1
|
Hou Y, Fu Z, Wang C, Kucharzewska P, Guo Y, Zhang S. 27-Hydroxycholesterol in cancer development and drug resistance. J Enzyme Inhib Med Chem 2025; 40:2507670. [PMID: 40401382 PMCID: PMC12100970 DOI: 10.1080/14756366.2025.2507670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/25/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
27-Hydroxycholesterol (27HC), a cholesterol metabolite, functions both as a selective oestrogen receptor (ER) modulator and a ligand for liver X receptors (LXRs). The discovery of 27HC involvement in carcinogenesis has unveiled new research avenues, yet its precise role remains controversial and context-dependent. In this review, we provide an overview of the biosynthesis and metabolism of 27HC and explore its cancer-associated signalling, with a particular focus on ER- and LXR-mediated pathways. Given the tissue-specific dual role of 27HC, we discuss its differential impact across various cancer types. Furthermore, we sort out 27HC-contributed drug resistance mechanisms from the perspectives of drug efflux, cellular proliferation, apoptosis, epithelial-mesenchymal transition (EMT), antioxidant defence, epigenetic modification, and metabolic reprogramming. Finally, we highlight the chemical inhibitors to mitigate 27HC-driven cancer progression and drug resistance. This review offers an updated role of 27HC in cancer biology, setting the stage for future research and the development of targeted therapeutics.
Collapse
Affiliation(s)
- Yaxin Hou
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People’s Liberation Army of China (PLA), Beijing, China
| | - Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Dang Y, Zhang Y, Wang Z. The role of statins in the regulation of breast and colorectal cancer and future directions. Front Pharmacol 2025; 16:1578345. [PMID: 40438592 PMCID: PMC12116307 DOI: 10.3389/fphar.2025.1578345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/08/2025] [Indexed: 06/01/2025] Open
Abstract
Statins, widely recognized as a cornerstone in the prevention of cardiovascular diseases, have garnered increasing attention in oncology due to their pleiotropic effects, particularly their potential roles in regulating breast and colorectal cancer. Emerging evidence suggests that statins may exert anticancer effects through multiple mechanisms, including the mitochondrial apoptosis pathway, the LKB1-AMPK-p38MAPK-p53-survivin signaling cascade, inhibition of the mevalonate pathway, modulation of the EGFR/RhoA and IGF-1 signaling pathways, and regulation of the BMP/SMAD4 signaling pathway. However, significant heterogeneity exists in the reported anticancer effects of statins, likely due to variations in statin type (lipophilic vs hydrophilic), dosage, treatment duration, and population-specific characteristics. These factors contribute to inconsistencies in study outcomes. Additionally, while combination therapies incorporating statins with chemotherapy and immunotherapy have demonstrated synergistic effects in certain studies, their clinical utility remains to be fully established. Nevertheless, current evidence suggests that statins may have a potential role in reducing breast and colorectal cancer-related mortality. Future research should prioritize elucidating their precise molecular mechanisms, defining dose-response relationships, developing personalized treatment strategies within the framework of precision medicine, and validating their efficacy through large-scale, long-term prospective studies. These efforts will provide a more robust scientific foundation for the clinical application of statins in oncology. This review systematically explores the role of statins in breast and colorectal cancer regulation, covering clinical evidence, underlying biological mechanisms, pharmacological distinctions, synergistic therapeutic potential, and translational medicine prospects.
