1
|
Tiburcio PDB, Chen K, Xu L, Chen KS. Suppressing proteasome activity enhances sensitivity to actinomycin D in diffuse anaplastic Wilms tumor. Cell Rep Med 2025:102133. [PMID: 40347939 DOI: 10.1016/j.xcrm.2025.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/28/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Wilms tumor is the most common pediatric kidney cancer, and diffuse anaplastic Wilms tumor is the most chemoresistant subtype. Here, we explore how Wilms tumor cells evade the chemotherapy actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell-cycle progression. When ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components. Next, we find that the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment in vitro and prolongs survival in xenograft models. Lastly, increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
- Patricia D B Tiburcio
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Tiburcio PD, Chen K, Xu L, Chen KS. Actinomycin D and bortezomib disrupt protein homeostasis in Wilms tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598518. [PMID: 38948702 PMCID: PMC11212905 DOI: 10.1101/2024.06.11.598518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Wilms tumor is the most common kidney cancer in children, and diffuse anaplastic Wilms tumor is the most chemoresistant histological subtype. Here, we explore how Wilms tumor cells evade the common chemotherapeutic drug actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell cycle progression. We found that, when ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components and upregulate proteasome activity. Based on these findings, we tested whether the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment. Indeed, we found that the combination induces apoptosis both in vitro and in vivo and prolongs survival in xenograft models. Lastly, we show that increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
4
|
Yang H, Li S, Li W, Yang Y, Zhang Y, Zhang S, Hao Y, Cao W, Xu F, Wang H, Du G, Wang J. Actinomycin D synergizes with Doxorubicin in triple-negative breast cancer by inducing P53-dependent cell apoptosis. Carcinogenesis 2024; 45:262-273. [PMID: 37997385 DOI: 10.1093/carcin/bgad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism. METHODS TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs. RESULTS There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2. CONCLUSIONS ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Circ_0004676 exacerbates triple-negative breast cancer progression through regulation of the miR-377-3p/E2F6/PNO1 axis. Cell Biol Toxicol 2023; 39:2183-2205. [PMID: 35870038 DOI: 10.1007/s10565-022-09704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/23/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The significant roles of circular RNAs (circRNAs) in different cancers and diseases have been reported. We now focused on the possible role of a newly recognized circRNA, circ_0004674 in triple-negative breast cancer (TNBC), and the related downstream mechanism. METHODS The expression of circ_0004674 in TNBC tissues and cells was determined followed by analysis of the correlation between circ_0004674 and TNBC patients' prognosis. The interaction between circ_0004674, miR-377-3p, E2F6, and PNO1 was then identified using bioinformatics analysis combined with FISH, RIP, RNA pull-down, RT-qPCR, and Western blot analysis. Using gain-of-function and loss-of-function methods, we analyzed the effect of circ_0004674, miR-377-3p, E2F6, and PNO1 on TNBC in vivo and in vitro. RESULTS Increased circ_0004674 and E2F6 but decreased miR-377-3p were observed in TNBC tissues and MDA-MB-231 TNBC cells, all of which findings were associated with poor prognosis in patients with TNBC. Silencing of circ_0004676 remarkably suppressed the proliferation, cell cycle progression, and migration of TNBC cells in vitro, as well as inhibiting tumorigenesis and metastasis in vivo. Additionally, circ_0004676 served as a sponge of miR-377-3p which bound to the transcription factor E2F6. In the presence of overexpression of circ_0004676, E2F6 expression and its target PNO1 expression were elevated, while miR-377-3p expression was decreased. Interestingly, overexpression of E2F6 could reverse the inhibitory effect on tumor growth caused by downregulation of circ_0004676. CONCLUSION Our study highlighted the carcinogenic effect of circ_0004676 on TNBC through regulation of the miR-377-3p/E2F6/PNO1 axis. 1. Circ_0004674 is highly expressed in TNBC tissues and cells. 2. Circ_0004674 upregulates the expression of E2F6 by sponging miR-377-3p. 3. E2F6 upregulates PNO1 by binding to the PNO1 promoter. 4. Circ_0004674 favors TNBC progression by regulating the miR-377-3p/E2F6/PNO1 axis. 5. This study provides a new target for the treatment of TNBC.
