1
|
Zhang Q, Wang C, He L. ORAI Ca 2+ Channels in Cancers and Therapeutic Interventions. Biomolecules 2024; 14:417. [PMID: 38672434 PMCID: PMC11048467 DOI: 10.3390/biom14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
Collapse
Affiliation(s)
| | | | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong–Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
2
|
Kouba S, Buscaglia P, Guéguinou M, Ibrahim S, Félix R, Guibon R, Fromont G, Pigat N, Capiod T, Vandier C, Mignen O, Potier-Cartereau M. Pivotal role of the ORAI3-STIM2 complex in the control of mitotic death and prostate cancer cell cycle progression. Cell Calcium 2023; 115:102794. [PMID: 37597301 DOI: 10.1016/j.ceca.2023.102794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Prostate cancer (PCa) represents one of the most frequent diagnosed cancer in males worldwide. Due to routine screening tests and the efficiency of available treatments, PCa-related deaths have significantly decreased over the past decades. However, PCa remains a critical threat if detected at a late stage in which, cancer cells would have already detached from the primary tumor to spread and invade other parts of the body. Calcium (Ca2+) channels and their protein regulators are now considered as hallmarks of cancer and some of them have been well examined in PCa. Among these Ca2+ channels, isoform 3 of the ORAI channel family has been shown to regulate the proliferation of PCa cells via the Arachidonic Acid-mediated Ca2+ entry, requiring the involvement of STIM1 (Stromal Interaction Molecule 1). Still, no study has yet demonstrated a role of the "neglected" STIM2 isoform in PCa or if it may interact with ORAI3 to promote an oncogenic behavior. In this study, we demonstrate that ORAI3 and STIM2 are upregulated in human PCa tissues. In old KIMAP (Knock-In Mouse Prostate Adenocarcinoma) mice, ORAI3 and STIM2 mRNA levels were significantly higher than ORAI1 and STIM1. In vitro, we show that ORAI3-STIM2 interact under basal conditions in PC-3 cells. ORAI3 silencing increased Store Operated Ca2+ Entry (SOCE) and induced a significant increase of the cell population in G2/M phase of the cell cycle, consistent with the role of ORAI3 as a negative regulator of SOCE. Higher expression levels of CDK1-Y15/Cyclin B1 were detected and mitotic arrest-related death occurred after ORAI3 silencing, which resulted in activating Bax/Bcl-2-mediated apoptotic pathway and caspase-8 activation and cleavage. STIM2 and ORAI3 expression increased in M phase while STIM1 expression and SOCE amplitude significantly decreased. Taken together, ORAI3 -STIM2 complex allows a successful progression through mitosis of PCa cells by evading mitotic catastrophe.
Collapse
Affiliation(s)
- Sana Kouba
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France
| | - Paul Buscaglia
- INSERM U1227, LBAI: Lymphocytes B, Autoimmunité et Immunotherapies, University of Bretagne Occidentale, Brest, France
| | - Maxime Guéguinou
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France
| | - Sajida Ibrahim
- EA 7501, University of Tours - ERL 7001 LNOx - CNRS, GICC: Groupe Innovation et Ciblage Cellulaire, Tours, France
| | - Romain Félix
- INSERM U1227, LBAI: Lymphocytes B, Autoimmunité et Immunotherapies, University of Bretagne Occidentale, Brest, France
| | - Roseline Guibon
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France; Service d'Anatomie et cytologie pathologiques, Bretonneau, Centre Hospitalier Régional et Universitaire, Tours, France
| | - Gaëlle Fromont
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France; Service d'Anatomie et cytologie pathologiques, Bretonneau, Centre Hospitalier Régional et Universitaire, Tours, France
| | - Natascha Pigat
- INSERM U1151, Institut Necker Enfants Malades, Universiy of Paris, 160 rue de Vaugirard, Paris 75015 France
| | - Thierry Capiod
- INSERM U1151, Institut Necker Enfants Malades, Universiy of Paris, 160 rue de Vaugirard, Paris 75015 France
| | - Christophe Vandier
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France
| | - Olivier Mignen
- INSERM U1227, LBAI: Lymphocytes B, Autoimmunité et Immunotherapies, University of Bretagne Occidentale, Brest, France.
| | | |
Collapse
|
3
|
Stejerean‐Todoran I, Bogeski I. Malignant currents: sodium leak channel NALCN propels prostate cancer aggressiveness. EMBO J 2023; 42:e114986. [PMID: 37635635 PMCID: PMC10548164 DOI: 10.15252/embj.2023114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Although ion transporters and channels have been extensively studied over the last couple of decades, there are still unresolved aspects with regards to their contribution to cancer cell biology. Recent work by Folcher et al (2023) reports a critical role for Na+ leak channel NALCN in metastatic prostate cancer. The study demonstrates that NALCN promotes metastatic spread to distant organs by controlling Ca2+ signaling.
Collapse
Affiliation(s)
- Ioana Stejerean‐Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical CenterGeorg‐August‐UniversityGöttingenGermany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical CenterGeorg‐August‐UniversityGöttingenGermany
| |
Collapse
|
4
|
Liang C, Wu F. Reconstitution of Calcium Channel Protein Orai3 into Liposomes for Functional Studies. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1296-1303. [PMID: 37770396 DOI: 10.1134/s0006297923090092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
Store-operated calcium entry (SOCE) is the main mechanism for the Ca2+ influx in non-excitable cells. The two major components of SOCE are stromal interaction molecule 1 (STIM1) in the endoplasmic reticulum and Ca2+ release-activated Ca2+ channel (CRAC) Orai on the plasma membrane. SOCE requires interaction between STIM1 and Orai. Mammals have three Orai homologs: Orai1, Orai2, and Orai3. Although Orai1 has been widely studied and proven to essential for numerous cellular processes, Orai3 has also attracted a significant attention recently. The gating and activation mechanisms of Orai3 have yet to be fully elucidated. Here, we expressed, purified, and reconstituted Orai3 protein into liposomes and investigated its orientation and oligomeric state in the resulting proteoliposomes. STIM1 interacted with the Orai3-containing proteoliposomes and mediated calcium release from the them, suggesting that the Orai3 channel was functional and that recombinant STIM1 could directly open the Orai3 channel in vitro. The developed in vitro calcium release system could be used to study the structure, function, and pharmacology of Orai3 channel.
Collapse
Affiliation(s)
- Chuangxuan Liang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Fuyun Wu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
6
|
Daba MY, Fan Z, Li Q, Yuan X, Liu B. The Role of Calcium Channels in Prostate Cancer Progression and Potential as a Druggable Target for Prostate Cancer Treatment. Crit Rev Oncol Hematol 2023; 186:104014. [PMID: 37119879 DOI: 10.1016/j.critrevonc.2023.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
Prostate cancer (PCa) is the most diagnosed cancer among men. Discovering novel prognostic biomarkers and potential therapeutic targets are critical. Calcium signaling has been implicated in PCa progression and development of treatment resistance. Altered modification of Ca2+ flows leads to serious pathophysiological processes, such as malignant transformation, tumor proliferation, epithelial to mesenchymal transition, evasion of apoptosis, and treatment resistance. Calcium channels control and contribute to these processes. PCa has shown defective Ca2+ channels, which subsequently promotes tumor metastasis and growth. Store-operated Ca2+ entry channels such as Orai and STIM channels and transient receptor potential channels play a significant role in PCa pathogenesis. Pharmacological modulation of these calcium channels or pumps has been suggested as a practical approach. In this review, we discuss the role of calcium channels in PCa development and progression, and we identify current novel discoveries of drugs that target specific calcium channels for the treatment of PCa.
