1
|
Zhang YQ, Zhang W, Kong XT, Hai WX, Guo R, Zhang M, Zhang SL, Li B. The therapeutic effect of a novel GAPDH inhibitor in mouse model of breast cancer and efficacy monitoring by molecular imaging. Cancer Cell Int 2024; 24:188. [PMID: 38811918 PMCID: PMC11138053 DOI: 10.1186/s12935-024-03361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Breast cancer is a serious threat to women's health with high morbidity and mortality. The development of more effective therapies for the treatment of breast cancer is strongly warranted. Growing evidence suggests that targeting glucose metabolism may be a promising cancer treatment strategy. We previously identified a new glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibitor, DC-5163, which shows great potential in inhibiting tumor growth. Here, we evaluated the anticancer potential of DC-5163 in breast cancer cells. METHODS The effects of DC-5163 on breast cancer cells were investigated in vitro and in vivo. Seahorse, glucose uptake, lactate production, and cellular ATP content assays were performed to examine the impact of DC-5163 on cellular glycolysis. Cell viability, colony-forming ability, cell cycle, and apoptosis were assessed by CCK8 assay, colony formation assay, flow cytometry, and immunoblotting respectively. The anticancer activity of DC-5163 in vivo was evaluated in a mouse breast cancer xenograft model. RESULTS DC-5163 suppressed aerobic glycolysis and reduced energy supply of breast cancer cells, thereby inhibiting breast cancer cell growth, inducing cell cycle arrest in the G0/G1 phase, and increasing apoptosis. The therapeutic efficacy was assessed using a breast cancer xenograft mouse model. DC-5163 treatment markedly suppressed tumor growth in vivo without inducing evident systemic toxicity. Micro-PET/CT scans revealed a notable reduction in tumor 18F-FDG and 18F-FLT uptake in the DC-5163 treatment group compared to the DMSO control group. CONCLUSIONS Our results suggest that DC-5163 is a promising GAPDH inhibitor for suppressing breast cancer growth without obvious side effects. 18F-FDG and 18F-FLT PET/CT can noninvasively assess the levels of glycolysis and proliferation in tumors following treatment with DC-5163.
Collapse
Affiliation(s)
- Yun-Qi Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Wei Zhang
- Drug Discovery and Design Canter, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiang-Tai Kong
- Drug Discovery and Design Canter, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wang-Xi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Su-Lin Zhang
- Drug Discovery and Design Canter, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Mikail N, Chequer R, Imperiale A, Meisel A, Bengs S, Portmann A, Gimelli A, Buechel RR, Gebhard C, Rossi A. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring. Eur Heart J Cardiovasc Imaging 2023; 24:1129-1145. [PMID: 37467476 PMCID: PMC10501471 DOI: 10.1093/ehjci/jead168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Renata Chequer
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP, University Diderot, 75018 Paris, France
| | - Alessio Imperiale
- Nuclear Medicine, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, 67093 Strasbourg, France
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67093 Strasbourg, France
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Kantonsspital Glarus, Burgstrasse 99, 8750 Glarus, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione CNR/Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Hospital Inselspital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
3
|
Hardy J, Bauzon M, Chan CKF, Makela AV, Kanada M, Schneider D, Blankenberg F, Contag CH, Hermiston T. Gla-domain mediated targeting of externalized phosphatidylserine for intracellular delivery. FASEB J 2023; 37:e23113. [PMID: 37486772 DOI: 10.1096/fj.202201250rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid normally localized to the inner leaflet of the plasma membrane of cells but is externalized onto the cell surface during apoptosis as well as in malignant and infected cells. Consequently, PS may comprise an important molecular target in diagnostics, imaging, and targeted delivery of therapeutic agents. While an array of PS-binding molecules exist, their utility has been limited by their inability to internalize diagnostic or therapeutic payloads. We describe the generation, isolation, characterization, and utility of a PS-binding motif comprised of a carboxylated glutamic acid (GLA) residue domain that both recognizes and binds cell surface-exposed PS, and then unlike other PS-binding molecules is internalized into these cells. Internalization is independent of the traditional endosomal-lysosomal pathway, directly entering the cytosol of the target cell rapidly. We demonstrate that this PS recognition extends to stem cells and that GLA-domain-conjugated probes can be detected upon intravenous administration in animal models of infectious disease and cancer. GLA domain binding and internalization offer new opportunities for specifically targeting cells with surface-exposed PS for imaging and delivery of therapeutics.