Collapse
Affiliation(s)
| | | | - Zhihao Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zinnah KMA, Munna AN, Park SY. Optimizing autophagy modulation for enhanced TRAIL-mediated therapy: Unveiling the superiority of late-stage inhibition over early-stage inhibition to overcome therapy resistance in cancer. Basic Clin Pharmacol Toxicol 2025; 136:e14110. [PMID: 39668304 DOI: 10.1111/bcpt.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation. However, autophagy also supports cancer cell survival and growth by providing essential nutrients for therapeutic resistance. Thus, autophagy has emerged as a promising strategy for overcoming resistance and enhancing anti-cancer therapy. Inhibiting autophagy significantly improves the sensitivity of lung, colorectal, breast, liver and prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). This review investigates the intricate interplay between autophagy modulation and TRAIL-based therapy, specifically focussing on comparing the efficacy of late-stage autophagy inhibition versus early-stage inhibition in overcoming cancer resistance. We expose the distinctive advantages of late-stage autophagy inhibition by exploring the mechanisms underlying autophagy's impact on TRAIL sensitivity. Current preclinical and clinical investigations are inspected, showing the potential of targeting late-stage autophagy for sensitizing resistant cancer cells to TRAIL-induced apoptosis. This review emphasizes the significance of optimizing autophagy modulation to enhance TRAIL-mediated therapy and overcome the challenge of treatment resistance in cancer. We offer insights and recommendations for guiding the development of potential therapeutic strategies aimed at overcoming the challenges posed by treatment-resistant cancers.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- Faculty of Biotechnology and Genetic Engineering, Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
4
|
Tripathi S, Gupta E, Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep (Hoboken) 2024; 7:e2078. [PMID: 38711272 PMCID: PMC11074523 DOI: 10.1002/cnr2.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Statins, frequently prescribed medications, work by inhibiting the rate-limiting enzyme HMG-CoA reductase (HMGCR) in the mevalonate pathway to reduce cholesterol levels. Due to their multifaceted benefits, statins are being adapted for use as cost-efficient, safe and effective anti-cancer treatments. Several studies have shown that specific types of cancer are responsive to statin medications since they rely on the mevalonate pathway for their growth and survival. RECENT FINDINGS Statin are a class of drugs known for their potent inhibition of cholesterol production and are typically prescribed to treat high cholesterol levels. Nevertheless, there is growing interest in repurposing statins for the treatment of malignant neoplastic diseases, often in conjunction with chemotherapy and radiotherapy. The mechanism behind statin treatment includes targeting apoptosis through the BCL2 signaling pathway, regulating the cell cycle via the p53-YAP axis, and imparting epigenetic modulations by altering methylation patterns on CpG islands and histone acetylation by downregulating DNMTs and HDACs respectively. Notably, some studies have suggested a potential chemo-preventive effect, as decreased occurrence of tumor relapse and enhanced survival rate were reported in patients undergoing long-term statin therapy. However, the definitive endorsement of statin usage in cancer therapy hinges on population based clinical studies with larger patient cohorts and extended follow-up periods. CONCLUSIONS The potential of anti-cancer properties of statins seems to reach beyond their influence on cholesterol production. Further investigations are necessary to uncover their effects on cancer promoting signaling pathways. Given their distinct attributes, statins might emerge as promising contenders in the fight against tumorigenesis, as they appear to enhance the efficacy and address the limitations of conventional cancer treatments.
Collapse
Affiliation(s)
- Sneha Tripathi
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Ekta Gupta
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Sanjeev Galande
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
- Centre of Excellence in Epigenetics, Department of Life SciencesShiv Nadar Institution of EminenceGautam Buddha NagarIndia
| |
Collapse
|
5
|
Nimal S, Kumbhar N, Saruchi, Rathore S, Naik N, Paymal S, Gacche RN. Apigenin and its combination with Vorinostat induces apoptotic-mediated cell death in TNBC by modulating the epigenetic and apoptotic regulators and related miRNAs. Sci Rep 2024; 14:9540. [PMID: 38664447 PMCID: PMC11045774 DOI: 10.1038/s41598-024-60395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.