Collapse
Affiliation(s)
- Motuma Yigezu Daba
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
7
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
8
|
Title: p53 alters intracellular Ca2+ signaling through regulation of TRPM4. Cell Calcium 2022; 104:102591. [DOI: 10.1016/j.ceca.2022.102591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
|
9
|
Yan J, Yu W, Lu C, Liu C, Wang G, Jiang L, Jiang Z, Qin Z. High ORAI3 expression correlates with good prognosis in human muscle-invasive bladder cancer. Gene 2022; 808:145994. [PMID: 34626722 DOI: 10.1016/j.gene.2021.145994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
The involvement of store-operated calcium channels (SOCCs) in tumor initiation and metastatic dissemination has been extensively studied, but how its member ORAI3 influences tumor progression is still elusive. The present study aimed to evaluate the prognostic value of ORAI3 expression and examine the correlation between ORAI3 expression and immune cell infiltration within the tumor microenvironment (TME) in human muscle-invasive bladder cancer (MIBC). We examined the expression profile of ORAI3 in MIBC using data from two databases; analyzed the correlation between ORAI3 expression and patient survival; explored cellular pathways related to ORAI3 expression by Gene Set Enrichment Analysis (GSEA); and predicted potential drugs using Connectivity Map (CMap). ORAI3 was significantly lower expressed in tumor mass compared to normal samples in MIBC, with a higher level of methylation at the promoter region in tumor than in normal tissue, indicating that ORAI3 is suppressed during cancer progression. Survival analysis showed that higher expression of ORAI3 correlated with good prognosis in MIBC. GSEA demonstrated that ORAI3 expression inversely correlated with cell differentiation, development and gene silencing, with differential expression of genes involved in epidermal and keratinocyte differentiation pathways and inflammatory responses. RNA sequencing of an ORAI3-silenced human bladder cancer cell line (T24 cells) corroborated enhancement of pro-neoplastic pathways in absence of ORAI3. Western blottingMoreover, ORAI3 facilitated the recruitment of Th17 cells and natural killer cells, whereas hampered Th2 and macrophage infiltration. Our results revealed 4 molecules with potential to be beneficial as adjuvant drugs in MIBC treatment. We concluded that high ORAI3 expression correlates with increased survival in human MIBC.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong Province, China.
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province, China
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province, China
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province, China
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining City, Shandong Province, China
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong Province, China
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong Province, China
| | - Zheng Qin
- Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
10
|
Fresquez AM, White C. Extracellular cysteines C226 and C232 mediate hydrogen sulfide-dependent inhibition of Orai3-mediated store-operated calcium entry. Am J Physiol Cell Physiol 2022; 322:C38-C48. [PMID: 34788146 PMCID: PMC8759961 DOI: 10.1152/ajpcell.00490.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized stromal interaction molecule (STIM)1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction, we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.
Collapse
Affiliation(s)
- Adriana M. Fresquez
- 1Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois,2Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Carl White
- 1Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois,2Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
11
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
12
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
13
|
Borgström A, Peinelt C, Stokłosa P. TRPM4 in Cancer-A New Potential Drug Target. Biomolecules 2021; 11:biom11020229. [PMID: 33562811 PMCID: PMC7914809 DOI: 10.3390/biom11020229] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is widely expressed in various organs and associated with cardiovascular and immune diseases. Lately, the interest in studies on TRPM4 in cancer has increased. Thus far, TRPM4 has been investigated in diffuse large B-cell lymphoma, prostate, colorectal, liver, breast, urinary bladder, cervical, and endometrial cancer. In several types of cancer TRPM4 is overexpressed and contributes to cancer hallmark functions such as increased proliferation and migration and cell cycle shift. Hence, TRPM4 is a potential prognostic cancer marker and a promising anticancer drug target candidate. Currently, the underlying mechanism by which TRPM4 contributes to cancer hallmark functions is under investigation. TRPM4 is a Ca2+-activated monovalent cation channel, and its ion conductivity can decrease intracellular Ca2+ signaling. Furthermore, TRPM4 can interact with different partner proteins. However, the lack of potent and specific TRPM4 inhibitors has delayed the investigations of TRPM4. In this review, we summarize the potential mechanisms of action and discuss new small molecule TRPM4 inhibitors, as well as the TRPM4 antibody, M4P. Additionally, we provide an overview of TRPM4 in human cancer and discuss TRPM4 as a diagnostic marker and anticancer drug target.
Collapse
|
14
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
15
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
16
|
Lv X, Miao C, Liu M, Wang X, Wang L, Wang D. 17β-Estradiol via Orai1 activates calcium mobilization to induce cell proliferation in epithelial ovarian cancer. J Biochem Mol Toxicol 2020; 34:e22603. [PMID: 32844545 DOI: 10.1002/jbt.22603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal estrogen-sensitive gynecological cancer. Studies have reported that estrogen induces rapid cellular calcium mobilization in cells and can determine the fate of a cell. We found that estrogen increased the calcium release-activated calcium channel modulator 1 (Orai1) protein expression levels in SK-OV-3 cells. However, to date, there has been no research on the functional relationship and molecular mechanism of estrogen-regulating Orai1 during EOC development. In our study, Orai1 had a high expression level in high-grade serous ovarian tumor tissues and SK-OV-3 cells. Estrogen promoted cell proliferation and migration while inhibiting cell apoptosis in SK-OV-3 cells. Orai1 silencing suppressed estrogen-induced cell migration and proliferation. Overexpression of Orai1, however, enhanced the ability of 17β-estradiol (E2) to exert its function. Estrogen induced rapid calcium influx in SK-OV-3 cells. Knockdown of Orai1 in SK-OV-3 cells blocked E2-induced stored-operated Ca2+ influx. The messenger RNA expression of caspase 3, matrix metallopeptidase 1, and cyclin-dependent kinase 6 were regulated via Orai1 under E2 treatment. Our results suggest that estrogen, by regulating Orai1, induced calcium influx to determine cell fate.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Mengyan Liu
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Xinbo Wang
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lin Wang
- School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Di Wang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
17
|
Bruce JIE, James AD. Targeting the Calcium Signalling Machinery in Cancer. Cancers (Basel) 2020; 12:cancers12092351. [PMID: 32825277 PMCID: PMC7565467 DOI: 10.3390/cancers12092351] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is caused by excessive cell proliferation and a propensity to avoid cell death, while the spread of cancer is facilitated by enhanced cellular migration, invasion, and vascularization. Cytosolic Ca2+ is central to each of these important processes, yet to date, there are no cancer drugs currently being used clinically, and very few undergoing clinical trials, that target the Ca2+ signalling machinery. The aim of this review is to highlight some of the emerging evidence that targeting key components of the Ca2+ signalling machinery represents a novel and relatively untapped therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-(0)-161-275-5484
