ-specific metastasis in recipient cells. BC exosomal components, mainly including noncoding RNAs (ncRNAs), proteins, lipids, are the most investigated components in BC metastasis. In this review, we have emphasized the multifaceted roles and mechanisms of tumor-derived exosomes in BC metastasis based on these important components. The underlying mechanisms mainly include the invasion behavior change, tumor vascularization, the disruption of the vascular barrier, and the colonization of the targeted organ. Understanding the significance of tumor-derived exosomal components in BC metastasis is critical for yielding novel routes of BC intervention.
Collapse
Affiliation(s)
- Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiao Luo
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Weijie Hu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dawei Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Haiping Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
24
|
Naseer M, Hadi S, Syed A, Safdari A, Tahan V. Exosomes: A new frontier under the spotlight for diagnosis and treatment of gastrointestinal diseases. World J Meta-Anal 2021; 9:12-28. [DOI: 10.13105/wjma.v9.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
|
25
|
He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, Wang M, Wang Q, Chen J, Sun Z, Liu M, Chen Y, Yi Z. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med 2021; 11:e289. [PMID: 33634965 PMCID: PMC7868085 DOI: 10.1002/ctm2.289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
As a pivotal vesicular trafficking protein, Myoferlin (MYOF) has become an attractive target for cancer therapy. However, the roles of MYOF in colorectal cancer invasion remain enigmatic, and MYOF-targeted therapy in this malignancy has not been explored. In the present study, we provided the first functional evidence that MYOF promoted the cell invasion of colorectal cancer. Furthermore, we identified a novel small molecule inhibitor of MYOF (named YQ456) that showed high binding affinity to MYOF (KD = 37 nM) and excellent anti-invasion capability (IC50 = 110 nM). YQ456 was reported for the first time to interfere with the interactions between MYOF and Ras-associated binding (Rab) proteins at low nanomolar levels. This interference disrupted several vesicle trafficking processes, including lysosomal degradation, exosome secretion, and mitochondrial dynamics. Further, YQ456 exhibited excellent inhibitory effects on the growth and invasiveness of colorectal cancer. As the first attempt, the anticancer efficacy of YQ456 in the patient-derived xenograft (PDX) mouse model indicated that targeting MYOF may serve as a novel and practical therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Yuan He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Weiqiong Kan
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yunqi Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yun Hao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Anling Huang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Haijun Gu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Minna Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Qingqing Wang
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Jinlian Chen
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Zhenliang Sun
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| |
Collapse
|
26
|
Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. Int J Mol Sci 2020; 22:ijms22010014. [PMID: 33374978 PMCID: PMC7792591 DOI: 10.3390/ijms22010014] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.
Collapse
|
27
|
Kok VC, Yu CC. Cancer-Derived Exosomes: Their Role in Cancer Biology and Biomarker Development. Int J Nanomedicine 2020; 15:8019-8036. [PMID: 33116515 PMCID: PMC7585279 DOI: 10.2147/ijn.s272378] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Exosomes are a subset of tiny extracellular vesicles manufactured by all cells and are present in all body fluids. They are produced actively in tumor cells, which are released and utilized to facilitate tumor growth. Their characteristics enable them to assist major cancer hallmarks, leveraged by cancer cells in fostering cancer growth and spread while implementing ways to escape elimination from the host environment. This review updates on the latest progress on the roles of cancer-derived exosomes, of 30-100 nm in size, in deregulating paracrine trafficking in the tumor microenvironment and circulation. Thus, exosomes are being exploited in diagnostic biomarker development, with its potential in clinical applications as therapeutic targets utilized in exosome-based nanoparticle drug delivery strategies for cancer therapy. Ongoing studies were retrieved from PubMed® and Scopus database and ClinicalTrials.gov registry for review, highlighting how cancer cells from entirely different cell lines rely on genetic information carried by their exosomes for homotypic and heterotypic intercellular communications in the microenvironment to favor proliferation and invasion, while establishing a pre-metastatic niche in welcoming cancer cells' arrival. We will elaborate on the trafficking of tumor-derived exosomes in fostering cancer proliferation, invasion, and metastasis in hematopoietic (leukemia and myeloma), epithelial (breast cancer), and mesenchymal (soft tissue sarcoma and osteosarcoma) cancers. Cancer-derived exosomal trafficking is observed in several types of liquid or solid tumors, confirming their role as cancer hallmark enabler. Their enriched genetic signals arising from their characteristic DNA, RNA, microRNA, and lncRNA, along with specific gene expression profiles, protein, or lipid composition carried by the exosomal cargo shed into blood, saliva, urine, ascites, and cervicovaginal lavage, are being studied as a diagnostic, prognostic, or predictive cancer biomarker. We reveal the latest research efforts in exploiting the use of nanoparticles to improve the overall cancer diagnostic capability in the clinic.