Collapse
Affiliation(s)
- Guoli Shao
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Xulong Fan
- Department of Breast Surgery, Maternity and Children's Healthcare Hospital of Foshan, Foshan, 528000, People's Republic of China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xuewen Liu
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Lei Huang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shufeng Ji
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Road, Haizhu District, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
7
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
8
|
Evidente A. Microbial and Plant Derived Low Risk Pesticides Having Nematocidal Activity. Toxins (Basel) 2022; 14:toxins14120849. [PMID: 36548747 PMCID: PMC9787815 DOI: 10.3390/toxins14120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Microorganisms, virus, weeds, parasitic plants, insects, and nematodes are among the enemies that induce severe economic losses to agrarian production. Farmers have been forced to combat these enemies using different methods, including mechanical and agronomic strategies, since the beginning of agriculture. The development of agriculture, due to an increased request for food production, which is a consequence to the rapid and noteworthy growth of the world's population, requires the use of more efficient methods to strongly elevate the yield production. Thus, in the last five-to-six decades, a massive and extensive use of chemicals has occurred in agriculture, resulting in heavy negative consequences, such as the increase in environmental pollution and risks for human and animal health. These problems increased with the repetition of treatments, which is due to resistance that natural enemies developed against this massive use of pesticides. There are new control strategies under investigation to develop products, namely biopesticides, with high efficacy and selectivity but based on natural products which are not toxic, and which are biodegradable in a short time. This review is focused on the microbial and plant metabolites with nematocidal activity with potential applications in suitable formulations in greenhouses and fields.
Collapse
Affiliation(s)
- Antonio Evidente
- Department of Chemical Science, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy;
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| |
Collapse
|
9
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
10
|
Actinomycin D Arrests Cell Cycle of Hepatocellular Carcinoma Cell Lines and Induces p53-Dependent Cell Death: A Study of the Molecular Mechanism Involved in the Protective Effect of IRS-4. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14090845. [PMID: 34577545 PMCID: PMC8472101 DOI: 10.3390/ph14090845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
Actinomycin D (ActD) is an FDA-approved NCI oncology drug that specifically targets and downregulates stem cell transcription factors, which leads to a depletion of stem cells within the tumor bulk. Recently, our research group demonstrated the importance of IRS-4 in the development of liver cancer. In this study, we evaluated the protective effects of IRS-4 against ActD. For this study, three hepatocellular carcinoma cell lines (HepG2, Huh7, and Chang cells) were used to study the mechanism of actinomycin D. Most assays were carried out in the Hep G2 cell line, due to the high expression of stem cell biomarkers. We found that ActD caused HepG2 cell necroptosis characterized by DNA fragmentation, decreased mitochondrial membrane potential, cytochrome c depletion, and decreased the levels of reduced glutathione. However, we did not observe a clear increase in apoptosis markers such as annexin V presence, caspase 3 activation, or PARP fragmentation. ActD produced an activation of MAP kinases (ERK, p38, and JNK) and AKT. ActD-induced activation of AKT and MAP kinases produced an activation of the Rb-E2F cascade together with a blockage of cell cycle transitions, due to c-jun depletion. ActD led to the inhibition of pCdK1 and pH3 along with DNA fragmentation resulting in cell cycle arrest and the subsequent activation of p53-dependent cell death in the HepG2 cell line. Only JNK and AKT inhibitors were protective against the effects of ActD. N-Acetyl-L-cysteine also had a protective effect as it restored GSH levels. A likely mechanism for this is IRS-4 stimulating GCL-GSH and inhibiting the Brk-CHK1-p53 pathway. The assessment of the IRS-4 in cancer biopsies could be of interest to carry out a personalized treatment with ActD.
Collapse
|
11
|
Mobility of Nucleostemin in Live Cells Is Specifically Related to Transcription Inhibition by Actinomycin D and GTP-Binding Motif. Int J Mol Sci 2021; 22:ijms22158293. [PMID: 34361059 PMCID: PMC8347349 DOI: 10.3390/ijms22158293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.