| | - Andrew D. James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|
18
|
Tanwar J, Arora S, Motiani RK. Orai3: Oncochannel with therapeutic potential. Cell Calcium 2020; 90:102247. [PMID: 32659517 DOI: 10.1016/j.ceca.2020.102247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Ion channels in particular Calcium (Ca2+) channels play a critical role in physiology by regulating plethora of cellular processes ranging from cell proliferation, differentiation, transcriptional regulation and programmed cell death. One such physiologically important and highly Ca2+ selective channel family is Orai channels consisting of three homologs Orai1, Orai2 and Orai3. Orai channels are responsible for Ca2+ influx across the plasma membrane in response to decrease in Endoplasmic Reticulum (ER) Ca2+ stores. STIM1/STIM2 proteins sense the reduction in ER Ca2+ levels and activate Orai channels for restoring ER Ca2+ as well as for driving cellular functions. This signaling cascade is known as Store Operated Ca2+ Entry (SOCE). Although Orai1 is the ubiquitous SOCE channel protein, Orai2 and Orai3 mediate SOCE in certain specific tissues. Further, mammalian specific homolog Orai3 forms heteromultimeric channel with Orai1 for constituting Arachidonic acid regulated Ca2+ (ARC) channels or arachidonic acid metabolite Leukotriene C4 (LTC4) regulated Ca2+ (LRC) channels. Literature suggests that Orai3 regulates Breast, Prostate, Lung and Gastrointestinal cancers by either forming Store Operated Ca2+ (SOC) or ARC/LRC channels in the cancerous cells but not in healthy tissue. In this review, we would discuss the role of Orai3 in these cancers and would highlight the potential of therapeutic targeting of Orai3 for better management and treatment of cancer. Finally, we will deliberate on key outstanding questions in the field that demand critical attention and further studies.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India; CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samriddhi Arora
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
19
|
Ardura JA, Álvarez-Carrión L, Gutiérrez-Rojas I, Alonso V. Role of Calcium Signaling in Prostate Cancer Progression: Effects on Cancer Hallmarks and Bone Metastatic Mechanisms. Cancers (Basel) 2020; 12:E1071. [PMID: 32344908 PMCID: PMC7281772 DOI: 10.3390/cancers12051071] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancers that progress to tumor metastases are often considered incurable or difficult to treat. The etiology of prostate cancers is multi-factorial. Among other factors, de-regulation of calcium signals in prostate tumor cells mediates several pathological dysfunctions associated with tumor progression. Calcium plays a relevant role on tumor cell death, proliferation, motility-invasion and tumor metastasis. Calcium controls molecular factors and signaling pathways involved in the development of prostate cancer and its progression. Such factors and pathways include calcium channels and calcium-binding proteins. Nevertheless, the involvement of calcium signaling on prostate cancer predisposition for bone tropism has been relatively unexplored. In this regard, a diversity of mechanisms triggers transient accumulation of intracellular calcium in prostate cancer cells, potentially favoring bone metastases development. New therapies for the treatment of prostate cancer include compounds characterized by potent and specific actions that target calcium channels/transporters or pumps. These novel drugs for prostate cancer treatment encompass calcium-ATPase inhibitors, voltage-gated calcium channel inhibitors, transient receptor potential (TRP) channel regulators or Orai inhibitors. This review details the latest results that have evaluated the relationship between calcium signaling and progression of prostate cancer, as well as potential therapies aiming to modulate calcium signaling in prostate tumor progression.
Collapse
Affiliation(s)
- Juan A. Ardura
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| | - Luis Álvarez-Carrión
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
| | - Irene Gutiérrez-Rojas
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
| | - Verónica Alonso
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain; (J.A.A.); (L.Á.-C.); (I.G.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Madrid, Spain
| |
Collapse
|
20
|
Kappel S, Kilch T, Baur R, Lochner M, Peinelt C. The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca 2+ Channels Alter the Pharmacology of I CRAC. Int J Mol Sci 2020; 21:ijms21072458. [PMID: 32252254 PMCID: PMC7178029 DOI: 10.3390/ijms21072458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca2+ release activated Ca2+ current (ICRAC). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | | | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
- Correspondence: ; Tel.: +41-31-631-3415
| |
Collapse
|
21
|
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers (Basel) 2019; 11:E457. [PMID: 30935064 PMCID: PMC6520831 DOI: 10.3390/cancers11040457] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.
Collapse
Affiliation(s)
- Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Leticia Prates Roma
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
22
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
23
|
Zuccolo E, Laforenza U, Ferulli F, Pellavio G, Scarpellino G, Tanzi M, Turin I, Faris P, Lucariello A, Maestri M, Kheder DA, Guerra G, Pedrazzoli P, Montagna D, Moccia F. Stim and Orai mediate constitutive Ca 2+ entry and control endoplasmic reticulum Ca 2+ refilling in primary cultures of colorectal carcinoma cells. Oncotarget 2018; 9:31098-31119. [PMID: 30123430 PMCID: PMC6089563 DOI: 10.18632/oncotarget.25785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) provides a major Ca2+ entry route in cancer cells. SOCE is mediated by the assembly of Stim and Orai proteins at endoplasmic reticulum (ER)-plasma membrane junctions upon depletion of the ER Ca2+ store. Additionally, Stim and Orai proteins underpin constitutive Ca2+ entry in a growing number of cancer cell types due to the partial depletion of their ER Ca2+ reservoir. Herein, we investigated for the first time the structure and function of SOCE in primary cultures of colorectal carcinoma (CRC) established from primary tumor (pCRC) and metastatic lesions (mCRC) of human subjects. Stim1-2 and Orai1-3 transcripts were equally expressed in pCRC and mCRC cells, although Stim1 and Orai3 proteins were up-regulated in mCRC cells. The Mn2+-quenching technique revealed that constitutive Ca2+ entry was significantly enhanced in pCRC cells and was inhibited by the pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3. The larger resting Ca2+ influx in pCRC was associated to their lower ER Ca2+ content as compared to mCRC cells. Pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 prevented ER-dependent Ca2+ release, thereby suggesting that constitutive SOCE maintains ER Ca2+ levels. Nevertheless, pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 did not affect CRC cell proliferation and migration. These data provide the first evidence that Stim and Orai proteins mediate constitutive Ca2+ entry and replenish ER with Ca2+ in primary cultures of CRC cells. However, SOCE is not a promising target to design alternative therapies for CRC.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Turin
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Angela Lucariello
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dlzar Ali Kheder
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Zakho, Kurdistan-Region of Iraq, Iraq