Collapse
Affiliation(s)
- Jonathan Hardy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Maxine Bauzon
- Biologics Research US, Bayer HealthCare, San Francisco, California, USA
| | | | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Masamitsu Kanada
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Doug Schneider
- Biologics Research US, Bayer HealthCare, San Francisco, California, USA
| | - Francis Blankenberg
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Radiology/MIPS, Stanford University, Stanford, California, USA
| | - Christopher H Contag
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Surgery, Stanford University, Stanford, California, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Terry Hermiston
- Biologics Research US, Bayer HealthCare, San Francisco, California, USA
| |
Collapse
|
4
|
Cherk MH, Khor R, Barber TW, Yap KSK, Patil S, Walker P, Avery S, Roberts S, Kemp W, Pham A, Bailey M, Kalff V. Noninvasive Assessment of Acute Graft-Versus-Host Disease of the Gastrointestinal Tract After Allogeneic Hemopoietic Stem Cell Transplantation Using 18F-FDG PET. J Nucl Med 2022; 63:1899-1905. [PMID: 35450959 DOI: 10.2967/jnumed.121.263688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/08/2022] [Indexed: 01/11/2023] Open
Abstract
Acute graft-versus-host disease of the gastrointestinal tract (acute GIT-GVHD) often complicates allogeneic hemopoietic stem cell transplantation (AHSCT). 18F-FDG PET/CT is known to detect active inflammation and may be a useful noninvasive test for acute GIT-GVHD. The objective of this study was to evaluate the diagnostic utility of 18F-FDG PET/CT to noninvasively assess patients with clinically suspected acute GIT-GVHD. Fifty-one AHSCT patients with clinically suspected acute GIT-GVHD prospectively underwent 18F-FDG PET/CT scanning followed by upper and lower GIT endoscopy within 7 d. Endoscopic biopsies of 4 upper GIT and 4 colonic segments were obtained for histology to compare with corresponding quantitative segmental 18F-FDG PET/CT SUVmax Receiver-operating-characteristic curve (ROC) analysis was performed to determine predictive capacity of 18F-FDG PET/CT SUVmax for acute GIT-GVHD. A separate qualitative visual 18F-FDG PET/CT analysis was also performed for comparison. Results: Twenty-three of 51 (45.1%) patients had biopsy-confirmed acute GIT-GVHD, with 19 of 23 (82.6%) having upper GIT and 22 of 22 (100%) colonic involvement. One of 23 patients did not undergo a colonoscopy. GVHD involved the entire colon contiguously in 21 of 22 patients. For quantitative analysis, histology from 4 upper GIT and 4 colonic segments were compared with 18F-FDG PET/CT SUVmax Colonic segments positive for GVHD had a higher SUVmax (4.1 [95% CI, 3.6-4.5]) than did normal colonic segments (2.3 [1.9-2.7], P = 0.006). No difference was demonstrated in upper GIT segments. Quantitative 18F-FDG PET/CT yielded a 69% sensitivity, 57% specificity, 73% negative predictive value, and 59% positive predictive value for the detection of GVHD compared with 70%, 76%, 76%, and 68%, respectively, for qualitative analysis. Conclusion: 18F-FDG PET is a useful noninvasive diagnostic test for acute GIT-GVHD, which when present always involves the colon and usually in its entirety, suggesting colonic biopsy obtained by sigmoidoscopy is adequate for histologic confirmation when acute GIT-GVHD is suspected. Of note, 18F-FDG PET cannot distinguish acute GIT-GVHD from non-GVHD inflammatory changes in the colon.
Collapse
Affiliation(s)
- Martin H Cherk
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia; .,Monash University, Melbourne, Australia
| | - Robert Khor
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia
| | - Thomas W Barber
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia.,Monash University, Melbourne, Australia
| | - Kenneth S K Yap
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia.,Monash University, Melbourne, Australia
| | - Sushrut Patil
- Monash University, Melbourne, Australia.,Department of Haematology, Alfred Hospital, Melbourne, Australia
| | - Patricia Walker
- Department of Haematology, Alfred Hospital, Melbourne, Australia
| | - Sharon Avery
- Monash University, Melbourne, Australia.,Department of Haematology, Alfred Hospital, Melbourne, Australia
| | - Stuart Roberts
- Monash University, Melbourne, Australia.,Department of Gastroenterology, Alfred Hospital, Melbourne, Australia
| | - William Kemp
- Monash University, Melbourne, Australia.,Department of Gastroenterology, Alfred Hospital, Melbourne, Australia
| | - Alan Pham
- Monash University, Melbourne, Australia.,Department of Anatomical Pathology, Alfred Hospital, Melbourne, Australia; and
| | - Michael Bailey
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Victor Kalff
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia.,Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Folate-based radiotracers for nuclear imaging and radionuclide therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Kondakov A, Berdalin A, Beregov M, Lelyuk V. Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. J Imaging 2022; 8:261. [PMID: 36286355 PMCID: PMC9605050 DOI: 10.3390/jimaging8100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a chronic widespread cardiovascular disease and a major predisposing factor for cardiovascular events, among which there are myocardial infarction and ischemic stroke. Atherosclerotic plaque formation is a process that involves different mechanisms, of which inflammation is the most common. Plenty of radiopharmaceuticals were developed to elucidate the process of plaque formation at different stages, some of which were highly specific for atherosclerotic plaque. This review summarizes the current nuclear medicine imaging landscape of preclinical and small-scale clinical studies of these specific RPs, which are not as widespread as labeled FDG, sodium fluoride, and choline. These include oxidation-specific epitope imaging, macrophage, and other cell receptors visualization, neoangiogenesis, and macrophage death imaging. It is shown that specific radiopharmaceuticals have strength in pathophysiologically sound imaging of the atherosclerotic plaques at different stages, but this also may induce problems with the signal registration for low-volume plaques in the vascular wall.