Collapse
|
12
|
Herath HMPD, Taki AC, Sleebs BE, Hofmann A, Nguyen N, Preston S, Davis RA, Jabbar A, Gasser RB. Advances in the discovery and development of anthelmintics by harnessing natural product scaffolds. ADVANCES IN PARASITOLOGY 2021; 111:203-251. [PMID: 33482975 DOI: 10.1016/bs.apar.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Widespread resistance to currently-used anthelmintics represents a major obstacle to controlling parasitic nematodes of livestock animals. Given the reliance on anthelmintics in many control regimens, there is a need for the continued discovery and development of new nematocides. Enabling such a focus are: (i) the major chemical diversity of natural products; (ii) the availability of curated, drug-like extract-, fraction- and/or compound-libraries from natural sources; (iii) the utility and practicality of well-established whole-worm bioassays for Haemonchus contortus-an important parasitic nematodes of livestock-to screen natural product libraries; and (iv) the availability of advanced chromatographic (HPLC), spectroscopic (NMR) and spectrometric (MS) techniques for bioassay-guided fractionation and structural elucidation. This context provides a sound basis for the identification and characterisation of anthelmintic candidates from natural sources. This chapter provides a background on the importance and impact of helminth infections/diseases, parasite control and aspects of drug discovery, and reviews recent work focused on (i) screening well-defined compound libraries to establish the methods needed for large-scale screening of natural extract libraries; (ii) discovering plant and marine extracts with nematocidal or nematostatic activity, and purifying bioactive compounds and assessing their potential for further development; and (iii) synthesising analogues of selected purified natural compounds for the identification of possible 'lead' candidates. The chapter describes some lessons learned from this work and proposes future areas of focus for drug discovery. Collectively, the findings from this recent work show potential for selected natural product scaffolds as candidates for future development. Developing such candidates via future chemical optimisation, efficacy and safety evaluations, broad spectrum activity assessments, and target identification represents an exciting prospect and, if successful, could pave the way to subsequent pre-clinical and clinical evaluations.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia; Faculty of Science and Technology, Federation University, Ballarat, Victoria, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
13
|
Uchihara Y, Tago K, Tamura H, Funakoshi‐Tago M. EBP2, a novel NPM-ALK-interacting protein in the nucleolus, contributes to the proliferation of ALCL cells by regulating tumor suppressor p53. Mol Oncol 2021; 15:167-194. [PMID: 33040459 PMCID: PMC7782078 DOI: 10.1002/1878-0261.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), found in anaplastic large-cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM-ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM-ALK interacted with Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM-ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0 /G1 -phase cell cycle arrest in Ba/F3 cells transformed by NPM-ALK and ALCL patient-derived Ki-JK cells, but not ALCL patient-derived SUDH-L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM-ALK and Ki-JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC-0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt-mTORC1 pathway in NPM-ALK-positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.
Collapse
Affiliation(s)
- Yuki Uchihara
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | - Kenji Tago
- Division of Structural BiochemistryDepartment of BiochemistryJichi Medical UniversityShimotsuke‐shiJapan
| | - Hiroomi Tamura
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | | |
Collapse
|
14
|
Iadevaia V, Wouters MD, Kanitz A, Matia-González AM, Laing EE, Gerber AP. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on CDKN1B/p27Kip1 3'UTRs in cisplatin treated cells. RNA Biol 2019; 17:33-46. [PMID: 31522610 PMCID: PMC6948961 DOI: 10.1080/15476286.2019.1662268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. While recent global RNA interactome capture experiments expanded the repertoire of cellular RBPs quiet dramatically, little is known about the assembly of RBPs on particular mRNAs; and how these associations change and control the fate of the mRNA in drug-treatment conditions. Here we introduce a novel biochemical approach, termed tobramycin-based tandem RNA isolation procedure (tobTRIP), to quantify proteins associated with the 3ʹUTRs of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) mRNAs in vivo. P27Kip1 plays an important role in mediating a cell’s response to cisplatin (CP), a widely used chemotherapeutic cancer drug that induces DNA damage and cell cycle arrest. We found that p27Kip1 mRNA is stabilized upon CP treatment of HEK293 cells through elements in its 3ʹUTR. Applying tobTRIP, we further compared the associated proteins in CP and non-treated cells, and identified more than 50 interacting RBPs, many functionally related and evoking a coordinated response. Knock-downs of several of the identified RBPs in HEK293 cells confirmed their involvement in CP-induced p27 mRNA regulation; while knock-down of the KH-type splicing regulatory protein (KHSRP) further enhanced the sensitivity of MCF7 adenocarcinoma cancer cells to CP treatment. Our results highlight the benefit of specific in vivo mRNA-protein interactome capture to reveal post-transcriptional regulatory networks implicated in cellular drug response and adaptation.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Maikel D Wouters
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Ana M Matia-González
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
15
|
Ehyai S, Miyake T, Williams D, Vinayak J, Bayfield MA, McDermott JC. FMRP recruitment of β-catenin to the translation pre-initiation complex represses translation. EMBO Rep 2018; 19:embr.201745536. [PMID: 30361391 DOI: 10.15252/embr.201745536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Canonical Wnt/β-catenin signaling is an essential regulator of various cellular functions throughout development and adulthood. Aberrant Wnt/β-catenin signaling also contributes to various pathologies including cancer, necessitating an understanding of cell context-dependent mechanisms regulating this pathway. Since protein-protein interactions underpin β-catenin function and localization, we sought to identify novel β-catenin interacting partners by affinity purification coupled with tandem mass spectrometry in vascular smooth muscle cells (VSMCs), where β-catenin is involved in both physiological and pathological control of cell proliferation. Here, we report novel components of the VSMC β-catenin interactome. Bioinformatic analysis of the protein networks implies potentially novel functions for β-catenin, particularly in mRNA translation, and we confirm a direct interaction between β-catenin and the fragile X mental retardation protein (FMRP). Biochemical studies reveal a basal recruitment of β-catenin to the messenger ribonucleoprotein and translational pre-initiation complex, fulfilling a translational repressor function. Wnt stimulation antagonizes this function, in part, by sequestering β-catenin away from the pre-initiation complex. In conclusion, we present evidence that β-catenin fulfills a previously unrecognized function in translational repression.