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Zhou X, Friedmann KS, Lyrmann H, Zhou Y, Schoppmeyer R, Knörck A, Mang S, Hoxha C, Angenendt A, Backes CS, Mangerich C, Zhao R, Cappello S, Schwär G, Hässig C, Neef M, Bufe B, Zufall F, Kruse K, Niemeyer BA, Lis A, Qu B, Kummerow C, Schwarz EC, Hoth M. A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. J Physiol 2018; 596:2681-2698. [PMID: 29368348 DOI: 10.1113/jp274964] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to eliminate cancer cells. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity and found that in particular CTLs have a very low optimum of [Ca2+ ]i (between 122 and 334 nm) and [Ca2+ ]o (between 23 and 625 μm) for efficient cancer cell elimination, well below blood plasma Ca2+ levels. As predicted from these results, partial down-regulation of the Ca2+ channel Orai1 in CTLs paradoxically increases perforin-dependent cancer cell killing. Lytic granule release at the immune synapse between CTLs and cancer cells has a Ca2+ optimum compatible with this low Ca2+ optimum for efficient cancer cell killing, whereas the Ca2+ optimum for CTL migration is slightly higher and proliferation increases monotonously with increasing [Ca2+ ]o . We propose that a partial inhibition of Ca2+ signals by specific Orai1 blockers at submaximal concentrations could contribute to tumour elimination. ABSTRACT Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to protect the human body against cancer. Ca2+ is a key metabolic factor for lymphocyte function and cancer homeostasis. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity against cancer cells and found that CTLs have a bell-shaped Ca2+ dependence with an optimum for cancer cell elimination at rather low [Ca2+ ]o (23-625 μm) and [Ca2+ ]i (122-334 nm). This finding predicts that a partial inhibition of Orai1 should increase (rather than decrease) cytotoxicity of CTLs at [Ca2+ ]o higher than 625 μm. We tested this hypothesis in CTLs and indeed found that partial down-regulation of Orai1 by siRNA increases the efficiency of cancer cell killing. We found two mechanisms that may account for the Ca2+ optimum of cancer cell killing: (1) migration velocity and persistence have a moderate optimum between 500 and 1000 μm [Ca2+ ]o in CTLs, and (2) lytic granule release at the immune synapse between CTLs and cancer cells is increased at 146 μm compared to 3 or 800 μm, compatible with the Ca2+ optimum for cancer cell killing. It has been demonstrated in many cancer cell types that Orai1-dependent Ca2+ signals enhance proliferation. We propose that a decrease of [Ca2+ ]o or partial inhibition of Orai1 activity by selective blockers in the tumour microenvironment could efficiently reduce cancer growth by simultaneously increasing CTL and NK cell cytotoxicity and decreasing cancer cell proliferation.
Collapse
Affiliation(s)
- Xiao Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Hélène Lyrmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Yan Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Rouven Schoppmeyer
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Sebastian Mang
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Cora Hoxha
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Adrian Angenendt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Christian S Backes
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Carmen Mangerich
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Sabrina Cappello
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany.,Cardiovascular Physiology, University Medical Center, University of Göttingen, Göttingen, 37073, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Carmen Hässig
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Marc Neef
- Department of Theoretical Physics, Saarland University, Saarbrücken, 66041, Germany
| | - Bernd Bufe
- Physiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Frank Zufall
- Physiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Karsten Kruse
- Department of Theoretical Physics, Saarland University, Saarbrücken, 66041, Germany.,Department of Biochemistry and Theoretical Physics, University of Geneva, Geneva, 1211, Switzerland
| | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Annette Lis
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Carsten Kummerow
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421, Germany
| |
Collapse
|
25
|
Zhou JB, Sun YY, Zheng YL, Yu CQ, Lin HQ, Pang JY. A study on blocking store-operated Ca2+ entry in pulmonary arterial smooth muscle cells with xyloketals from marine fungi. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2017; 67:557-567. [PMID: 29337674 DOI: 10.1515/acph-2017-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 12/28/2022]
Abstract
In this study, the effect of four xyloketals 1-4 on store-operated calcium entry (SOCE) was investigated in primary distal pulmonary arterial smooth muscle cells (PASMCs) isolated from mice. The results showed that xyloketal A (1), an unusual ketal with C-3 symmetry, exhibited strong SOCE blocking activity. Secretion of interleukin-8 (IL-8) was also inhibited by xyloketal A. The parallel artificial membrane permeability assay (PAMPA) of 1-4 suggested that these xyloketals penetrated easily through the cell membrane. Moreover, the molecular docking study of xyloketal A with activation region of the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1 (STIM1-ORAI1) protein complex, the key domain of SOCE, revealed that xyloketal A exhibited a noncovalent interaction with the key residue lysine 363 (LYS363) in the identified cytosolic regions in STIM1-C. These findings provided useful information about xyloketal A as a SOCE inhibitor for further evaluation.
Collapse
Affiliation(s)
- Jie-Bin Zhou
- School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ying-Ying Sun
- Department of Guangdong Key Laboratory for New Pharmaceutical Dosage Forms GuangDong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ying-Lin Zheng
- School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chu-Qin Yu
- Department of Guangdong Key Laboratory for New Pharmaceutical Dosage Forms GuangDong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Hua-Qing Lin
- Department of Guangdong Key Laboratory for New Pharmaceutical Dosage Forms GuangDong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ji-Yan Pang
- School of Chemistry Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
26
|
Alevizopoulos K, Dimas K, Papadopoulou N, Schmidt EM, Tsapara A, Alkahtani S, Honisch S, Prousis KC, Alarifi S, Calogeropoulou T, Lang F, Stournaras C. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: in vitro and in vivo properties and cross talk with the membrane androgen receptor. Oncotarget 2017; 7:24415-28. [PMID: 27027435 PMCID: PMC5029711 DOI: 10.18632/oncotarget.8329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/06/2016] [Indexed: 12/31/2022] Open
Abstract
Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of various cardiac conditions. Recent published data with Na+/K+ ATPase inhibitors suggest a potent anti-cancer action of these agents in multiple indications. In the present study, we focus on istaroxime, a Na+/K+ ATPase inhibitor that has shown favorable safety and efficacy properties in cardiac phase II clinical trials. Our experiments in 22 cancer cell lines and in prostate tumors in vivo proved the strong anti-cancer action of this compound. Istaroxime induced apoptosis, affected the key proliferative and apoptotic mediators c-Myc and caspase-3 and modified actin cystoskeleton dynamics and RhoA activity in prostate cancer cells. Interestingly, istaroxime was capable of binding to mAR, a membrane receptor mediating rapid, non-genomic actions of steroids in prostate and other cells. These results support a multi-level action of Na+/K+ ATPase inhibitors in cancer cells and collectively validate istaroxime as a strong re-purposing candidate for further cancer drug development.