Collapse
Affiliation(s)
- Anton Kondakov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
- Radiology and Radiotherapy Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander Berdalin
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Mikhail Beregov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Vladimir Lelyuk
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| |
Collapse
|
7
|
Qin X, Jiang H, Liu Y, Zhang H, Tian M. Radionuclide imaging of apoptosis for clinical application. Eur J Nucl Med Mol Imaging 2022; 49:1345-1359. [PMID: 34873639 PMCID: PMC8921127 DOI: 10.1007/s00259-021-05641-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Apoptosis was a natural, non-inflammatory, energy-dependent form of programmed cell death (PCD) that can be discovered in a variety of physiological and pathological processes. Based on its characteristic biochemical changes, a great number of apoptosis probes for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have been developed. Radionuclide imaging with these tracers were potential for the repetitive and selective detection of apoptotic cell death in vivo, without the need for invasive biopsy. In this review, we overviewed molecular mechanism and specific biochemical changes in apoptotic cells and summarized the existing tracers that have been used in clinical trials as well as their potentialities and limitations. Particularly, we highlighted the clinic applications of apoptosis imaging as diagnostic markers, early-response indicators, and prognostic predictors in multiple disease fields.
Collapse
Affiliation(s)
- Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Zhang D, Gao M, Jin Q, Ni Y, Li H, Jiang C, Zhang J. Development of Duramycin-Based Molecular Probes for Cell Death Imaging. Mol Imaging Biol 2022; 24:612-629. [PMID: 35142992 DOI: 10.1007/s11307-022-01707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cell death is involved in numerous pathological conditions such as cardiovascular disorders, ischemic stroke and organ transplant rejection, and plays a critical role in the treatment of cancer. Cell death imaging can serve as a noninvasive means to detect the severity of tissue damage, monitor the progression of diseases, and evaluate the effectiveness of treatments, which help to provide prognostic information and guide the formulation of individualized treatment plans. The high abundance of phosphatidylethanolamine (PE), which is predominantly confined to the inner leaflet of the lipid bilayer membrane in healthy mammalian cells, becomes exposed on the cell surface in the early stages of apoptosis or accessible to the extracellular milieu when the cell suffers from necrosis, thus representing an attractive target for cell death imaging. Duramycin is a tetracyclic polypeptide that contains 19 amino acids and can bind to PE with excellent affinity and specificity. Additionally, this peptide has several favorable structural traits including relatively low molecular weight, stability to enzymatic hydrolysis, and ease of conjugation and labeling. All these highlight the potential of duramycin as a candidate ligand for developing PE-specific molecular probes. By far, a couple of duramycin-based molecular probes such as Tc-99 m-, F-18-, or Ga-68-labeled duramycin have been developed to target exposed PE for in vivo noninvasive imaging of cell death in different animal models. In this review article, we describe the state of the art with respect to in vivo imaging of cell death using duramycin-based molecular probes, as validated by immunohistopathology.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, 3000, Leuven, Leuven, KU, Belgium
| | - Huailiang Li
- Department of General Surgery, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, Jiangsu Province, People's Republic of China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Low-Parameter Small Convolutional Neural Network Applied to Functional Medical Imaging of Tc-99m Trodat-1 Brain Single-Photon Emission Computed Tomography for Parkinson's Disease. J Pers Med 2021; 12:jpm12010001. [PMID: 35055316 PMCID: PMC8780265 DOI: 10.3390/jpm12010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD), a progressive disease that affects movement, is related to dopaminergic neuron degeneration. Tc-99m Trodat-1 brain (TRODAT) single-photon emission computed tomography (SPECT) aids the functional imaging of dopamine transporters and is used for dopaminergic neuron enumeration. Herein, we employed a convolutional neural network to facilitate PD diagnosis through TRODAT SPECT, which is simpler than models such as VGG16 and ResNet50. We retrospectively collected the data of 3188 patients (age range 20–107 years) who underwent TRODAT SPECT between June 2011 and December 2019. We developed a set of functional imaging multiclassification deep learning algorithms suitable for TRODAT SPECT on the basis of the annotations of medical experts. We then applied our self-proposed model and compared its results with those of four other models, including deep and machine learning models. TRODAT SPECT included three images collected from each patient: one presenting the maximum absorption of the metabolic function of the striatum and two adjacent images. An expert physician determined that our model’s accuracy, precision, recall, and F1-score were 0.98, 0.98, 0.98, and 0.98, respectively. Our TRODAT SPECT model provides an objective, more standardized classification correlating to the severity of PD-related diseases, thereby facilitating clinical diagnosis and preventing observer bias.
Collapse
|
10
|
Abstract
Apoptosis is a process in which cells are genetically regulated to cause a series of changes in morphology and metabolic activity, which ultimately lead to cell death. Apoptosis plays a vital role in the entire life cycle of an organism. Too much or too little apoptosis can cause a variety of diseases. Therefore, efficient and convenient methods for detecting apoptosis are necessary for clinical treatment and drug development. Traditional methods for detecting apoptosis may cause damage to the body during sample collection, such as for flow cytometry analysis. So it is necessary to monitor apoptosis without invasion in vivo. Optical imaging technique provides a more sensitive and economical way for apoptosis visualization. A subset of engineered reporter genes based on fluorescent proteins or luciferases are currently developed to monitor the dynamic changes in apoptotic markers, such as activation of caspases and exposure of phosphatidylserine on the surface of dying cells. These reporters detect apoptosis when cells have not undergone significant morphological changes, providing conditions for early diagnosis of tumors. In addition, these reporters show considerable value in high-throughput screening of apoptosis-related drugs and evaluation of their efficacy in treating tumors. In this review, we will discuss the recent research progress in the optical imaging of apoptosis based on the genetically encoded reporter genes.