Collapse
Affiliation(s)
- Saviz Ehyai
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Declan Williams
- Department of Chemistry, York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, Canada
| | - Jyotsna Vinayak
- Department of Biology, York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, Canada .,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada.,Department of Chemistry, York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, Canada
| |
Collapse
|
16
|
Węglarz-Tomczak E, Talma M, Giurg M, Westerhoff HV, Janowski R, Mucha A. Neutral metalloaminopeptidases APN and MetAP2 as newly discovered anticancer molecular targets of actinomycin D and its simple analogs. Oncotarget 2018; 9:29365-29378. [PMID: 30034623 PMCID: PMC6047675 DOI: 10.18632/oncotarget.25532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
The potent transcription inhibitor Actinomycin D is used with several cancers. Here, we report the discovery that this naturally occurring antibiotic inhibits two human neutral aminopeptidases, the cell-surface alanine aminopeptidase and intracellular methionine aminopeptidase type 2. These metallo-containing exopeptidases participate in tumor cell expansion and motility and are targets for anticancer therapies. We show that the peptide portions of Actinomycin D and Actinomycin X2 are not required for effective inhibition, but the loss of these regions changes the mechanism of interaction. Two structurally less complex Actinomycin D analogs containing the phenoxazone chromophores, Questiomycin A and Actinocin, appear to be competitive inhibitors of both aminopeptidases, with potencies similar to the non-competitive macrocyclic parent compound (Ki in the micromolar range). The mode of action for all four compounds and both enzymes was demonstrated by molecular modeling and docking in the corresponding active sites. This knowledge gives new perspectives to Actinomycin D's action on tumors and suggests new avenues and molecules for medical applications.
Collapse
Affiliation(s)
- Ewelina Węglarz-Tomczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosław Giurg
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
17
|
Min Z, Tang Y, Hu XT, Zhu BL, Ma YL, Zha JS, Deng XJ, Yan Z, Chen GJ. Cosmosiin Increases ADAM10 Expression via Mechanisms Involving 5'UTR and PI3K Signaling. Front Mol Neurosci 2018; 11:198. [PMID: 29942252 PMCID: PMC6004422 DOI: 10.3389/fnmol.2018.00198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
The α-secretase “a disintegrin and metalloproteinase domain-containing protein” (ADAM10) is involved in the processing of amyloid precursor protein (APP). Upregulation of ADAM10 precludes the generation of neurotoxic β-amyloid protein (Aβ) and represents a plausible therapeutic strategy for Alzheimer’s disease (AD). In this study, we explored compounds that can potentially promote the expression of ADAM10. Therefore, we performed high-throughput small-molecule screening in SH-SY5Y (human neuroblastoma) cells that stably express a luciferase reporter gene driven by the ADAM10 promoter, including a portion of its 5’-untranslated region (5’UTR). This has led to the discovery of cosmosiin (apigenin 7-O-β-glucoside). Here, we report that in human cell lines (SH-SY5Y and HEK293), cosmosiin proportionally increased the levels of the immature and mature forms of the ADAM10 protein without altering its mRNA level. This effect was attenuated by translation inhibitors or by deleting the 5’UTR of ADAM10, suggesting that a translational mechanism was responsible for the increased levels of ADAM10. Luciferase deletion assays revealed that the first 144 nucleotides of the 5’UTR were necessary for mediating the cosmosiin-induced enhancement of ADAM10 expression in SH-SY5Y cells. Cosmosiin failed to increase the levels of the ADAM10 protein in murine cells, which lack native expression of the ADAM10 transcript containing the identified 5’UTR element. The potential signaling pathway may involve phosphatidylinositide 3-kinase (PI3K) because pharmacological inhibition of PI3K attenuated the effect of cosmosiin on the expression of the ADAM10 protein. Finally, cosmosiin attenuated Aβ generation because the levels of Aβ40/42 in HEK-APP cells were significantly reduced after cosmosiin treatment. Collectively, we found that the first 144 nucleotides of the ADAM10 5’UTR, and PI3K signaling, are involved in cosmosiin-induced enhancement of the expression of ADAM10 protein. These results suggest that cosmosiin may be a potential therapeutic agent in the treatment of AD.