Collapse
Affiliation(s)
| | - Konstantinos Dimas
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Natalia Papadopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Eva-Maria Schmidt
- Department of Physiology, University of Tübingen, Tübingen, Germany.,Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Kyriakos C Prousis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Saud Alarifi
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Theodora Calogeropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece.,Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Kappel S, Marques IJ, Zoni E, Stokłosa P, Peinelt C, Mercader N, Kruithof-de Julio M, Borgström A. Store-Operated Ca 2+ Entry as a Prostate Cancer Biomarker - a Riddle with Perspectives. ACTA ACUST UNITED AC 2017; 3:208-217. [PMID: 29951353 PMCID: PMC6010502 DOI: 10.1007/s40610-017-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose of Review Store-operated calcium entry (SOCE) is dysregulated in prostate cancer, contributing to increased cellular migration and proliferation and preventing cancer cell apoptosis. We here summarize findings on gene expression levels and functions of SOCE components, stromal interaction molecules (STIM1 and STIM2), and members of the Orai protein family (Orai1, 2, and 3) in prostate cancer. Moreover, we introduce new research models that promise to provide insights into whether dysregulated SOCE signaling has clinically relevant implications in terms of increasing the migration and invasion of prostate cancer cells. Recent Findings Recent reports on Orai1 and Orai3 expression levels and function were in part controversial probably due to the heterogeneous nature of prostate cancer. Lately, in prostate cancer cells, transient receptor melastatin 4 channel was shown to alter SOCE and play a role in migration and proliferation. We specifically highlight new cancer research models: a subpopulation of cells that show tumor initiation and metastatic potential in mice and zebrafish models. Summary This review focuses on SOCE component dysregulation in prostate cancer and analyzes several preclinical, cellular, and animal cancer research models.
Collapse
Affiliation(s)
- Sven Kappel
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | | | - Eugenio Zoni
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Paulina Stokłosa
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Christine Peinelt
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- 2Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland.,4Department of Urology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anna Borgström
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Faouzi M, Kilch T, Horgen FD, Fleig A, Penner R. The TRPM7 channel kinase regulates store-operated calcium entry. J Physiol 2017; 595:3165-3180. [PMID: 28130783 DOI: 10.1113/jp274006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Pharmacological and molecular inhibition of transient receptor potential melastatin 7 (TRPM7) reduces store-operated calcium entry (SOCE). Overexpression of TRPM7 in TRPM7-/- cells restores SOCE. TRPM7 is not a store-operated calcium channel. TRPM7 kinase rather than channel modulates SOCE. TRPM7 channel activity contributes to the maintenance of store Ca2+ levels at rest. ABSTRACT The transient receptor potential melastatin 7 (TRPM7) is a protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. In the present study, we report store-operated calcium entry (SOCE) as a novel target of TRPM7 kinase activity. TRPM7-deficient chicken DT40 B lymphocytes exhibit a strongly impaired SOCE compared to wild-type cells as a result of reduced calcium release activated calcium currents, and independently of potassium channel regulation, membrane potential changes or changes in cell-cycle distribution. Pharmacological blockade of TRPM7 with NS8593 or waixenicin A in wild-type B lymphocytes results in a significant decrease in SOCE, confirming that TRPM7 activity is acutely linked to SOCE, without TRPM7 representing a store-operated channel itself. Using kinase-deficient mutants, we find that TRPM7 regulates SOCE through its kinase domain. Furthermore, Ca2+ influx through TRPM7 is essential for the maintenance of endoplasmic reticulum Ca2+ concentration in resting cells, and for the refilling of Ca2+ stores after a Ca2+ signalling event. We conclude that the channel kinase TRPM7 and SOCE are synergistic mechanisms regulating intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Malika Faouzi
- Centre for Biomedical Research, The Queen's Medical Centre, University of Hawaii Cancer Centre and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Tatiana Kilch
- Centre for Biomedical Research, The Queen's Medical Centre, University of Hawaii Cancer Centre and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - F David Horgen
- Laboratory of Marine Biological Chemistry, Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, USA
| | - Andrea Fleig
- Centre for Biomedical Research, The Queen's Medical Centre, University of Hawaii Cancer Centre and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Reinhold Penner
- Centre for Biomedical Research, The Queen's Medical Centre, University of Hawaii Cancer Centre and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
29
|
Hempel N, Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 2017; 63:70-96. [PMID: 28143649 DOI: 10.1016/j.ceca.2017.01.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
Abstract
The interplay between Ca2+ and reactive oxygen species (ROS) signaling pathways is well established, with reciprocal regulation occurring at a number of subcellular locations. Many Ca2+ channels at the cell surface and intracellular organelles, including the endoplasmic reticulum and mitochondria are regulated by redox modifications. In turn, Ca2+ signaling can influence the cellular generation of ROS, from sources such as NADPH oxidases and mitochondria. This relationship has been explored in great depth during the process of apoptosis, where surges of Ca2+ and ROS are important mediators of cell death. More recently, coordinated and localized Ca2+ and ROS transients appear to play a major role in a vast variety of pro-survival signaling pathways that may be crucial for both physiological and pathophysiological functions. While much work is required to firmly establish this Ca2+-ROS relationship in cancer, existing evidence from other disease models suggests this crosstalk is likely of significant importance in tumorigenesis. In this review, we describe the regulation of Ca2+ channels and transporters by oxidants and discuss the potential consequences of the ROS-Ca2+ interplay in tumor cells.
Collapse
Affiliation(s)
- Nadine Hempel
- Department of Pharmacology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey PA 17033, United States; Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States.
| |
Collapse
|
30
|
Calcium remodeling in colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:843-849. [PMID: 28087343 DOI: 10.1016/j.bbamcr.2017.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the third most frequent form of cancer and the fourth leading cause of cancer-related death in the world. Basic and clinical data indicate that aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) may prevent colon cancer but mechanisms remain unknown. Aspirin metabolite salicylate and other NSAIDs may inhibit tumor cell growth acting on store-operated Ca2+ entry (SOCE), suggesting an important role for this pathway in CRC. Consistently, SOCE is emerging as a novel player in different forms of cancer, including CRC. SOCE and store-operated currents (SOCs) are dramatically enhanced in CRC while Ca2+ stores are partially empty in CRC cells. These features may contribute to CRC hallmarks including enhanced cell proliferation, migration, invasion and survival. At the molecular level, enhanced SOCE and depleted stores are mediated by overexpression of Orai1, Stromal interaction protein 1 (STIM1) and Transient receptor protein channel 1 (TRPC1) and downregulation of STIM2. In normal colonic cells, SOCE is mediated by Ca2+-release activated Ca2+ channels made of STIM1, STIM2 and Orai1. In CRC cells, SOCE is mediated by different store-operated currents (SOCs) driven by STIM1, Orai1 and TRPC1. Loss of STIM2 contributes to depletion of Ca2+ stores and enhanced resistance to cell death in CRC cells. Thus, SOCE is a novel key player in CRC and inhibition by salicylate and other NSAIDs may contribute to explain chemoprevention activity. SUMMARY Colorectal cancer (CRC) is the third most frequent form of cancer worldwide. Recent evidence suggests that intracellular Ca2+ remodeling may contribute to cancer hallmarks. In addition, aspirin and other NSAIDs might prevent CRC acting on remodeled Ca2+ entry pathways. In this review, we will briefly describe 1) the players involved in intracellular Ca2+ homeostasis with a particular emphasis on the mechanisms involved in SOCE activation and inactivation, 2) the evidence that aspirin metabolite salicylate and other NSAIDs inhibits tumor cell growth acting on SOCE, 3) evidences on the remodeling of intracellular Ca2+ in cancer with a particular emphasis in SOCE, 4) the remodeling of SOCE and Ca2+ store content in CRC and, finally, 5) the molecular basis of Ca2+ remodeling in CRC. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
31
|
Holzmann C, Kappel S, Kilch T, Jochum MM, Urban SK, Jung V, Stöckle M, Rother K, Greiner M, Peinelt C. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells. Oncotarget 2016; 6:41783-93. [PMID: 26496025 PMCID: PMC4747188 DOI: 10.18632/oncotarget.6157] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022] Open
Abstract
Impaired Ca2+ signaling in prostate cancer contributes to several cancer hallmarks, such as enhanced proliferation and migration and a decreased ability to induce apoptosis. Na+ influx via transient receptor potential melastatin 4 channel (TRPM4) can reduce store-operated Ca2+ entry (SOCE) by decreasing the driving force for Ca2+. In patients with prostate cancer, gene expression of TRPM4 is elevated. Recently, TRPM4 was identified as a cancer driver gene in androgen-insensitive prostate cancer. We investigated TRPM4 protein expression in cancer tissue samples from 20 patients with prostate cancer. We found elevated TRPM4 protein levels in prostatic intraepithelial neoplasia (PIN) and prostate cancer tissue compared to healthy tissue. In primary human prostate epithelial cells (hPEC) from healthy tissue and in the androgen-insensitive prostate cancer cell lines DU145 and PC3, TRPM4 mediated large Na+ currents. We demonstrated significantly increased SOCE after siRNA targeting of TRPM4 in hPEC and DU145 cells. In addition, knockdown of TRPM4 reduced migration but not proliferation of DU145 and PC3 cells. Taken together, our data identify TRPM4 as a regulator of SOCE in hPEC and DU145 cells, demonstrate a role for TRPM4 in cancer cell migration and suggest that TRPM4 is a promising potential therapeutic target.