Collapse
|
11
|
Herrero Álvarez N, Bauer D, Hernández-Gil J, Lewis JS. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021; 16:2909-2941. [PMID: 33792195 DOI: 10.1002/cmdc.202100135] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Nuclear medicine is defined as the use of radionuclides for diagnostic and therapeutic applications. The imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are based on γ-emissions of specific energies. The therapeutic technologies are based on β- -particle-, α-particle-, and Auger electron emitters. In oncology, PET and SPECT are used to detect cancer lesions, to determine dosimetry, and to monitor therapy effectiveness. In contrast, radiotherapy is designed to irreparably damage tumor cells in order to eradicate or control the disease's progression. Radiometals are being explored for the development of diagnostic and therapeutic radiopharmaceuticals. Strategies that combine both modalities (diagnostic and therapeutic), referred to as theranostics, are promising candidates for clinical applications. This review provides an overview of the basic concepts behind therapeutic and diagnostic radiopharmaceuticals and their significance in contemporary oncology. Select radiometals that significantly impact current and upcoming cancer treatment strategies are grouped as clinically suitable theranostics pairs. The most important physical and chemical properties are discussed. Standard production methods and current radionuclide availability are provided to indicate whether a cost-efficient use in a clinical routine is feasible. Recent preclinical and clinical developments and outline perspectives for the radiometals are highlighted in each section.
Collapse
Affiliation(s)
- Natalia Herrero Álvarez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit, Herestraat 49, 3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill-Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
12
|
Amreddy N, Munshi A, Ramesh R. Multifunctional dendrimers for theranostic applications. DENDRIMER-BASED NANOTHERAPEUTICS 2021:385-397. [DOI: 10.1016/b978-0-12-821250-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Tang Y, Chen LY, Zhang A, Liao CP, Gross ME, Kim ES. In Vivo Non-Thermal, Selective Cancer Treatment With High-Frequency Medium-Intensity Focused Ultrasound. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:122051-122066. [PMID: 35321234 PMCID: PMC8939762 DOI: 10.1109/access.2021.3108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Focused ultrasound (FUS) has proven its efficacy in non-invasive, radiation-free cancer treatment. However, the commonly used low-frequency high-intensity focused ultrasound (HIFU) destroys both cancerous and healthy tissues non-specifically through extreme heat and inertial cavitation with low spatial resolution. To address this issue, we evaluate the therapeutic effects of pulsed (60 Hz pulse repetition frequency, 1.45 ms pulse width) high-frequency (20.7 MHz) medium-intensity (spatial-peak pulse-average intensity ISPPA < 279.1 W/cm2, spatial-peak temporal-average intensity ISPTA < 24.3 W/cm2) focused ultrasound (pHFMIFU) for selective cancer treatment without thermal damage and with low risk of inertial cavitation (mechanical index < 0.66), in an in vivo subcutaneous B16F10 melanoma tumor growth model in mice. The pHFMIFU with 104 μm focal diameter is generated by a microfabricated self-focusing acoustic transducer (SFAT) with a Fresnel acoustic lens. A three-axis positioning system has been developed for automatic scanning of the transducer to cover a larger treatment volume, while a water-cooling system is custom-built for dissipating non-acoustic heat from the transducer surface. Initial testing revealed that pHFMIFU treatment can be applied to a living animal while maintaining skin temperature under 35.6 °C without damaging normal skin and tissue. After eleven days of treatment with pHFMIFU, the treated tumors were significantly smaller with large areas of necrosis and apoptosis in the treatment field compared to untreated controls. Potential mechanisms of this selective, non-thermal killing effect, as well as possible causes of and solutions to the variation in treatment results, have been analyzed and proposed. The pHFMIFU could potentially be used as a new therapeutic modality for safer cancer treatment especially in critical body regions, due to its cancer-specific effects and high spatial resolution.