Collapse
Affiliation(s)
- Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
- Medical Information Management, Department of Biochemistry, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Saruchi
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Shriya Rathore
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Nitin Naik
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Sneha Paymal
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India.
| |
Collapse
|
6
|
Zmaili M, Alzubi J, Alkhayyat M, Albakri A, Alkhalaileh F, Longinow J, Moudgil R. Cancer and Cardiovascular Disease: The Conjoined Twins. Cancers (Basel) 2024; 16:1450. [PMID: 38672532 PMCID: PMC11048405 DOI: 10.3390/cancers16081450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer and cardiovascular disease are the two most common causes of death worldwide. As the fields of cardiovascular medicine and oncology continue to expand, the area of overlap is becoming more prominent demanding dedicated attention and individualized patient care. We have come to realize that both fields are inextricably intertwined in several aspects, so much so that the mere presence of one, with its resultant downstream implications, has an impact on the other. Nonetheless, cardiovascular disease and cancer are generally approached independently. The focus that is granted to the predominant pathological entity (either cardiovascular disease or cancer), does not allow for optimal medical care for the other. As a result, ample opportunities for improvement in overall health care are being overlooked. Herein, we hope to shed light on the interconnected relationship between cardiovascular disease and cancer and uncover some of the unintentionally neglected intricacies of common cardiovascular therapeutics from an oncologic standpoint.
Collapse
Affiliation(s)
- Mohammad Zmaili
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Jafar Alzubi
- Department of Medicine, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Motasem Alkhayyat
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Almaza Albakri
- Jordanian Royal Medical Services, Department of Internal Medicine, King Abdullah II Ben Al-Hussein Street, Amman 11855, Jordan
| | - Feras Alkhalaileh
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joshua Longinow
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rohit Moudgil
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Kobayashi K, Baba K, Kambayashi S, Okuda M. Blockade of isoprenoids biosynthesis by simvastatin induces autophagy-mediated cell death via downstream c-Jun N-terminal kinase activation and cell cycle dysregulation in canine T-cell lymphoma cells. Res Vet Sci 2024; 169:105174. [PMID: 38340381 DOI: 10.1016/j.rvsc.2024.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Statins are inhibitors of the mevalonic acid pathway that mediates cellular metabolism by producing cholesterol and isoprenoids and are widely used in treating hypercholesterolaemia in humans. Lipophilic statins, including simvastatin, induce death in various tumour cells. However, the cytotoxic mechanisms of statins in tumour cells remain largely unexplored. This study aimed to elucidate the cytotoxic mechanisms of simvastatin in canine lymphoma cells. Simvastatin induced cell death via c-Jun N-terminal kinase (JNK) activation and autophagy in canine T-cell lymphoma cell lines Ema and UL-1, but not in B-cell lines. Cell death was mediated by induction of caspase-dependent apoptosis in UL-1 cells, but not in Ema cells. Blockade of autophagy by lysosomal inhibitors attenuated simvastatin-induced JNK activation and cell death. Isoprenoids, including farnesyl pyrophosphate and geranylgeranyl pyrophosphate, attenuated simvastatin-induced autophagy, JNK activation, and cell death. In UL-1 cells, simvastatin treatment resulted in the cell cycle arrest at the G2/M phase, which was altered to G0/1 phase cell cycle arrest by treatment with lysosomal inhibitors. These findings demonstrate that depletion of isoprenoids by simvastatin induces autophagy-mediated cell death via downstream JNK activation and cell cycle dysregulation in canine T-cell lymphoma cells.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Kenji Baba
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan.