Collapse
Affiliation(s)
- Victor C Kok
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Bai M, Fu W, Su G, Cao J, Gao L, Huang C, Ma H, Zhang J, Yue P, Bai B, Lin Y, Meng W, Li X. The role of extracellular vesicles in cholangiocarcinoma. Cancer Cell Int 2020. [PMCID: PMC7709354 DOI: 10.1186/s12935-020-01526-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AbstractCholangiocarcinoma (CCA) is a rare tumor that arises from cholangiocytes, the epithelial cells of the bile duct. The tumor is characterized by insidious onset, high degree of malignancy, poor prognosis and high recurrence rate. Due to the lack of specific biomarkers, it is difficult to diagnose CCA early and evaluate prognosis. Extracellular vesicles (EVs), which include apoptotic bodies, microvesicles and exosomes, have emerged as having important roles in cell-to-cell communication in both normal physiology and pathological conditions. Some research has found that EVs play a crucial role in the occurrence and development of CCA. EVs can carry specific molecular substances such as nucleic acids and proteins, which have potential for the diagnosis and therapy of CCA. This article reviews the current knowledge on the role of EVs in CCA. We highlight EVs and their functions in the physiology and pathophysiology of CCA, and discuss their therapeutic potential and their role as biomarkers.
Collapse
|
29
|
Zhao X, Ren Y, Lu Z. Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188414. [PMID: 32866530 DOI: 10.1016/j.bbcan.2020.188414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PaCa) is considered an aggressive but still asymptomatic malignancy. Due to the lack of effective diagnostic markers, PaCa is often diagnosed during late metastatic stages. Besides surgical resection, no other treatment appears to be effective during earlier stages of the disease. Exosomes are related to a class of nanovesicles coated by a bilayer lipid membrane and enriched in protein, nucleic acid, and lipid contents. They are widely present in human body fluids, including blood, saliva, and pancreatic duct fluid, with functions in signal transduction and material transport. A large number of studies have suggested for a crucial role for exosomes in PaCa, which may be utilized to improve its future diagnosis and treatment, but the underlying molecular mechanisms as well as their potential clinical applications are largely unknown. By collecting and analyzing the most up-to-date literature, here we summarize the current progress of the clinical applications related to exosomes in PaCa. Therefore, we presently provide some rationale for the potential value of exosomes in PaCa, thereby promoting putative applications in targeted PaCa treatment.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
30
|
Moeng S, Son SW, Lee JS, Lee HY, Kim TH, Choi SY, Kuh HJ, Park JK. Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication. Biomedicines 2020; 8:biomedicines8080267. [PMID: 32756339 PMCID: PMC7459718 DOI: 10.3390/biomedicines8080267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are—at most—moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells. Accumulating evidence has demonstrated that extracellular vesicles (EVs) play an essential role in communication between heterogeneous subpopulations of cells by transmitting multiplex biomolecules. EV-mediated cell–cell communication ultimately contributes to several aspects of pancreatic cancer, such as growth, angiogenesis, metastasis and therapeutic resistance. In this review, we discuss the role of extracellular vesicles and their cargo molecules in pancreatic cancer. We also present the feasibility of the inhibition of extracellular biosynthesis and their itinerary (release and uptake) for a new attractive therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Jong Sun Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Han Yeoung Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Tae Hee Kim
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
31
|
Anania S, Peiffer R, Rademaker G, Hego A, Thiry M, Deldicque L, Francaux M, Maloujahmoum N, Agirman F, Bellahcène A, Castronovo V, Peulen O. Myoferlin Is a Yet Unknown Interactor of the Mitochondrial Dynamics' Machinery in Pancreas Cancer Cells. Cancers (Basel) 2020; 12:cancers12061643. [PMID: 32575867 PMCID: PMC7352660 DOI: 10.3390/cancers12061643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreas ductal adenocarcinoma is one of the deadliest cancers where surgery remains the main survival factor. Mitochondria were described to be involved in tumor aggressiveness in several cancer types including pancreas cancer. We have previously reported that myoferlin controls mitochondrial structure and function, and demonstrated that myoferlin depletion disturbs the mitochondrial dynamics culminating in a mitochondrial fission. In order to unravel the mechanism underlying this observation, we explored the myoferlin localization in pancreatic cancer cells and showed a colocalization with the mitochondrial dynamic machinery element: mitofusin. This colocalization was confirmed in several pancreas cancer cell lines and in normal cell lines as well. Moreover, in pancreas cancer cell lines, it appeared that myoferlin interacted with mitofusin. These discoveries open-up new research avenues aiming at modulating mitofusin function in pancreas cancer.