Collapse
Affiliation(s)
- Christian Holzmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Sven Kappel
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany.,Center of Human and Molecular Biology, Saarland University, Homburg, Germany
| | - Tatiana Kilch
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany.,Center of Human and Molecular Biology, Saarland University, Homburg, Germany
| | - Marcus Martin Jochum
- Center of Human and Molecular Biology, Saarland University, Homburg, Germany.,Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Sabine Katharina Urban
- Center of Human and Molecular Biology, Saarland University, Homburg, Germany.,Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Volker Jung
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Michael Stöckle
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Karen Rother
- Center of Human and Molecular Biology, Saarland University, Homburg, Germany.,Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Markus Greiner
- Center of Human and Molecular Biology, Saarland University, Homburg, Germany.,Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Christine Peinelt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany.,Center of Human and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
32
|
Holzmann C, Kilch T, Kappel S, Dörr K, Jung V, Stöckle M, Bogeski I, Peinelt C. Differential Redox Regulation of Ca²⁺ Signaling and Viability in Normal and Malignant Prostate Cells. Biophys J 2016; 109:1410-9. [PMID: 26445441 DOI: 10.1016/j.bpj.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
In prostate cancer, reactive oxygen species (ROS) are elevated and Ca(2+) signaling is impaired. Thus, several novel therapeutic strategies have been developed to target altered ROS and Ca(2+) signaling pathways in prostate cancer. Here, we investigate alterations of intracellular Ca(2+) and inhibition of cell viability caused by ROS in primary human prostate epithelial cells (hPECs) from healthy tissue and prostate cancer cell lines (LNCaP, DU145, and PC3). In hPECs, LNCaP and DU145 H2O2 induces an initial Ca(2+) increase, which in prostate cancer cells is blocked at high concentrations of H2O2. Upon depletion of intracellular Ca(2+) stores, store-operated Ca(2+) entry (SOCE) is activated. SOCE channels can be formed by hexameric Orai1 channels; however, Orai1 can form heteromultimers with its homolog, Orai3. Since the redox sensor of Orai1 (Cys-195) is absent in Orai3, the Orai1/Orai3 ratio in T cells determines the redox sensitivity of SOCE and cell viability. In prostate cancer cells, SOCE is blocked at lower concentrations of H2O2 compared with hPECs. An analysis of data from hPECs, LNCaP, DU145, and PC3, as well as previously published data from naive and effector TH cells, demonstrates a strong correlation between the Orai1/Orai3 ratio and the SOCE redox sensitivity and cell viability. Therefore, our data support the concept that store-operated Ca(2+) channels in hPECs and prostate cancer cells are heteromeric Orai1/Orai3 channels with an increased Orai1/Orai3 ratio in cells derived from prostate cancer tumors. In addition, ROS-induced alterations in Ca(2+) signaling in prostate cancer cells may contribute to the higher sensitivity of these cells to ROS.
Collapse
Affiliation(s)
- Christian Holzmann
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Tatiana Kilch
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany; Center of Human and Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Kappel
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Kathrin Dörr
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Volker Jung
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Michael Stöckle
- Clinics of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Christine Peinelt
- Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany; Center of Human and Molecular Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
33
|
Jardin I, Rosado JA. STIM and calcium channel complexes in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1418-26. [DOI: 10.1016/j.bbamcr.2015.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/25/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
|
34
|
Lopez JJ, Albarran L, Gómez LJ, Smani T, Salido GM, Rosado JA. Molecular modulators of store-operated calcium entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2037-43. [PMID: 27130253 DOI: 10.1016/j.bbamcr.2016.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/13/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022]
Abstract
Three decades ago, store-operated Ca(2+) entry (SOCE) was identified as a unique mechanism for Ca(2+) entry through plasma membrane (PM) Ca(2+)-permeable channels modulated by the intracellular Ca(2+) stores, mainly the endoplasmic reticulum (ER). Extensive analysis of the communication between the ER and the PM leads to the identification of the protein STIM1 as the ER-Ca(2+) sensor that gates the Ca(2+) channels in the PM. Further analysis on the biophysical, electrophysiological and biochemical properties of STIM1-dependent Ca(2+) channels has revealed the presence of a highly Ca(2+)-selective channel termed Ca(2+) release-activated Ca(2+) channel (CRAC), consisting of Orai1 subunits, and non-selective cation channels named store-operated channels (SOC), including both Orai1 and TRPC channel subunits. Since the identification of the key elements of CRAC and SOC channels a number of intracellular modulators have been reported to play essential roles in the stabilization of STIM-Orai interactions, collaboration with STIM1 conformational changes or mediating slow Ca(2+)-dependent inactivation. Here, we review our current understanding of some of the key modulators of STIM1-Orai1 interaction, including the proteins CRACR2A, STIMATE, SARAF, septins, golli and ORMDL3.