Collapse
Affiliation(s)
- Yongkui Tang
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Leng-Ying Chen
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Ailin Zhang
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Chun-Peng Liao
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Mitchell Eric Gross
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90064, USA
| | - Eun Sok Kim
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Bulat F, Hesse F, Hu DE, Ros S, Willminton-Holmes C, Xie B, Attili B, Soloviev D, Aigbirhio F, Leeper FJ, Brindle KM, Neves AA. 18F-C2Am: a targeted imaging agent for detecting tumor cell death in vivo using positron emission tomography. EJNMMI Res 2020; 10:151. [PMID: 33296043 PMCID: PMC7726082 DOI: 10.1186/s13550-020-00738-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Trialing novel cancer therapies in the clinic would benefit from imaging agents that can detect early evidence of treatment response. The timing, extent and distribution of cell death in tumors following treatment can give an indication of outcome. We describe here an 18F-labeled derivative of a phosphatidylserine-binding protein, the C2A domain of Synaptotagmin-I (C2Am), for imaging tumor cell death in vivo using PET. METHODS A one-pot, two-step automated synthesis of N-(5-[18F]fluoropentyl)maleimide (60 min synthesis time, > 98% radiochemical purity) has been developed, which was used to label the single cysteine residue in C2Am within 30 min at room temperature. Binding of 18F-C2Am to apoptotic and necrotic tumor cells was assessed in vitro, and also in vivo, by dynamic PET and biodistribution measurements in mice bearing human tumor xenografts treated with a TRAILR2 agonist or with conventional chemotherapy. C2Am detection of tumor cell death was validated by correlation of probe binding with histological markers of cell death in tumor sections obtained immediately after imaging. RESULTS 18F-C2Am showed a favorable biodistribution profile, with predominantly renal clearance and minimal retention in spleen, liver, small intestine, bone and kidney, at 2 h following probe administration. 18F-C2Am generated tumor-to-muscle (T/m) ratios of 6.1 ± 2.1 and 10.7 ± 2.4 within 2 h of probe administration in colorectal and breast tumor models, respectively, following treatment with the TRAILR2 agonist. The levels of cell death (CC3 positivity) following treatment were 12.9-58.8% and 11.3-79.7% in the breast and colorectal xenografts, respectively. Overall, a 20% increase in CC3 positivity generated a one unit increase in the post/pre-treatment tumor contrast. Significant correlations were found between tracer uptake post-treatment, at 2 h post-probe administration, and histological markers of cell death (CC3: Pearson R = 0.733, P = 0.0005; TUNEL: Pearson R = 0.532, P = 0.023). CONCLUSION The rapid clearance of 18F-C2Am from the blood pool and low kidney retention allowed the spatial distribution of cell death in a tumor to be imaged during the course of therapy, providing a rapid assessment of tumor treatment response. 18F-C2Am has the potential to be used in the clinic to assess early treatment response in tumors.
Collapse
Affiliation(s)
- Flaviu Bulat
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Susana Ros
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Bangwen Xie
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Bala Attili
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Finian J Leeper
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - André A Neves
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
15
|
Mosayebnia M, Hajiramezanali M, Shahhosseini S. Radiolabeled Peptides for Molecular Imaging of Apoptosis. Curr Med Chem 2020; 27:7064-7089. [PMID: 32532184 DOI: 10.2174/0929867327666200612152655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/22/2022]
Abstract
Apoptosis is a regulated cell death induced by extrinsic and intrinsic stimulants. Tracking of apoptosis provides an opportunity for the assessment of cardiovascular and neurodegenerative diseases as well as monitoring of cancer therapy at early stages. There are some key mediators in apoptosis cascade, which could be considered as specific targets for delivering imaging or therapeutic agents. The targeted radioisotope-based imaging agents are able to sensitively detect the physiological signal pathways which make them suitable for apoptosis imaging at a single-cell level. Radiopeptides take advantage of both the high sensitivity of nuclear imaging modalities and favorable features of peptide scaffolds. The aim of this study is to review the characteristics of those radiopeptides targeting apoptosis with different mechanisms.
Collapse
Affiliation(s)
- Mona Mosayebnia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Hajiramezanali
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Uehara T, Sensui A, Ishioka S, Mizuno Y, Takahashi S, Takemori H, Suzuki H, Arano Y. Manipulating Pharmacokinetics of Purification-Free 99mTc-Labeled Bivalent Probes for In Vivo Imaging of Saturable Targets. Mol Pharm 2020; 17:1621-1628. [PMID: 32275437 DOI: 10.1021/acs.molpharmaceut.0c00070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accumulation of 99mTc-labeled probes targeting saturable systems of the body is hindered by the presence of a large excess of unlabeled ligands needed to ensure high radiochemical yields in a short reaction time. To address the issue, we recently reported a novel concept of a metal-coordination-mediated synthesis of a bivalent 99mTc-labeled probe from a monovalent ligand using d-penicillamine (Pen) as a chelating molecule and c(RGDfK) as a model targeting device. The Pen-conjugated c(RGDfK) via a hexanoate linkage (Pen-Hx-c(RGDfK)) provided a bivalent [99mTc]Tc-[(Pen-Hx-c(RGDfK))2 that possessed much higher integrin αvβ3 binding affinity than Pen-Hx-c(RGDfK) and visualized a murine tumor without purification. However, high radioactivity levels were observed in the abdominal regions, which necessitated improved pharmacokinetics of the probes for practical applications. In this study, a pharmacokinetic (PK) modifier was introduced to manipulate the pharmacokinetics of the 99mTc-Pen2-based bivalent probe. The Hx linkage in Pen-Hx-c(RGDfK) was replaced with acetyl-d-serine-d-serine-glycine (Ac-ssG) or hexanoyl-d-serine-d-serine-d-serine (Hx-sss) to prepare Pen-Ac-ssG-c(RGDfK) or Pen-Hx-sss-c(RGDfK). Pen-Ac-ssG-c(RGDfK) impaired the complexation ability of Pen-Hx-c(RGDfK), and a monovalent 99mTc-labeled compound was generated at low ligand concentration. However, Pen-Hx-sss-c(RGDfK) provided the objective bivalent 99mTc-labeled probe in high radiochemical yields at a concentration similar to that of Pen-Hx-c(RGDfK). [99mTc]Tc-[Pen-Hx-sss-c(RGDfK)]2 also possessed stability and integrin αvβ3 binding affinity similar to those of [99mTc]Tc-[Pen-Hx-c(RGDfK)]2. As a result, [99mTc]Tc-[Pen-Hx-sss-c(RGDfK)]2 exhibited tumor and abdominal radioactivity levels similar to and significantly lower than those of [99mTc]Tc-[Pen-Hx-c(RGDfK)]2. These findings indicate the incorporation of a tripeptide PK modifier to Pen-Hx-c(RGDfK) preserved the complexation ability and improved the pharmacokinetics of the resulting 99mTc-labeled bivalent probe without impairing the targeting ability. Thus, the [Pen-Hx-(PK modifier)-(targeting device)] would constitute a basic formulation for preparing the 99mTc-Pen2-based bivalent probes for imaging saturable targets of the body.