Collapse
Affiliation(s)
- Sandy Anania
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
| | - Gilles Rademaker
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
| | - Alexandre Hego
- Imaging Facilities, GIGA-Research, GIGA-Institute B36, University of Liège, B-4000 Liège, Belgium;
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, B-4000 Liège, Belgium;
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; (L.D.); (M.F.)
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; (L.D.); (M.F.)
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Ferman Agirman
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Akeila Bellahcène
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Vincent Castronovo
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Olivier Peulen
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
32
|
Wang Y, Xu F, Zhong JY, Lin X, Shan SK, Guo B, Zheng MH, Yuan LQ. Exosomes as Mediators of Cell-to-Cell Communication in Thyroid Disease. Int J Endocrinol 2020; 2020:4378345. [PMID: 32411222 PMCID: PMC7204309 DOI: 10.1155/2020/4378345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a type of extracellular vehicle, formed by budding cell membranes, containing proteins, DNA, and RNA. Concentrated cargoes from parent cells are enveloped in exosomes, which are cell specific and may have functions in the recipient cell, reflecting a novel physiological and pathological mechanism in disease development. As a transmitter, exosomes shuttle to different cells or tissues and mediate communications among these organelles. To date, several studies have demonstrated that exosomes play crucial roles in disease pathogenesis and development, such as breast and prostate cancer. However, studies investigating connections between exosomes and thyroid disease are limited. In this review, recent research advances on exosomes in thyroid cancer and Graves' disease are reviewed. These studies suggest that exosomes are involved in thyroid disease and appear as impressive potentials in thyroid therapeutic areas.
Collapse
Affiliation(s)
- Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Yu Zhong
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Department of Radiology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Wang M, Su Z, Amoah Barnie P. Crosstalk among colon cancer-derived exosomes, fibroblast-derived exosomes, and macrophage phenotypes in colon cancer metastasis. Int Immunopharmacol 2020; 81:106298. [PMID: 32058925 DOI: 10.1016/j.intimp.2020.106298] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Cellular crosstalk is an important mechanism in the pathogenesis of inflammatory disorders and cancers. One significant means by which cells communicate with each other is through the release of exosomes. Exosomes are extracellular vesicles formed by the outward budding of plasma membranes, which are then released from cells into the extracellular space. Many studies have suggested that microvesicles released by colon cancer cells initiate crosstalk and modulate the fibroblast activities and macrophage phenotypes. Interestingly, crosstalk among colon cancer cells, macrophages and cancer-associated fibroblasts maximizes the mechanical composition of the stromal extracellular matrix (ECM). Exosomes contribute to cancer cell migration and invasion, which are critical for colon cancer progression to metastasis. The majority of the studies on colorectal cancers (CRCs) have focused on developing exosomal biomarkers for the early detection and prediction of CRC prognosis. This study highlights the crosstalk among colon cancer-derived exosomes, macrophage phenotypes and fibroblasts during colon cancer metastasis.
Collapse
Affiliation(s)
- Meiyun Wang
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, PR China.
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| | - Prince Amoah Barnie
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China; Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
34
|
Koh HM, An HJ, Ko GH, Lee JH, Lee JS, Kim DC, Seo DH, Song DH. Identification of Myoferlin Expression for Prediction of Subsequent Primary Malignancy in Patients With Clear Cell Renal Cell Carcinoma. In Vivo 2019; 33:1103-1108. [PMID: 31280198 DOI: 10.21873/invivo.11579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIM Multiple primary malignant tumors are common in patients with renal cell carcinoma. However, reports on the factors that can identify patients with a risk for subsequent primary malignancies have been lacking. This study aimed to investigate whether myoferlin expression can be used as a potential marker to predict subsequent primary malignancies in patients with clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS We evaluated the relationship of subsequent primary malignancies with clinicopathological factors and myoferlin expression in 152 patients with ccRCC, and we analyzed the strength of the association with myoferlin expression. RESULTS The development of subsequent primary malignancies exhibited significant correlation with patient age (p=0.029), sex (p=0.015), T stage (p<0.001), and myoferlin expression (p=0.017). Furthermore, myoferlin hyperexpression was determined as an independent risk factor for developing a subsequent primary malignant tumor in patients with ccRCC (odds ratio(OR), 2.485, 95% Confidence Interval(CI)=1.052-5.870, p=0.038). CONCLUSION Myoferlin hyperexpression can be a useful marker for predicting the development of subsequent primary malignancies in patients with ccRCC.