Collapse
Affiliation(s)
- Zhuo Min
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Tong Hu
- Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jing-Si Zha
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
18
|
Di Paolo C, Müller Y, Thalmann B, Hollert H, Seiler TB. p53 induction and cell viability modulation by genotoxic individual chemicals and mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4012-4022. [PMID: 28303539 DOI: 10.1007/s11356-017-8790-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
The binding of the p53 tumor suppression protein to DNA response elements after genotoxic stress can be quantified by cell-based reporter gene assays as a DNA damage endpoint. Currently, bioassay evaluation of environmental samples requires further knowledge on p53 induction by chemical mixtures and on cytotoxicity interference with p53 induction analysis for proper interpretation of results. We investigated the effects of genotoxic pharmaceuticals (actinomycin D, cyclophosphamide) and nitroaromatic compounds (4-nitroquinoline 1-oxide, 3-nitrobenzanthrone) on p53 induction and cell viability using a reporter gene and a colorimetric assay, respectively. Individual exposures were conducted in the absence or presence of metabolic activation system, while binary and tertiary mixtures were tested in its absence only. Cell viability reduction tended to present direct correlation with p53 induction, and induction peaks occurred mainly at chemical concentrations causing cell viability below 80%. Mixtures presented in general good agreement between predicted and measured p53 induction factors at lower concentrations, while higher chemical concentrations gave lower values than expected. Cytotoxicity evaluation supported the selection of concentration ranges for the p53 assay and the interpretation of its results. The often used 80% viability threshold as a basis to select the maximum test concentration for cell-based assays was not adequate for p53 induction assessment. Instead, concentrations causing up to 50% cell viability reduction should be evaluated in order to identify the lowest observed effect concentration and peak values following meaningful p53 induction.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany.
| | - Yvonne Müller
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Beat Thalmann
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
- College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road, Beibei, Chongqing, 400715, China
- College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet Parasitol 2017; 244:172-175. [DOI: 10.1016/j.vetpar.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
|
20
|
Preston S, Korhonen PK, Mouchiroud L, Cornaglia M, McGee SL, Young ND, Davis RA, Crawford S, Nowell C, Ansell BRE, Fisher GM, Andrews KT, Chang BCH, Gijs MAM, Sternberg PW, Auwerx J, Baell J, Hofmann A, Jabbar A, Gasser RB. Deguelin exerts potent nematocidal activity
via
the mitochondrial respiratory chain. FASEB J 2017; 31:4515-4532. [DOI: 10.1096/fj.201700288r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sarah Preston
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Faculty of Science and TechnologyFederation UniversityBallaratVictoriaAustralia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Matteo Cornaglia
- Laboratory of MicrosystemsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Sean L. McGee
- Metabolic Research UnitMetabolic Reprogramming LaboratorySchool of Medicine, Faculty of Health, Deakin UniversityWaurn PondsVictoriaAustralia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Rohan A. Davis
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Simon Crawford
- School of Biosciences, University of MelbourneParkvilleVictoriaAustralia
| | - Cameron Nowell
- Drug Discovery BiologyMonash University Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Gillian M. Fisher
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Katherine T. Andrews
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Bill C. H. Chang
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Yourgene BioscienceTaipeiTaiwan
| | - Martin A. M. Gijs
- Laboratory of MicrosystemsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Paul W. Sternberg
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jonathan Baell
- Medicinal ChemistryMonash University Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
21
|
Ni C, Li C, Dong Y, Guo X, Zhang Y, Xie Z. Anesthetic Isoflurane Induces DNA Damage Through Oxidative Stress and p53 Pathway. Mol Neurobiol 2017; 54:3591-3605. [PMID: 27194299 PMCID: PMC5736399 DOI: 10.1007/s12035-016-9937-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023]
Abstract
DNA damage is associated with aging and neurological disorders, including Alzheimer's disease. Isoflurane is a commonly used anesthetic. It remains largely unknown whether isoflurane induces DNA damage. Phosphorylation of the histone protein H2A variant X at Ser139 (γH2A.X) is a marker of DNA damage. We therefore set out to assess the effects of isoflurane on γH2A.X level in H4 human neuroglioma cells and in brain tissues of mice. Oxidative stress, caspase-activated DNase (CAD), and the p53 signaling pathway are involved in DNA damage. Thus, we determined the interaction of isoflurane with reactive oxygen species (ROS), CAD, and p53 to illustrate the underlying mechanisms. The cells were treated with 2 % isoflurane for 3 or 6 h. The mice were anesthetized with 1.4 % isoflurane for 2 h. Western blot, immunostaining and live cell fluorescence staining were used in the experiments. We showed that isoflurane increased levels of γH2A.X, cleaved caspase-3, and nucleus translocation of CAD and decreased levels of inhibitor of CAD (ICAD) and p53. Isoflurane enhanced the nucleus level of γH2A.X. Moreover, caspase inhibitor Z-VAD and ROS generation inhibitor N-acetyl-L-cysteine (NAC) attenuated the isoflurane-induced increase in γH2A.X level. However, NAC did not significantly alter the isoflurane-induced reduction in p53 level. Finally, p53 activator (actinomycin D) and inhibitor (pifithrin-α) attenuated and potentiated the isoflurane-induced increase in γH2A.X level, respectively. These findings suggest that isoflurane might induce DNA damage, as represented by increased γH2A.X level, via induction of oxidative stress and inhibition of the repair of DNA damage through the p53 signaling pathway.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Cheng Li
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129, USA.