Collapse
Affiliation(s)
- Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Ayaka Sensui
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Shiori Ishioka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuki Mizuno
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Showa Pharmaceutical University, Machida 194-8543, Japan
| | - Shiori Takahashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hideaki Takemori
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
17
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
18
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
19
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Tong D, Zaha VG. Metabolic Imaging in Cardio-oncology. J Cardiovasc Transl Res 2019; 13:357-366. [PMID: 31696405 DOI: 10.1007/s12265-019-09927-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Tremendous progress in cancer detection and therapy has improved survival. However, cardiovascular complications are a major source of morbidity in cancer survivors. Cardiotoxicity is currently defined by structural myocardial changes and cardiac injury biomarkers. In many instances, such changes are late and irreversible. Therefore, diagnostic modalities that can identify early alterations in potentially reversible biochemical and molecular signaling processes are of interest. This review is focused on emerging translational metabolic imaging modalities. We present in context relevant mitochondrial biology aspects that ground the development and application of these technologies for detection of cancer therapy-related cardiac dysfunction (CTRCD). The application of these modalities may improve the assessment of cardiovascular risk when anticancer treatments with a defined cardiometabolic toxic mechanism are to be used. Also, they may serve as screening tools for cardiotoxicity when novel lines of cancer therapies are applied.
Collapse
Affiliation(s)
- Dan Tong
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA. .,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, USA. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
21
|
Qiu L, Wang W, Li K, Peng Y, Lv G, Liu Q, Gao F, Seimbille Y, Xie M, Lin J. Rational design of caspase-responsive smart molecular probe for positron emission tomography imaging of drug-induced apoptosis. Theranostics 2019; 9:6962-6975. [PMID: 31660080 PMCID: PMC6815954 DOI: 10.7150/thno.35084] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Positron emission tomography (PET) imaging of apoptosis is very important for early evaluation of tumor therapeutic efficacy. A stimuli-responsive probe based on the peptide sequence Asp-Glu-Val-Asp (DEVD), [18F]DEVD-Cys(StBu)-PPG(CBT)-AmBF3 ([18F]1), for PET imaging of tumor apoptosis was designed and prepared. This study aimed to develop a novel smart probe using a convenient radiosynthesis method and to fully examine the sensitivity and specificity of the probe response to the tumor treatment. Methods: The radiolabelling precursor DEVD-Cys(StBu)-PPG(CBT)-AmBF3 (1) was synthesized through multistep reactions. The reduction together with caspase-controlled macrocyclization and self-assembly of 1 was characterized and validated in vitro. After [18F]fluorination in the buffer (pH= 2.5), the radiolabelling yield (RLY), radiochemical purity (RCP) and stability of the probe [18F]1 in PBS and mouse serum were investigated by radio-HPLC. The sensitivity and specificity of [18F]1 for detecting the drug-induced apoptosis was fully evaluated in vitro and in vivo. The effect of cold precursor 1 on the cell uptake and tumor imaging of [18F]1 was also assessed. The level of activated caspase-3 in Hela cells and tumors with or without apoptosis induction was analyzed and compared by western blotting and histological staining. Results: The whole radiosynthesis process of [18F]1 was around 25 min with RLY of 50%, RCP of over 99% and specific activity of 1.45 ± 0.4 Ci/µmol. The probe was very stable in both PBS and mouse serum within 4 h. It can be activated by caspase-3 and then undergo an intermolecular cyclization to form nanosized particles. The retained [18F]1 in DOX-treated HeLa cells was 2.2 folds of that in untreated cells. Within 1 h microPET imaging of the untreated Hela-bearing mice, the injection of [18F]1 resulted in the increase of the uptake ratio of tumor to muscle (T/M) only from 1.74 to 2.18, while in the DOX-treated Hela-bearing mice T/M increased from 1.88 to 10.52 and the co-injection of [18F]1 and 1 even led to the increase of T/M from 3.08 to 14.81. Conclusions: A caspase-responsive smart PET probe [18F]1 was designed and prepared in a kit-like manner. Co-injection of [18F]1 and 1 generated remarkably enhanced tumor uptake and signal-to-noise ratio in the tumor-bearing mice with drug-induced apoptosis, which correlated well with the expression level of activated caspase-3. This early readout of treatment response ensured that the probe [18F]1 could serve as a promising PET imaging probe for timely and noninvasive evaluation of tumor therapy.