Collapse
Affiliation(s)
- Hyun Min Koh
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hyo Jung An
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Gyung Hyuck Ko
- Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Gyeongsang Institute of Health Science, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jeong Hee Lee
- Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Gyeongsang Institute of Health Science, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jong Sil Lee
- Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Gyeongsang Institute of Health Science, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Dong Chul Kim
- Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Gyeongsang Institute of Health Science, Jinju, Republic of Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Deok Ha Seo
- Department of Urology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea .,Gyeongsang National University School of Medicine, Jinju, Republic of Korea.,Gyeongsang Institute of Health Science, Jinju, Republic of Korea
| |
Collapse
|
35
|
Tang Z, Li D, Hou S, Zhu X. The cancer exosomes: Clinical implications, applications and challenges. Int J Cancer 2019; 146:2946-2959. [PMID: 31671207 DOI: 10.1002/ijc.32762] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
The exosome is a small functional vesicle enriched in selected proteins, lipids and nucleic acids, displaying distinct molecular heterogeneity. Exosomes released can transform the extracellular matrix microenvironments, transmit signals and molecules to recipient cells and trigger changes in their pathophysiological functions. Tumor-derived exosomes mediate the interactions of tumor cells and microenvironment significantly, and they stimulate tumor growth and development through specific signaling pathways related to metastasis, therapeutic resistance and immunosuppression. Exosome biogenesis from tumors often represents abundant biological information, and novel and efficient isolation and detection methods of exosomes provide a promising approach for tumor diagnosis and prognosis estimation. Moreover, exosome can even be developed as therapeutic agents for multiple disease models based on effective material transport characteristics and biofilm specificity. This review reports the clinical implications and challenges of exosomes in cancer progression, therapy resistance, metastasis and immune escape, and underlying cancerogenic pathological phenotypes including fibrosis and viral infection.
Collapse
Affiliation(s)
- Zhenye Tang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Dongpei Li
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,Cancer Center, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
36
|
Sato S, Vasaikar S, Eskaros A, Kim Y, Lewis JS, Zhang B, Zijlstra A, Weaver AM. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 2019; 4:132447. [PMID: 31661464 DOI: 10.1172/jci.insight.132447] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is a key process that allows nutrient uptake and cellular trafficking and is coopted in cancer to enable tumor growth and metastasis. Recently, extracellular vesicles (EVs) have been shown to promote angiogenesis; however, it is unclear what unique features EVs contribute to the process. Here, we studied the role of EVs derived from head and neck squamous cell carcinoma (HNSCC) in driving tumor angiogenesis. Small EVs (SEVs), in the size range of exosomes (50-150 nm), induced angiogenesis both in vitro and in vivo. Proteomic analysis of HNSCC SEVs revealed the cell-to-cell signaling receptor ephrin type B receptor 2 (EPHB2) as a promising candidate cargo to promote angiogenesis. Analysis of patient data further identified EPHB2 overexpression in HNSCC tumors to be associated with poor patient prognosis and tumor angiogenesis, especially in the context of overexpression of the exosome secretion regulator cortactin. Functional experiments revealed that EPHB2 expression in SEVs regulated angiogenesis both in vitro and in vivo and that EPHB2 carried by SEVs stimulates ephrin-B reverse signaling, inducing STAT3 phosphorylation. A STAT3 inhibitor greatly reduced SEV-induced angiogenesis. These data suggest a model in which EVs uniquely promote angiogenesis by transporting Eph transmembrane receptors to nonadjacent endothelial cells to induce ephrin reverse signaling.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suhas Vasaikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Adel Eskaros
- Department of Pathology, Microbiology and Immunology, and
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James S Lewis
- Department of Pathology, Microbiology and Immunology, and
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, and
| |
Collapse
|
37
|
Myoferlin, a Membrane Protein with Emerging Oncogenic Roles. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7365913. [PMID: 31828126 PMCID: PMC6885792 DOI: 10.1155/2019/7365913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Myoferlin (MYOF), initially identified in muscle cells, is a member of the Ferlin family involved in membrane fusion, membrane repair, and membrane trafficking. Dysfunction of this protein is associated with muscular dysfunction. Recently, a growing body of studies have identified MYOF as an oncogenic protein. It is overexpressed in a variety of human cancers and promotes tumorigenesis, tumor cell motility, proliferation, migration, epithelial to mesenchymal transition, angiogenesis as well as metastasis. Clinically, MYOF overexpression is associated with poor outcome in various cancers. It can serve as a prognostic marker of human malignant disease. MYOF drives the progression of cancer in various processes, including surface receptor transportation, endocytosis, exocytosis, intercellular communication, fit mitochondrial structure maintenance and cell metabolism. Depletion of MYOF demonstrates significant antitumor effects both in vitro and in vivo, suggesting that targeting MYOF may produce promising clinical benefits in the treatment of malignant disease. In the present article, we reviewed the physiological function of MYOF as well as its role in cancer, thus providing a general understanding for further exploration of this protein.