| |
Collapse
|
22
|
Nomura K, Klejnot M, Kowalczyk D, Hock AK, Sibbet GJ, Vousden KH, Huang DT. Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nat Struct Mol Biol 2017; 24:578-587. [PMID: 28553961 PMCID: PMC6205632 DOI: 10.1038/nsmb.3414] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/01/2017] [Indexed: 02/08/2023]
Abstract
MDM2-MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2-MDMX-E2(UbcH5B)-ubiquitin complex, we designed MDM2 mutants that prevent E2-ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53's transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors.
Collapse
Affiliation(s)
- Koji Nomura
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Marta Klejnot
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Dominika Kowalczyk
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Andreas K. Hock
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Gary J. Sibbet
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | | | - Danny T. Huang
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
23
|
Zhao T, Hu F, Liu X, Tao Q. Blockade of telomerase reverse transcriptase enhances chemosensitivity in head and neck cancers through inhibition of AKT/ERK signaling pathways. Oncotarget 2016; 6:35908-21. [PMID: 26497550 PMCID: PMC4742150 DOI: 10.18632/oncotarget.5468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022] Open
Abstract
Head and Neck squamous cell carcinomas (HNSCC), characterized by the high frequency of local recurrence and distant metastases, is mostly related to highly malignant and resistant to apoptosis, resulting in significant insensitivity to chemotherapy. Telomerase reverse transcriptase (TERT), as the catalytic subunit of telomerase, was implicated in the telomerase-mediated cellular transformation, proliferation, stemness and cell survival. Moreover, overexpression of human TERT (hTERT) is reported to be correlated with advanced invasive stage of the tumor progression and poor prognosis. Here, we show that hTERT potentially mediated the apoptotic resistance and blockade of telomerase reverse transcriptase could enhance chemosensitivity in head and neck cancers. Mechanistically, hTERT interacts with the phosphorylation of AKT and ERK to suppress the expression of p53, ultimately, leading to modulation of the cellular sensitivity to chemotherapy. Thus, these findings suggest that hTERT targeting could be an attractive approach in combination with conventional chemotherapies for patients suffering from chemoinsensitivity or refractory HNSCC.
Collapse
Affiliation(s)
- Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Fengchun Hu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.,Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xingguang Liu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Qian Tao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Russo A, Pagliara V, Albano F, Esposito D, Sagar V, Loreni F, Irace C, Santamaria R, Russo G. Regulatory role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional p53. Cell Cycle 2016; 15:41-51. [PMID: 26636733 DOI: 10.1080/15384101.2015.1120926] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many chemotherapeutic drugs cause nucleolar stress and p53-independent pathways mediating the nucleolar stress response are emerging. Here, we demonstrate that ribosomal stress induced by Actinomycin D (Act D) is associated to the up-regulation of ribosomal protein L3 (rpL3) and its accumulation as ribosome-free form in lung and colon cancer cell lines devoid of p53. Free rpL3 regulates p21 expression at transcriptional and post-translational levels through a molecular mechanism involving extracellular-signal-regulated kinases1/2 (ERK1/2) and mouse double minute-2 homolog (MDM2). Our data reveal that rpL3 participates to cell response acting as a critical regulator of apoptosis and cell migration. It is noteworthy that silencing of rpL3 abolishes the cytotoxic effects of Act D suggesting that the loss of rpL3 makes chemotherapy drugs ineffective while rpL3 overexpression associates to a strong increase of Act D-mediated inhibition of cell migration. Taking together our results show that the efficacy of Act D chemotherapy depends on rpL3 status revealing new specific targets involved in the molecular pathways activated by Act D in cancers lacking of p53. Hence, the development of treatments aimed at upregulating rpL3 may be beneficial for the treatment of these cancers.