Collapse
|
22
|
Investigation of cis-4-[ 18F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment. Mol Imaging Biol 2019; 20:1035-1043. [PMID: 29687323 DOI: 10.1007/s11307-018-1197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Cis-4-[18F]fluoro-D-proline (D-cis-[18F]FPro) has been shown to pass the intact blood-brain barrier and to accumulate in areas of secondary neurodegeneration and necrosis in the rat brain while uptake in experimental brain tumors is low. This pilot study explores the uptake behavior of D-cis-[18F]FPro in human brain tumors after multimodal treatment. PROCEDURES In a prospective study, 27 patients with suspected recurrent brain tumor after treatment with surgery, radiotherapy, and/or chemotherapy (SRC) were investigated by dynamic positron emission tomography (PET) using D-cis-[18F]FPro (22 high-grade gliomas, one unspecified glioma, and 4 metastases). Furthermore, two patients with untreated lesions were included (one glioblastoma, one reactive astrogliosis). Data were compared with the results of PET using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) which detects viable tumor tissue. Tracer distribution, mean and maximum lesion-to-brain ratios (LBRmean, LBRmax), and time-to-peak (TTP) of the time activity curve (TAC) of tracer uptake were evaluated. Final diagnosis was determined by histology (n = 9), clinical follow-up (n = 10), or by [18F]FET PET (n = 10). RESULTS D-cis-[18F]FPro showed high uptake in both recurrent brain tumors (n = 11) and lesions classified as treatment-related changes (TRC) only (n = 16) (LBRmean 2.2 ± 0.7 and 2.1 ± 0.6, n.s.; LBRmax 3.4 ± 1.2 and 3.2 ± 1.3, n.s.). The untreated glioblastoma and the lesion showing reactive astrogliosis exhibited low D-cis-[18F]FPro uptake. Distribution of [18F]FET and D-cis-[18F]FPro uptake was discordant in 21/29 cases indicating that the uptake mechanisms are different. CONCLUSION The high accumulation of D-cis-[18F]FPro in pretreated brain tumors and TRC supports the hypothesis that tracer uptake is related to cell death. Further studies before and after therapy are needed to assess the potential of D-cis-[18F]FPro for treatment monitoring.
Collapse
|
23
|
Nuclear Imaging Study of the Pharmacodynamic Effects of Debio 1143, an Antagonist of Multiple Inhibitor of Apoptosis Proteins (IAPs), in a Triple-Negative Breast Cancer Model. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2018:8494031. [PMID: 30627061 PMCID: PMC6305031 DOI: 10.1155/2018/8494031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
Background Debio 1143, a potent orally available SMAC mimetic, targets inhibitors of apoptosis proteins (IAPs) members and is currently in clinical trials. In this study, nuclear imaging evaluated the effects of Debio 1143 on tumor cell death and metabolism in a triple-negative breast cancer (TNBC) cell line (MDA-MB-231)-based animal model. Methods Apoptosis induced by Debio 1143 was assessed by FACS (caspase-3, annexin 5 (A5)), binding of 99mTc-HYNIC-Annexin V, and a cell proliferation assay. 99mTc-HYNIC-Annexin V SPECT and [18F]-FDG PET were also performed in mice xenografted with MDA-MB-231 cells. Results Debio 1143 induced early apoptosis both in vitro and in vivo 6 h after treatment. Debio 1143 inhibited tumor growth, which was associated with a decreased tumor [18F]-FDG uptake when measured during treatment. Conclusions This imaging study combining SPECT and PET showed the early proapoptotic effects of Debio 1143 resulting in a robust antitumor activity in a preclinical TNBC model. These imaging biomarkers represent valuable noninvasive tools for translational and clinical research in TNBC.
Collapse
|
24
|
[99mTc]Tc-duramycin, a potential molecular probe for early prediction of tumor response after chemotherapy. Nucl Med Biol 2018; 66:18-25. [DOI: 10.1016/j.nucmedbio.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
|
25
|
Solomon VR, Gonzalez C, Alizadeh E, Bernhard W, Hartimath SV, Barreto K, Geyer CR, Fonge H. 99mTc(CO) 3+ labeled domain I/II-specific anti-EGFR (scFv) 2 antibody fragment for imaging EGFR expression. Eur J Med Chem 2018; 157:437-446. [PMID: 30103192 DOI: 10.1016/j.ejmech.2018.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022]
Abstract
Bifunctional chelators (BFCs) are covalently linked to biologically active targeting molecules and radiolabeled with radiometals. Technetium-99 m (99mTc) is the most widely used isotope in nuclear medicine because of its excellent physical properties. The objective of this study was to synthesize and characterize a novel BFC that allows for the labeling of antibodies and antibody fragments using the 99mTc(CO)3+ core which forms a very stable complex with 99mTc in the +1 oxidation sate. This study reports the synthesis of a BFC 1-pyrrolidinyl-2,5-dione-11-(bis((1-(carboxymethyl)-1H-imidazol-2-yl)methyl)amino)undecanoic acid (SAAC-CIM NHS ester), and the in vitro and in vivo evaluation of 99mTc(CO)3-SAAC-CIM-DLO6-(scFv)2 (99mTc(CO)3-DLO6-(scFv)2), a domain I/II-specific anti-epidermal growth factor receptor I (anti-EGFR) antibody fragment. The chelator allowed radiolabeling the (scFv)2 antibody fragment in very mild conditions with no significant decrease in binding to EGFR. Radiochemical yields of >50% (radiochemical purity > 95%) of the resulting anti-EGFR (scFv)2 immunoconjugate 99mTc(CO)3-DLO6-(scFv)2 was obtained. The radioimmunoconjugate was stable in histidine challenge experiments with less than 20% transchelation at 24 h after challenge in the presence of a 1500-fold excess of histidine. In vivo biodistribution of 99mTc(CO)3-DLO6-(scFv)2 indicates that the tracer was mainly cleared via renal excretion and to a lesser extent via the hepatobiliary pathway. The microSPECT imaging studies performed in mice confirmed the in vitro affinity results. The 99mTc(CO)3-DLO6-(scFv)2 shows some promising properties and warrants further investigation for imaging EGFR.