Collapse
|
38
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
39
|
Tumor-derived extracellular vesicles: insights into bystander effects of exosomes after irradiation. Lasers Med Sci 2019; 35:531-545. [PMID: 31529349 DOI: 10.1007/s10103-019-02880-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
This review article aims to address the kinetic of TDEs in cancer cells pre- and post-radiotherapy. Radiotherapy is traditionally used for the treatment of multiple cancer types; however, there is growing evidence to show that radiotherapy exerts NTEs on cells near to the irradiated cells. In tumor mass, irradiated cells can affect non-irradiated cells in different ways. Of note, exosomes are nano-scaled cell particles releasing from tumor cells and play key roles in survival, metastasis, and immunosuppression of tumor cells. Recent evidence indicated that irradiation has the potential to affect the dynamic of different signaling pathways such as exosome biogenesis. Indeed, exosomes act as intercellular mediators in various cell communication through transmitting bio-molecules. Due to their critical roles in cancer biology, exosomes are at the center of attention. TDEs contain an exclusive molecular signature that they may serve as tumor biomarker in the diagnosis of different cancers. Interestingly, radiotherapy and IR could also contribute to altering the dynamic of exosome secretion. Most probably, the content of exosomes in irradiated cells is different compared to exosomes originated from the non-irradiated BCs. Irradiated cells release exosomes with exclusive content that mediate NTEs in BCs. Considering variation in cell type, IR doses, and radio-resistance or radio-sensitivity of different cancers, there is, however, contradictions in the feature and activity of irradiated exosomes on neighboring cells.
Collapse
|
40
|
Zhu W, Zhou B, Zhao C, Ba Z, Xu H, Yan X, Liu W, Zhu B, Wang L, Ren C. Myoferlin, a multifunctional protein in normal cells, has novel and key roles in various cancers. J Cell Mol Med 2019; 23:7180-7189. [PMID: 31475450 PMCID: PMC6815776 DOI: 10.1111/jcmm.14648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/30/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Myoferlin, a protein of the ferlin family, has seven C2 domains and exhibits activity in some cells, including myoblasts and endothelial cells. Recently, myoferlin was identified as a promising target and biomarker in non-small-cell lung cancer, breast cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, colon cancer, melanoma, oropharyngeal squamous cell carcinoma, head and neck squamous cell carcinoma, clear cell renal cell carcinoma and endometrioid carcinoma. This evidence indicated that myoferlin was involved in the proliferation, invasion and migration of tumour cells, the mechanism of which mainly included promoting angiogenesis, vasculogenic mimicry, energy metabolism reprogramming, epithelial-mesenchymal transition and modulating exosomes. The roles of myoferlin in both normal cells and cancer cells are of great significance to provide novel and efficient methods of tumour treatment. In this review, we summarize recent studies and findings of myoferlin and suggest that myoferlin is a novel potential candidate for clinical diagnosis and targeted cancer therapy.
Collapse
Affiliation(s)
- Wei Zhu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bolun Zhou
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chenxuan Zhao
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhengqing Ba
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hongjuan Xu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuejun Yan
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weidong Liu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Zhu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lei Wang
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Caiping Ren
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
Peulen O, Rademaker G, Anania S, Turtoi A, Bellahcène A, Castronovo V. Ferlin Overview: From Membrane to Cancer Biology. Cells 2019; 8:cells8090954. [PMID: 31443490 PMCID: PMC6770723 DOI: 10.3390/cells8090954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In mammal myocytes, endothelial cells and inner ear cells, ferlins are proteins involved in membrane processes such as fusion, recycling, endo- and exocytosis. They harbour several C2 domains allowing their interaction with phospholipids. The expression of several Ferlin genes was described as altered in several tumoural tissues. Intriguingly, beyond a simple alteration, myoferlin, otoferlin and Fer1L4 expressions were negatively correlated with patient survival in some cancer types. Therefore, it can be assumed that membrane biology is of extreme importance for cell survival and signalling, making Ferlin proteins core machinery indispensable for cancer cell adaptation to hostile environments. The evidences suggest that myoferlin, when overexpressed, enhances cancer cell proliferation, migration and metabolism by affecting various aspects of membrane biology. Targeting myoferlin using pharmacological compounds, gene transfer technology, or interfering RNA is now considered as an emerging therapeutic strategy.