Collapse
Affiliation(s)
- Annapina Russo
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Valentina Pagliara
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Francesco Albano
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Davide Esposito
- b Department of Molecular Medicine and Medical Biotechnology , University of Naples "Federico II," Naples , Italy.,c Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Vinay Sagar
- d Department of Biology , University of Rome "Tor Vergata," Rome , Italy
| | - Fabrizio Loreni
- d Department of Biology , University of Rome "Tor Vergata," Rome , Italy
| | - Carlo Irace
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Rita Santamaria
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| | - Giulia Russo
- a Department of Pharmacia , University of Naples "Federico II," ; Naples , Italy
| |
Collapse
|
25
|
YUAN SHUANGXUE, WANG DONGXU, WU QIUXIANG, REN CHUNMEI, LI YANG, CHEN QIANZHAO, ZENG YUHUA, SHAO YING, YANG JUNQIN, BAI YAN, ZHANG PU, YU YU, WU KE, SUN WENJUAN, HE BAICHENG. BMP9/p38 MAPK is essential for the antiproliferative effect of resveratrol on human colon cancer. Oncol Rep 2015; 35:939-47. [DOI: 10.3892/or.2015.4407] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 11/06/2022] Open
|
26
|
Brodská B, Holoubek A, Otevřelová P, Kuželová K. Low-Dose Actinomycin-D Induces Redistribution of Wild-Type and Mutated Nucleophosmin Followed by Cell Death in Leukemic Cells. J Cell Biochem 2015; 117:1319-29. [PMID: 26505272 DOI: 10.1002/jcb.25420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 11/12/2022]
Abstract
Specific mutations involving C-terminal part of the nucleolar protein nucleophosmin (NPM) are associated with better outcome of acute myeloid leukemia (AML) therapy, possibly due to aberrant cytoplasmic NPM localization facilitating induction of anti-NPM immune response. Actinomycin D (actD) is known to induce nucleolar stress leading to redistribution of many nucleolar proteins, including NPM. We analyzed the distribution of both wild-type and mutated NPM (NPMmut) in human cell lines, before and after low-dose actD treatment, in living cells expressing exogenous fluorescently labeled proteins as well as using immunofluorescence staining of endogenous proteins in fixed cells. The wild-type NPM form is prevalently nucleolar in intact cells and relocalizes mainly to the nucleoplasm following actD addition. The mutated NPM form is found both in the nucleoli and in the cytoplasm of untreated cells. ActD treatment leads to a marked increase in NPMmut amount in the nucleoplasm while a mild decrease is observed in the cytoplasm. Cell death was induced by low-dose actD in all the studied leukemic cell lines with different p53 and NPM status. In cells expressing the tumor suppresor p53 (CML-T1, OCI-AML3), cell cycle arrest in G1/G0 phase was followed by p53-dependent apoptosis while in p53-null HL60 cells, transient G2/M-phase arrest was followed by cell necrosis. We conclude that although actD does not increase NPM concentration in the cytoplasm, it could improve the effect of standard chemotherapy in leukemias through more general mechanisms.
Collapse
Affiliation(s)
- Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
27
|
Singh M, Aggarwal S, Mohanty AK, Mukhopadhyay T. Isolation, characterization and functional analysis of full length p53 cDNA from Bubalus bubalis. Gene 2015; 568:146-54. [PMID: 26003295 DOI: 10.1016/j.gene.2015.05.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/21/2015] [Accepted: 05/16/2015] [Indexed: 11/18/2022]
Abstract
p53 plays a pivotal role in maintaining the genomic integrity of the cell and has an important role in cellular transformation. We isolated and cloned a full length p53 cDNA (Bp53) from water buffalo in expression vectors designed to generate tagged proteins with FLAG or GFP. Bp53 was found to be 1161 nucleotide long and codes for 386 amino acid residues with 79% homology with human p53 containing 393 amino acids. Although Bp53 has some inherent differences in amino acid composition in different functional domains as compared to human p53 but the total electrostatic charge of amino acids has been maintained. Bp53 cDNA was transiently transfected in a p53 null human NSCLC cell line and as expected, it was predominantly localized in the nucleus. Besides, Bp53 effectively transactivates a number of target genes similar to human p53 and exerts most of its anti-tumorigenic potential in culture as observed in clonogenic and cell viability assays. Like human p53 mutants, core domain mutant version of Bp53 was found to be mis-localized to cytoplasm with diminished tumor suppressor activity. However, Bp53 appeared to be more sensitive to mdm2 mediated degradation and as a result, this protein was less stable as compared to human p53. For the first time we have characterized a functionally efficient wild-type p53 from buffalo having lower stability than human p53 and thus, buffalo p53 could be used as a model system for further insight to the molecular basis of wild-type p53 instability.