| | - Satoshi Kambayashi
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan; Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8511, Japan
| |
Collapse
|
8
|
Feng C, Zheng W, Han L, Wang JK, Zha XP, Xiao Q, He ZJ, Kang JC. AaLaeA targets AaFla1 to mediate the production of antitumor compound in Alternaria alstroemeria. J Basic Microbiol 2024; 64:68-80. [PMID: 37717245 DOI: 10.1002/jobm.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Endophytic fungi are an important source of novel antitumor substances. Previously, we isolated an endophytic fungus, Alternaria alstroemeria, from the medicinal plant Artemisia artemisia, whose crude extracts strongly inhibited A549 tumor cells. We obtained a transformant, namely AaLaeAOE26 , which completely loses its antitumor activity due to overexpression of the global regulator AaLaeA. Re-sequencing analysis of the genome revealed that the insertion site was in the noncoding region and did not destroy any other genes. Metabolomics analysis revealed that the level of secondary antitumor metabolic substances was significantly lower in AaLaeAOE26 compared with the wild strain, in particular flavonoids were more downregulated according to the metabolomics analysis. A further comparative transcriptome analysis revealed that a gene encoding FAD-binding domain protein (Fla1) was significantly downregulated. On the other hand, overexpression of AaFla1 led to significant enhancement of antitumor activity against A549 with a sevenfold higher inhibition ratio than the wild strain. At the same time, we also found a significant increase in the accumulation of antitumor metabolites including quercetin, gitogenin, rhodioloside, liensinine, ginsenoside Rg2 and cinobufagin. Our data suggest that the global regulator AaLaeA negatively affects the production of antitumor compounds via controlling the transcription of AaFla1 in endophytic A. alstroemeria.
Collapse
Affiliation(s)
- Can Feng
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Wen Zheng
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Long Han
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Jian-Kang Wang
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Xing-Ping Zha
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Qing Xiao
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Zhang-Jiang He
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Ji-Chuan Kang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
9
|
Tulk A, Watson R, Erdrich J. The Influence of Statin Use on Chemotherapeutic Efficacy in Studies of Mouse Models: A Systematic Review. Anticancer Res 2023; 43:4263-4275. [PMID: 37772570 PMCID: PMC10637576 DOI: 10.21873/anticanres.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND/AIM Using statins as antitumor agents is an approach to cancer therapy that has been explored extensively in specific cancer types. Reframing the query to how a statin interacts with the treatment regimen instead might provide new insight. Given that cell-cycle regulation influences tumorigenesis, it is possible that the cell-cycle phase which a given chemotherapy acts on influences the synergistic effects with adjuvant statin use. In this review, we outline the effect of statins in combination with chemotherapeutic drugs in in vivo animal model studies based on the class of chemotherapy and its relation to the cell cycle. MATERIALS AND METHODS This systematic review was conducted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 with 23 articles deemed eligible to be included. RESULTS Our review suggests that statins influence the success of chemotherapy treatments. Furthermore, enhanced efficacy was demonstrated with chemotherapeutic drugs that act at every phase of the cell cycle. CONCLUSION This type of compilation departs from the norm of describing statin influence on named cancer subtypes and instead catalogs how statins interact with categorical chemotherapy agents which might be beneficial for broader therapeutic decision-making across cancer subtypes, possibly contributing to pharmaceutical development, and thereby helping to maximize patient outcomes.
Collapse
Affiliation(s)
- Angela Tulk
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, U.S.A.;
| | - Raj Watson
- A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO, U.S.A
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, U.S.A
| |
Collapse
|
10
|
Zaky MY, Fan C, Zhang H, Sun XF. Unraveling the Anticancer Potential of Statins: Mechanisms and Clinical Significance. Cancers (Basel) 2023; 15:4787. [PMID: 37835481 PMCID: PMC10572000 DOI: 10.3390/cancers15194787] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Statins are an essential medication class in the treatment of lipid diseases because they inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. They reduce cholesterol levels and reduce the risk of cardiovascular disease in both primary and secondary prevention. In addition to their powerful pharmacologic suppression of cholesterol production, statins appear to have pleitropic effects in a wide variety of other diseases by modulating signaling pathways. In recent years, statins have seen a large increase in interest due to their putative anticancer effects. Statins appear to cause upregulation or inhibition in key pathways involved in cancer such as inhibition of proliferation, angiogenesis, and metastasis as well as reducing cancer stemness. Further, statins have been found to induce oxidative stress, cell cycle arrest, autophagy, and apoptosis of cancer cells. Interestingly, clinical studies have shown that statin use is associated with a decreased risk of cancer formation, lower cancer grade at diagnosis, reduction in the risk of local reoccurrence, and increasing survival in patients. Therefore, our objective in the present review is to summarize the findings of the publications on the underlying mechanisms of statins' anticancer effects and their clinical implications.