Collapse
Affiliation(s)
- Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium.
| | - Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Sandy Anania
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, 34000 Montpellier, France
- Institut du Cancer de Montpeiller, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| |
Collapse
|
42
|
Deng F, Miller J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019; 42:226-239. [PMID: 31432761 DOI: 10.1080/01478885.2019.1646984] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are small membrane vesicles (ranging from 30 nm to 150 nm), secreted by different cell types upon fusion of multivesicular bodies (MVB) to the cell plasma membrane under a variety of normal and pathological conditions. Through transferring their cargos such as proteins, lipids and nucleic acids from donor cells to recipient cells, exosomes play a crucial role in cell-to-cell communication. Due to their presence in most body fluids (such as blood, breast milk, saliva, urine, bile, pancreatic juice, cerebrospinal and peritoneal fluids), and their role in carrying bioactive molecules from the cells of origin, exosomes have attracted great interest in their diagnostic and prognostic value for various diseases and therapeutic approaches. Although a large body of literature has documented the importance of exosomes over the past decade, there is no article systematically summarizing protein markers of exosome from different resources and the antibodies that are suited to characterize exosomes. In this review, we briefly summarize the exosome marker proteins, exosomal biomarkers for different diseases, and the antibodies suitable for different bio-resources exosomes characterization.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| | - Josh Miller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
43
|
Kiselev A, Vaz R, Knyazeva A, Sergushichev A, Dmitrieva R, Khudiakov A, Jorholt J, Smolina N, Sukhareva K, Fomicheva Y, Mikhaylov E, Mitrofanova L, Predeus A, Sjoberg G, Rudenko D, Sejersen T, Lindstrand A, Kostareva A. Truncating Variant in Myof Gene Is Associated With Limb-Girdle Type Muscular Dystrophy and Cardiomyopathy. Front Genet 2019; 10:608. [PMID: 31297131 PMCID: PMC6607695 DOI: 10.3389/fgene.2019.00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Even though genetic studies of individuals with neuromuscular diseases have uncovered the molecular background of many cardiac disorders such as cardiomyopathies and inherited arrhythmic syndromes, the genetic cause of a proportion of cardiomyopathies associated with neuromuscular phenotype still remains unknown. Here, we present an individual with a combination of cardiomyopathy and limb-girdle type muscular dystrophy where whole exome sequencing identified myoferlin (MYOF)-a member of the Ferlin protein family and close homolog of DYSF-as the most likely candidate gene. The disease-causative role of the identified variant c.[2576delG; 2575G>C], p.G859QfsTer8 is supported by functional studies in vitro using the primary patient's skeletal muscle mesenchymal progenitor cells, including both RNA sequencing and morphological studies, as well as recapitulating the muscle phenotype in vivo in zebrafish. We provide the first evidence supporting a role of MYOF in human muscle disease.
Collapse
Affiliation(s)
- Artem Kiselev
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Knyazeva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Renata Dmitrieva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Aleksandr Khudiakov
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - John Jorholt
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Smolina
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ksenia Sukhareva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Yulia Fomicheva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Evgeny Mikhaylov
- Arrhythmia Department, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Lubov Mitrofanova
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Alexander Predeus
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia.,Bioinformatics Institute, Saint Petersburg, Russia
| | - Gunnar Sjoberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dmitriy Rudenko
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Kostareva
- Department of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Myoferlin Contributes to the Metastatic Phenotype of Pancreatic Cancer Cells by Enhancing Their Migratory Capacity through the Control of Oxidative Phosphorylation. Cancers (Basel) 2019; 11:cancers11060853. [PMID: 31248212 PMCID: PMC6628295 DOI: 10.3390/cancers11060853] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies with an overall survival of 5% and is the second cause of death by cancer, mainly linked to its high metastatic aggressiveness. Accordingly, understanding the mechanisms sustaining the PDAC metastatic phenotype remains a priority. In this study, we generated and used a murine in vivo model to select clones from the human Panc-1 PDAC cell line that exhibit a high propensity to seed and metastasize into the liver. We showed that myoferlin, a protein previously reported to be overexpressed in PDAC, is significantly involved in the migratory abilities of the selected cells. We first report that highly metastatic Panc-1 clones expressed a significantly higher myoferlin level than the corresponding low metastatic ones. Using scratch wound and Boyden’s chamber assays, we show that cells expressing a high myoferlin level have higher migratory potential than cells characterized by a low myoferlin abundance. Moreover, we demonstrate that myoferlin silencing leads to a migration decrease associated with a reduction of mitochondrial respiration. Since mitochondrial oxidative phosphorylation has been shown to be implicated in the tumor progression and dissemination, our data identify myoferlin as a valid potential therapeutic target in PDAC.
Collapse
|
45
|
Harsini FM, Bui AA, Rice AM, Chebrolu S, Fuson KL, Turtoi A, Bradberry M, Chapman ER, Sutton RB. Structural Basis for the Distinct Membrane Binding Activity of the Homologous C2A Domains of Myoferlin and Dysferlin. J Mol Biol 2019; 431:2112-2126. [PMID: 31004665 DOI: 10.1016/j.jmb.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 02/03/2023]
Abstract
Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X-ray crystal structure of human myoferlin C2A to 1.9 Å resolution bound to two divalent cations, and compare its three-dimensional structure and membrane binding activities to that of dysferlin C2A. We find that while dysferlin C2A binds membranes in a Ca2+-dependent manner, Ca2+ binding was the rate-limiting kinetic step for this interaction. Myoferlin C2A, on the other hand, binds two calcium ions with an affinity 3-fold lower than that of dysferlin C2A; and, surprisingly, myoferlin C2A binds only marginally to phospholipid mixtures with a high fraction of phosphatidylserine.