Collapse
Affiliation(s)
- Minu Singh
- National Centre for Human Genome Studies and Research, Panjab University, Chandigarh 160014, India
| | - Suruchi Aggarwal
- National Centre for Human Genome Studies and Research, Panjab University, Chandigarh 160014, India
| | - Ashok K Mohanty
- National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Tapas Mukhopadhyay
- National Centre for Human Genome Studies and Research, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
28
|
Goudarzi KM, Nistér M, Lindström MS. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 2015; 15:1499-514. [PMID: 25482947 DOI: 10.4161/15384047.2014.955743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Act D, actinomycin D
- BrdU, bromodeoxyuridine
- CHX, cycloheximide
- DMSO, dimethylsulphoxide
- DOX, doxorubicin
- EGCG, epigallocatechin-3-gallate
- FACS, fluorescence-activated cell sorting
- MPA, mycophenolic acid
- MTT, (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide)
- PI, propidium iodide
- actinomycin D
- caffeine
- glioma
- mTOR
- mTOR, mechanistic target of rapamycin
- nutlin-3
- p21
- p53
- rapamycin
- ribosomal protein L11
- ribosome biogenesis
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- a Department of Oncology-Pathology; Karolinska Institutet; Cancer Center Karolinska ; Karolinska University Hospital ; Stockholm , Sweden
| | | | | |
Collapse
|
29
|
Antunes AT, Goos YJ, Pereboom TC, Hermkens D, Wlodarski MW, Da Costa L, MacInnes AW. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway. PLoS Genet 2015; 11:e1005326. [PMID: 26132763 PMCID: PMC4488577 DOI: 10.1371/journal.pgen.1005326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. The p53 tumor suppressor is the most commonly mutated gene in human cancers. However, cancer cells exploit multiple mechanisms to silence the p53 pathway in addition to inactivation of the p53 gene. We previously reported that one of these mechanisms is found in tumor cells with ribosomal protein (RP) gene mutations. These cells transcribe wild type p53 mRNA yet do not stabilize p53 protein when exposed to DNA damaging agents. In this work we demonstrate that this loss of p53 protein is due to its constitutive degradation. This degradation is due to impairment of the AKT pathway, which normal signals for p53 to stabilize when the DNA is damaged. By re-activating the AKT pathway in RP-mutant cells we are able to restore p53 stabilization and activity, which may hold clinical significance for cancer treatment.
Collapse
Affiliation(s)
- Ana T. Antunes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yvonne J. Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tamara C. Pereboom
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dorien Hermkens
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marcin W. Wlodarski
- Department of Pediatric Hematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris F-75019, France
- Laboratoire d'excellence, GR-Ex, Paris, France
- Université Paris VII-Denis Diderot, Sorbonne Paris Cité, Paris F-75475, France
- U1149, CRB3, Paris, France
- * E-mail: (LDC); (AWM)
| | - Alyson W. MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail: (LDC); (AWM)
| |
Collapse
|
30
|
Du XA, Wang HM, Dai XX, Kou Y, Wu RP, Chen Q, Cao JL, Mo XY, Xiong YM. Role of selenoprotein S (SEPS1) -105G>A polymorphisms and PI3K/Akt signaling pathway in Kashin-Beck disease. Osteoarthritis Cartilage 2015; 23:210-6. [PMID: 25433273 DOI: 10.1016/j.joca.2014.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the relationship between SEPS1 polymorphism and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in Kashin-Beck disease (KBD) and further explore the pathogenesis of KBD. METHODS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to detect SEPS1 -105G>A polymorphism in 232 cases and 331 controls. The protein expressions of PI3K/Akt signaling molecules in whole blood and chondrocytes were detected by Western blot. RESULTS The frequencies of SEPS1 -105G>A genotype AA (21.1% vs 3.0%) and minor allele A (34.1% vs 16.0%) in KBD are significantly higher than those in controls (OR: 8.020, 95% confidence interval (95% CI) 6.341-10.290, P < 0.0001; OR: 2.470, 95% CI 2.001-4.463, P < 0.0001, respectively). SEPS1 AA genotype was an independent risk factor for KBD (adjusted OR: 9.345, 95% CI 4.254-20.529; P < 0.0001). The expression of Gβγ, PI3Kp110, pAkt and pGSK3β in KBD group were higher than that in control group (all P < 0.05). Gβγ, pAkt and pGSK3β protein expression of AA and GA increased than GG (all P < 0.05). Cell apoptosis was increasing and molecule expression of PI3K/Akt signaling pathway were up-regulated in the tert-Butyl hydroperoxide (tBHP)-injured group, the cell apoptosis and expression levels of PI3K/Akt in Na2SeO3 group were decreased. CONCLUSIONS The SEPS1 -105G>A is associated with an increased risk of KBD and influences the expression of PI3K/Akt signaling pathway in KBD patients. Apoptosis induced by tBHP in chondrocyte might be mediated via up-regulation of PI3K/Akt, Na2SeO3 has an effect of anti-apoptosis by down-regulating of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- X A Du
- Institute of Endemic Diseases, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - H M Wang
- Institute of Endemic Diseases, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - X X Dai
- Institute of Endemic Diseases, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Y Kou
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - R P Wu
- Institute of Endemic Diseases, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Q Chen
- Institute of Endemic Diseases, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - J L Cao
- Institute of Endemic Diseases, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - X Y Mo
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Y M Xiong
- Institute of Endemic Diseases, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|