Collapse
Affiliation(s)
- Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Luis J Gómez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, Sevilla, Spain
| | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
35
|
Stanisz H, Vultur A, Herlyn M, Roesch A, Bogeski I. The role of Orai-STIM calcium channels in melanocytes and melanoma. J Physiol 2016; 594:2825-35. [PMID: 26864956 DOI: 10.1113/jp271141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium signalling within normal and cancer cells regulates many important cellular functions such as migration, proliferation, differentiation and cytokine secretion. Store operated Ca(2+) entry (SOCE) via the Ca(2+) release activated Ca(2+) (CRAC) channels, which are composed of the plasma membrane based Orai channels and the endoplasmic reticulum stromal interaction molecules (STIMs), is a major Ca(2+) entry route in many cell types. Orai and STIM have been implicated in the growth and metastasis of multiple cancers; however, while their involvement in cancer is presently indisputable, how Orai-STIM-controlled Ca(2+) signals affect malignant transformation, tumour growth and invasion is not fully understood. Here, we review recent studies linking Orai-STIM Ca(2+) channels with cancer, with a particular focus on melanoma. We highlight and examine key molecular players and the signalling pathways regulated by Orai and STIM in normal and malignant cells, we expose discrepancies, and we reflect on the potential of Orai-STIMs as anticancer drug targets. Finally, we discuss the functional implications of future discoveries in the field of Ca(2+) signalling.
Collapse
Affiliation(s)
- Hedwig Stanisz
- Department of Dermatology, Venerology and Allergology, University Hospital of the Saarland, Homburg, Germany
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
36
|
Kilch T, Kappel S, Peinelt C. Regulation of Ca(2+) signaling in prostate cancer cells. Channels (Austin) 2016; 10:170-1. [PMID: 26745455 PMCID: PMC4954580 DOI: 10.1080/19336950.2015.1137176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 10/26/2022] Open
Affiliation(s)
- Tatiana Kilch
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| | - Sven Kappel
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| | - Christine Peinelt
- a Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Center of Human and Molecular Biology, Saarland University , Homburg , Germany
| |
Collapse
|
37
|
Villalobos C, Sobradillo D, Hernández-Morales M, Núñez L. Remodeling of Calcium Entry Pathways in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:449-66. [DOI: 10.1007/978-3-319-26974-0_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Liu G, Honisch S, Liu G, Schmidt S, Alkahtani S, AlKahtane AA, Stournaras C, Lang F. Up-regulation of Orai1 expression and store operated Ca(2+) entry following activation of membrane androgen receptors in MCF-7 breast tumor cells. BMC Cancer 2015; 15:995. [PMID: 26690689 PMCID: PMC4687293 DOI: 10.1186/s12885-015-2014-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Membrane androgen receptors (mAR) are functionally expressed in a variety of tumor-cells including the breast tumor-cell line MCF-7. They are specifically activated by testosterone albumin conjugates (TAC). The mAR sensitive signaling includes activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) and reorganization of the actin filament network. Signaling of tumor-cells may further involve up-regulation of pore forming Ca2+ channel protein Orai1, which accomplishes store operated Ca2+ entry (SOCE). This study explored the regulation of Orai1 abundance and SOCE by mAR. Methods Actin filaments were visualized utilizing confocal microscopy, Rac1 activity using GST-GBD assay, Orai1 transcript levels by RT-PCR and total protein abundance by western blotting, Orai1 abundance at the cell surface by confocal microscopy and FACS-analysis, cytosolic Ca2+ activity ([Ca2+]i) utilizing Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following readdition of Ca2+ after store depletion with thapsigargin (1 μM). Results TAC treatment of MCF-7 cells was followed by Rac1 activation, actin polymerization, transient increase of Orai1transcript levels and protein abundance, and transient increase of SOCE. The transient increase of Orai1 protein abundance was abrogated by Rac1 inhibitor NSC23766 (50 μM) and by prevention of actin reorganization with cytochalasin B (1 μM). Conclusions mAR sensitive Rac1 activation and actin reorganization contribute to the regulation of Orai1 protein abundance and SOCE.
Collapse
Affiliation(s)
- Guilai Liu
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Sabina Honisch
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Guoxing Liu
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Sebastian Schmidt
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Saad Alkahtani
- Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece. .,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia.
| | - Abdullah A AlKahtane
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia.
| | - Christos Stournaras
- Department of Physiology, University of Tuebingen, Tuebingen, Germany. .,Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece.
| | - Florian Lang
- Department of Physiology, University of Tuebingen, Tuebingen, Germany. .,Physiologisches Institut, der Universität Tübingen, Gmelinstr. 5, D-72076, Tübingen, Germany.
| |
Collapse
|
39
|
Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1408-17. [PMID: 26705695 DOI: 10.1016/j.bbamcr.2015.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Building 48, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
40
|
Perrouin Verbe MA, Bruyere F, Rozet F, Vandier C, Fromont G. Expression of store-operated channel components in prostate cancer: the prognostic paradox. Hum Pathol 2015; 49:77-82. [PMID: 26826413 DOI: 10.1016/j.humpath.2015.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
Abstract
In vitro studies in prostate cancer (PCa) cell lines have suggested a key and complex role of the store-operated channels (SOCs) in major cancer hallmarks, including proliferation, apoptosis, and migration. In the present study, we investigated in vivo the expression of the SOC components transient receptor potential canonical (TRPC) 1, TRPC4, Orai1, and stromal interaction molecule 1 (STIM1), during all stages of PCa progression, and evaluated their prognostic impact in clinically localized cancer (CLC). The expressions of TRPC1, TRPC4, Orai1, STIM1, and the androgen receptor and the proliferation marker Ki-67 were evaluated by immunohistochemistry on tissue microarrays containing samples of normal prostate tissues (n=91), prostatic intraepithelial neoplasia (n=61), CLC surgically treated (n=238), and castration-resistant prostate cancer (CRPC; n=45). All markers significantly increased in CLC compared with normal tissues and (for Orai1 and STIM1) in advanced pT3 tumors compared with pT2. In contrast, their expression decreased in CRPC, particularly for Orai1. In CLC, staining for TRPC1, Orai1 and STIM1 correlated with androgen receptor expression, and TRPC1 status was associated with lower proliferation and longer recurrence-free survival, after adjusting for classical prognostic markers. Although increased SOC expression during PCa progression supports a role in cancer cell migration, the inverse association between TRPC1 and biochemical relapse suggests a protective effect in CLC. Moreover, the dramatic down-regulation of Orai1 in CRPC supports its role in apoptosis at this stage of the disease. These results call for caution when considering SOCs as potential therapeutic targets for PCa.
Collapse
Affiliation(s)
| | - Franck Bruyere
- Department of Urology, CHU-Universite de Tours, Tours 37000, France
| | - Francois Rozet
- Department of Urology, Institut Mutualiste Montsouris, Paris 75014, France
| | | | - Gaelle Fromont
- Inserm U1069, Tours 37000, France; Department of Pathology, CHU-Universite de Tours, Tours 37000, France.
| |
Collapse
|
41
|
Hariri W, Sudha T, Bharali DJ, Cui H, Mousa SA. Nano-Targeted Delivery of Toremifene, an Estrogen Receptor-α Blocker in Prostate Cancer. Pharm Res 2015; 32:2764-74. [PMID: 25762087 DOI: 10.1007/s11095-015-1662-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/02/2015] [Indexed: 01/19/2023]
Abstract
PURPOSE Estrogen Receptor-α (ERα) expression is increased in prostate cancer and acts as an oncogene. We propose that blocking of estrogen hormone binding to ERα using the ERα blocker toremifene will reduce the tumorigenicity of prostate cancer, and nano-targeted delivery of toremifene will improve anticancer efficacy. We report the synthesis and use in an orthotopic mouse model of PLGA-PEG nanoparticles encapsulating toremifene and nanoparticles encapsulating toremifene that are also conjugated to anti-PSMA for targeted prostate tumor delivery. METHODS Human prostate cancer cell line PC3M and a nude mouse model were used to test efficacy of nano-targeted and nano-encapsulated toremifene versus free toremifene on the growth and differentiation of tumor cells. RESULTS Treatment with free toremifene resulted in a significant reduction in growth of prostate tumor and proliferation, and its nano-targeting resulted in greater reduction of prostate tumor growth, greater toremifene tumor uptake, and enhanced tumor necrosis. Tumors from animals treated with nano-encapsulated toremifene conjugated with anti-PSMA showed about a 15-fold increase of toremifene compared to free toremifene. CONCLUSIONS Our data provide evidence that blocking ERα by toremifene and targeting prostate cancer tissues with anti-PSMA antibody on the nanoparticles' surface repressed the tumorigenicity of prostate cancer cells in this mouse model.