Collapse
Affiliation(s)
- Faraz M Harsini
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Anthony A Bui
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Anne M Rice
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sukanya Chebrolu
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Kerry L Fuson
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancrologie de Montpellier, 34090 Montpellier, France; Institut du Cancer Montpellier, 34090 Montpellier, France; Universit Montpellier, 34298 Montpellier, France
| | - Mazdak Bradberry
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - R Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
46
|
Bandu R, Oh JW, Kim KP. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp Mol Med 2019; 51:1-10. [PMID: 30872566 PMCID: PMC6418213 DOI: 10.1038/s12276-019-0218-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023] Open
Abstract
Over the past three decades, extracellular vesicles (EVs) have arisen as important mediators of intercellular communication that are involved in the transmission of biological signals between cells to regulate various biological processes. EVs are largely responsible for intercellular communication through the delivery of bioactive molecules, such as proteins, messenger RNAs (mRNAs), microRNAs (miRNAs), DNAs, lipids, and metabolites. EVs released from cancer cells play a significant role in signal transduction between cancer cells and the surrounding cells, which contributes to the formation of tumors and metastasis in the tumor microenvironment. In addition, EVs released from cancer cells migrate to blood vessels and flow into various biological fluids, including blood and urine. EVs and EV-loaded functional cargoes, including proteins and miRNAs, found in these biological fluids are important biomarkers for cancer diagnosis. Therefore, EV proteomics greatly contributes to the understanding of carcinogenesis and tumor progression and is critical for the development of biomarkers for the early diagnosis of cancer. To explore the potential use of EVs as a gateway to understanding cancer biology and to develop cancer biomarkers, we discuss the mass spectrometric identification and characterization of EV proteins from different cancers. Information provided in this review may help in understanding recent progress regarding EV biology and the potential roles of EVs as new noninvasive biomarkers and therapeutic targets. Tumor cells release tiny membrane-encapsulated packages known as extracellular vesicles containing proteins which could serve as prognostic disease biomarkers or therapeutic targets. Kwang Pyo Kim and colleagues from Kyung Hee University in Yongin, South Korea, review the use of mass spectrometry to profile the diversity of proteins found in these tumor-derived packages. The proteins found in these vesicles help mediate communication between cancer cells and their surrounding tissues. Different tumor types share many of these proteins in common, but there are differences in the protein profile related to cancer-associated biological processes such as metastasis and cell proliferation. Tests based on the proteins contained in these vesicles could help clinicians better identify, diagnose and treat specific cancers, although large, multicenter studies are needed to validate such strategies.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea. .,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Human colon cancer cells highly express myoferlin to maintain a fit mitochondrial network and escape p53-driven apoptosis. Oncogenesis 2019; 8:21. [PMID: 30850580 PMCID: PMC6408501 DOI: 10.1038/s41389-019-0130-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Colon adenocarcinoma is the third most commonly diagnosed cancer and the second deadliest one. Metabolic reprogramming, described as an emerging hallmark of malignant cells, includes the predominant use of glycolysis to produce energy. Recent studies demonstrated that mitochondrial electron transport chain inhibitor reduced colon cancer tumour growth. Accumulating evidence show that myoferlin, a member of the ferlin family, is highly expressed in several cancer types, where it acts as a tumour promoter and participates in the metabolic rewiring towards oxidative metabolism. In this study, we showed that myoferlin expression in colon cancer lesions is associated with low patient survival and is higher than in non-tumoural adjacent tissue. Human colon cancer cells silenced for myoferlin exhibit a reduced oxidative phosphorylation activity associated with mitochondrial fission leading, ROS accumulation, decreased cell growth, and increased apoptosis. We observed the triggering of a DNA damage response culminating to a cell cycle arrest in wild-type p53 cells. The use of a p53 null cell line or a compound able to restore p53 activity (Prima-1) reverted the effects induced by myoferlin silencing, confirming the involvement of p53. The recent identification of a compound interacting with a myoferlin C2 domain and bearing anticancer potency identifies, together with our demonstration, this protein as a suitable new therapeutic target in colon cancer.