Collapse
Affiliation(s)
- Viswas Raja Solomon
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada; Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, Saskatoon, SK, Canada
| | - Carolina Gonzalez
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Elahe Alizadeh
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada; Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, Saskatoon, SK, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Siddesh V Hartimath
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada; Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, Saskatoon, SK, Canada
| | - Kris Barreto
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada
| | - Clarence Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada.
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada; Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, Saskatoon, SK, Canada; Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, Canada.
| |
Collapse
|
26
|
Andrews JPM, Fayad ZA, Dweck MR. New methods to image unstable atherosclerotic plaques. Atherosclerosis 2018; 272:118-128. [PMID: 29602139 PMCID: PMC6463488 DOI: 10.1016/j.atherosclerosis.2018.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Atherosclerotic plaque rupture is the primary mechanism responsible for myocardial infarction and stroke, the top two killers worldwide. Despite being potentially fatal, the ubiquitous prevalence of atherosclerosis amongst the middle aged and elderly renders individual events relatively rare. This makes the accurate prediction of MI and stroke challenging. Advances in imaging techniques now allow detailed assessments of plaque morphology and disease activity. Both CT and MR can identify certain unstable plaque characteristics thought to be associated with an increased risk of rupture and events. PET imaging allows the activity of distinct pathological processes associated with atherosclerosis to be measured, differentiating patients with inactive and active disease states. Hybrid integration of PET with CT or MR now allows for an accurate assessment of not only plaque burden and morphology but plaque biology too. In this review, we discuss how these advanced imaging techniques hold promise in redefining our understanding of stable and unstable coronary artery disease beyond symptomatic status, and how they may refine patient risk-prediction and the rationing of expensive novel therapies.
Collapse
Affiliation(s)
- Jack P M Andrews
- Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
27
|
Abstract
The interest in zirconium-89 (89Zr) as a positron-emitting radionuclide has grown considerably over the last decade due to its standardized production, long half-life of 78.2 h, favorable decay characteristics for positron emission tomography (PET) imaging and its successful use in a variety of clinical and preclinical applications. However, to be utilized effectively in PET applications it must be stably bound to a targeting ligand, and the most successfully used 89Zr chelator is desferrioxamine B (DFO), which is commercially available as the iron chelator Desferal®. Despite the prevalence of DFO in 89Zr-immuno-PET applications, the development of new ligands for this radiometal is an active area of research. This review focuses on recent advances in zirconium-89 chelation chemistry and will highlight the rapidly expanding ligand classes that are under investigation as DFO alternatives.
Collapse
Affiliation(s)
- Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
28
|
Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, Barbellion S, Jones V, Niemeijer M, Potdevin S, Roussignol G, Vaganov A, Barbaric I, Barrow M, Burton NC, Connell J, Dazzi F, Edsbagge J, French NS, Holder J, Hutchinson C, Jones DR, Kalber T, Lovatt C, Lythgoe MF, Patel S, Patrick PS, Piner J, Reinhardt J, Ricci E, Sidaway J, Stacey GN, Starkey Lewis PJ, Sullivan G, Taylor A, Wilm B, Poptani H, Murray P, Goldring CEP, Park BK. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2017; 2:28. [PMID: 29302362 PMCID: PMC5677988 DOI: 10.1038/s41536-017-0029-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.
Collapse
Affiliation(s)
- Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Nathalie Brillant
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - J. Dinesh Kumar
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Noura Ali
- College of Health Science, University of Duhok, Duhok, Iraq
| | - Ahmed Alrumayh
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Mohammed Amali
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Stephane Barbellion
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Vendula Jones
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Marije Niemeijer
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sophie Potdevin
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Gautier Roussignol
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Anatoly Vaganov
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | | | - John Connell
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-Oncology, King’s College London, London, UK
| | | | - Neil S. French
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Julie Holder
- Roslin Cells, University of Cambridge, Cambridge, UK
| | - Claire Hutchinson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - David R. Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Cerys Lovatt
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Sara Patel
- ReNeuron Ltd, Pencoed Business Park, Pencoed, Bridgend, UK
| | - P. Stephen Patrick
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Jacqueline Piner
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | | | - Emanuelle Ricci
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | - Glyn N. Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards Control, Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Philip J. Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gareth Sullivan
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Blindern, Oslo, Norway
- Institute of Immunology, Oslo University Hospital-Rikshospitalet, Nydalen, Oslo, Norway
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging 2017; 44:41-54. [PMID: 28396911 PMCID: PMC5541087 DOI: 10.1007/s00259-017-3695-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
Abstract
Molecular imaging continues to influence every aspect of cancer care including detection, diagnosis, staging and therapy response assessment. Recent advances in the understanding of cancer biology have prompted the introduction of new targeted therapy approaches. Precision medicine in oncology has led to rapid advances and novel approaches optimizing the use of imaging modalities in cancer care, research and development. This article focuses on the concept of targeted therapy in cancer and the challenges that exist for molecular imaging in cancer care.
Collapse
|