Collapse
Affiliation(s)
- Waseem Hariri
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, New York, 12144, USA
| | | | | | | | | |
Collapse
|
42
|
Vashisht A, Trebak M, Motiani RK. STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015; 309:C457-69. [PMID: 26017146 DOI: 10.1152/ajpcell.00064.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcium (Ca(2+)) regulates a plethora of cellular functions including hallmarks of cancer development such as cell cycle progression and cellular migration. Receptor-regulated calcium rise in nonexcitable cells occurs through store-dependent as well as store-independent Ca(2+) entry pathways. Stromal interaction molecules (STIM) and Orai proteins have been identified as critical constituents of both these Ca(2+) influx pathways. STIMs and Orais have emerged as targets for cancer therapeutics as their altered expression and function have been shown to contribute to tumorigenesis. Recent data demonstrate that they play a vital role in development and metastasis of a variety of tumor types including breast, prostate, cervical, colorectal, brain, and skin tumors. In this review, we will retrospect the data supporting a key role for STIM1, STIM2, Orai1, and Orai3 proteins in tumorigenesis and discuss the potential of targeting these proteins for cancer therapy.
Collapse
Affiliation(s)
- Ayushi Vashisht
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; and
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; and
| |
Collapse
|
43
|
Beck A, Fleig A, Penner R, Peinelt C. Regulation of endogenous and heterologous Ca²⁺ release-activated Ca²⁺ currents by pH. Cell Calcium 2014; 56:235-43. [PMID: 25168908 DOI: 10.1016/j.ceca.2014.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Deviations from physiological pH (∼pH 7.2) as well as altered Ca(2+) signaling play important roles in immune disease and cancer. One of the most ubiquitous pathways for cellular Ca(2+) influx is the store-operated Ca(2+) entry (SOCE) or Ca(2+) release-activated Ca(2+) current (ICRAC), which is activated upon depletion of intracellular Ca(2+) stores. We here show that extracellular and intracellular changes in pH regulate both endogenous ICRAC in Jurkat T lymphocytes and RBL2H3 cells, and heterologous ICRAC in HEK293 cells expressing the molecular components STIM1/2 and Orai1/2/3 (CRACM1/2/3). We find that external acidification suppresses, and alkalization facilitates IP3-induced ICRAC. In the absence of IP3, external alkalization did not elicit endogenous ICRAC but was able to activate heterologous ICRAC in HEK293 cells expressing Orai1/2/3 and STIM1 or STIM2. Similarly, internal acidification reduced IP3-induced activation of endogenous and heterologous ICRAC, while alkalization accelerated its activation kinetics without affecting overall current amplitudes. Mutation of two aspartate residues to uncharged alanine amino acids (D110/112A) in the first extracellular loop of Orai1 significantly attenuated both the inhibition of ICRAC by external acidic pH as well as its facilitation by alkaline conditions. We conclude that intra- and extracellular pH differentially regulates ICRAC. While intracellular pH might affect aggregation and/or binding of STIM to Orai, external pH seems to modulate ICRAC through its channel pore, which in Orai1 is partially mediated by residues D110 and D112.
Collapse
Affiliation(s)
- Andreas Beck
- Queen's Center for Biomedical Research, Laboratory of Cell and Molecular Signaling, The Queen's Medical Center, Honolulu, HI 96813, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States; Department of Pharmacology and Toxicology, ZHMB, Saarland University, D-66421 Homburg, Germany
| | - Andrea Fleig
- Queen's Center for Biomedical Research, Laboratory of Cell and Molecular Signaling, The Queen's Medical Center, Honolulu, HI 96813, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States
| | - Reinhold Penner
- Queen's Center for Biomedical Research, Laboratory of Cell and Molecular Signaling, The Queen's Medical Center, Honolulu, HI 96813, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| | - Christine Peinelt
- Queen's Center for Biomedical Research, Laboratory of Cell and Molecular Signaling, The Queen's Medical Center, Honolulu, HI 96813, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States; Department of Biophysics, Saarland University, ZHMB, 66421 Homburg, Germany.
| |
Collapse
|
44
|
Dubois C, Vanden Abeele F, Lehen'kyi V, Gkika D, Guarmit B, Lepage G, Slomianny C, Borowiec AS, Bidaux G, Benahmed M, Shuba Y, Prevarskaya N. Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 2014; 26:19-32. [PMID: 24954132 DOI: 10.1016/j.ccr.2014.04.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/05/2014] [Accepted: 04/24/2014] [Indexed: 12/19/2022]
Abstract
ORAI family channels have emerged as important players in malignant transformation, yet the way in which they reprogram cancer cells remains elusive. Here we show that the relative expression levels of ORAI proteins in prostate cancer are different from that in noncancerous tissue. By mimicking ORAI protein remodeling observed in primary tumors, we demonstrate in in vitro models that enhanced ORAI3 expression favors heteromerization with ORAI1 to form a novel channel. These channels support store-independent Ca(2+) entry, thereby promoting cell proliferation and a smaller number of functional homomeric ORAI1-based store-operated channels, which are important in supporting susceptibility to apoptosis. Thus, our findings highlight disrupted dynamic equilibrium of channel-forming proteins as an oncogenic mechanism.
Collapse
Affiliation(s)
- Charlotte Dubois
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France
| | - Fabien Vanden Abeele
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France.
| | - V'yacheslav Lehen'kyi
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France
| | - Dimitra Gkika
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France
| | - Basma Guarmit
- Inserm, INSERM U895, Centre Méditerranéen de Médecine Moléculaire, Hôpital l'Archet, Nice 06202, France
| | - Gilbert Lepage
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France
| | - Christian Slomianny
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France
| | - Anne Sophie Borowiec
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France
| | - Gabriel Bidaux
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France
| | - Mohamed Benahmed
- Inserm, INSERM U895, Centre Méditerranéen de Médecine Moléculaire, Hôpital l'Archet, Nice 06202, France
| | - Yaroslav Shuba
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France; Bogomoletz Institute of Physiology and International Centre of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev 01024, Ukraine
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France.
| |
Collapse
|