Collapse
|
48
|
Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics 2019; 9:1015-1028. [PMID: 30867813 PMCID: PMC6401399 DOI: 10.7150/thno.30853] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes have great potential to be drug delivery vehicles due to their natural material transportation properties, intrinsic long-term circulatory capability, and excellent biocompatibility, which are suitable for delivering a variety of chemicals, proteins, nucleic acids, and gene therapeutic agents. However, an effective method of loading specific protein agents into exosomes for absorption by target cells is still lacking. The application potential of exosome is still limited. In this review, we discussed the methods for loading specific treating molecules (proteins, nucleic acids and small chemicals) into exosomes, the design strategies for cell and tissue targeting, and the factors for exosome formation. This review can be used as a reference for further research as well as for the development of therapeutic exosomes.
Collapse
|
49
|
de la Torre-Escudero E, Gerlach JQ, Bennett APS, Cwiklinski K, Jewhurst HL, Huson KM, Joshi L, Kilcoyne M, O’Neill S, Dalton JP, Robinson MW. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells. PLoS Negl Trop Dis 2019; 13:e0007087. [PMID: 30657764 PMCID: PMC6355031 DOI: 10.1371/journal.pntd.0007087] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/31/2019] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
Helminth parasites secrete extracellular vesicles (EVs) that can be internalised by host immune cells resulting in modulation of host immunity. While the molecular cargo of EVs have been characterised in many parasites, little is known about the surface-exposed molecules that participate in ligand-receptor interactions with the host cell surface to initiate vesicle docking and subsequent internalisation. Using a membrane-impermeable biotin reagent to capture proteins displayed on the outer membrane surface of two EV sub-populations (termed 15k and 120k EVs) released by adult F. hepatica, we describe 380 surface proteins including an array of virulence factors, membrane transport proteins and molecules involved in EV biogenesis/trafficking. Proteomics and immunohistochemical analysis show that the 120k EVs have an endosomal origin and may be released from the parasite via the protonephridial (excretory) system whilst the larger 15k EVs are released from the gastrodermal epithelial cells that line the fluke gut. A parallel lectin microarray strategy was used to profile the topology of major surface oligosaccharides of intact fluorogenically-labelled EVs as they would be displayed to the host. Lectin profiles corresponding to glycoconjugates exposed on the surface of the 15 K and 120K EV sub-populations are practically identical but are distinct from those of the parasite surface tegument, although all are predominated by high mannose sugars. We found that while the F. hepatica EVs were resistant to exo- and endo-glycosidases, the glyco-amidase PNGase F drastically remodelled the surface oligosaccharides and blocked the uptake of EVs by host macrophages. In contrast, pre-treatment with antibodies obtained from infected hosts, or purified antibodies raised against the extracellular domains of specific EV surface proteins (DM9-containing protein, CD63 receptor and myoferlin), significantly enhanced their cellular internalisation. This work highlights the diversity of EV biogenesis and trafficking pathways used by F. hepatica and sheds light on the molecular interaction between parasite EVs and host cells. Over the last decade, it has become recognised that extracellular vesicles (EVs) are important mediators of communication by transferring molecular signals (including proteins, lipids, complex carbohydrates, mRNA, microRNA and other non-coding RNA species), between cells. Variously described as exosomes or microvesicles depending on their cellular origin and mode of biogenesis, EVs perform a variety of roles in the maintenance of normal physiology but also participate in pathological settings. EVs also play an important role in host-pathogen interactions, with recent work suggesting that they contribute to helminth immunomodulatory strategies. Here we have identified the proteins and sugars displayed on the outer surface of two sub-types of EVs released by the helminth pathogen Fasciola hepatica. We show that the proteins are antigenic and direct EV internalisation by host macrophages. Our study provides a better understanding of how parasite-derived EVs interact with host cells which is important for future development of therapeutics/vaccines that target this interface.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Jared Q. Gerlach
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland
| | - Adam P. S. Bennett
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Krystyna Cwiklinski
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Heather L. Jewhurst
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Kathryn M. Huson
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Lokesh Joshi
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Sandra O’Neill
- School of Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - John P. Dalton
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Mark W. Robinson
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Abstract
The last 5 years have seen a dramatic increased interest in the field of exosome biology. Although much is unknown about the role of exosomes in human health and disease, disparate scientific disciplines are recognizing the highly conserved role that exosomes play in fundamental biological processes. Recently, there have been intriguing discoveries defining the role of exosomes in cancer biology. We performed a structured review of the English-language literature using the PubMed database searching for articles relating to exosomes and pancreatic ductal adenocarcinoma (PDAC). Articles were screened for relevance and content to judge for inclusion. Evidence implicates exosomes in the pathogenesis, local progression, metastasis, immune evasion, and intercellular communication of PDAC. Basic science discoveries in exosome biology have the potential to change the clinical management of PDAC, where, despite advances in early detection, diagnosis, staging, chemotherapy, and surgery, survival rates have been stagnant for decades and PDAC remains the most deadly human gastrointestinal malignancy.
Collapse
|