Collapse
Affiliation(s)
- Mohamed Y. Zaky
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Chuanwen Fan
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Huan Zhang
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
11
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
12
|
Post-diagnostic statin use and breast cancer-specific mortality: a population-based cohort study. Breast Cancer Res Treat 2023; 199:195-206. [PMID: 36930345 PMCID: PMC10147735 DOI: 10.1007/s10549-022-06815-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 03/18/2023]
Abstract
PURPOSE Statins are the most widely prescribed cholesterol lowering medications and have been associated with both improved and unchanged breast cancer outcomes in previous studies. This study examines the association between the post-diagnostic use of statins and breast cancer outcomes (death and recurrence) in a large, representative sample of New Zealand (NZ) women with breast cancer. METHODS Women diagnosed with a first primary breast cancer between 2007 and 2016 were identified from four population-based regional NZ breast cancer registries and linked to national pharmaceutical data, hospital discharges, and death records. Cox proportional hazard models were used to estimate the hazard of breast cancer-specific death (BCD) associated with any post-diagnostic statin use. RESULTS Of the 14,976 women included in analyses, 27% used a statin after diagnosis and the median follow up time was 4.51 years. Statin use (vs non-use) was associated with a statistically significant decreased risk of BCD (adjusted hazard ratio: 0.74; 0.63-0.86). The association was attenuated when considering a subgroup of 'new' statin users (HR: 0.91; 0.69-1.19), however other analyses revealed that the protective effect of statins was more pronounced in estrogen receptor positive patients (HR: 0.77; 0.63-0.94), postmenopausal women (HR: 0.74; 0.63-0.88), and in women with advanced stage disease (HR: 0.65; 0.49-0.84). CONCLUSION In this study, statin use was associated with a statistically significant decreased risk of breast cancer death, with subgroup analyses revealing a more protective effect in ER+ patients, postmenopausal women, and in women with advanced stage disease. Further research is warranted to determine if these associations are replicated in other clinical settings.
Collapse
|
13
|
Novel Anti-Cancer Products Targeting AMPK: Natural Herbal Medicine against Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020740. [PMID: 36677797 PMCID: PMC9863744 DOI: 10.3390/molecules28020740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.
Collapse
|
14
|
Watson R, Tulk A, Erdrich J. The Link Between Statins and Breast Cancer in Mouse Models: A Systematic Review. Cureus 2022; 14:e31893. [PMID: 36579200 PMCID: PMC9790759 DOI: 10.7759/cureus.31893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, have consistently demonstrated pleiotropic effects in both preclinical and clinical studies. Outside of inhibiting the production of cholesterol in cells, statins have shown antineoplastic properties most commonly in breast cancer. Clinical and epidemiological studies, however, are less definitive than preclinical studies regarding statins as potential adjuvant oncologic therapy. Our objective is to summarize mouse model studies that investigate the link between statins and breast cancer using a cancer care continuum framework to provide a clinically relevant picture of the potential use of statins in breast cancer. A systematic review of the PubMed database was performed to identify studies published between January 2007 and July 2022 that investigated the effects of statins on breast cancer prevention, treatment, and survivorship in mouse models. Overall, 58 studies were identified using our search strategy. Based on our inclusion and exclusion criteria, 26 mouse model studies were eligible to be included in our systematic review. In breast cancer mouse models, statins alone and in combination with anti-cancer therapies demonstrate proven antineoplastic effects across the cancer care continuum. The antineoplastic benefit of statins as single agents in mouse model studies helps inform their synergistic benefit that future clinical studies can test. Parameters such as statin timing, dose, and breast cancer subtype are key stepping stones in defining how statins could be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Raj Watson
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Angela Tulk
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| |
Collapse
|
15
|
Guo C, Wan R, He Y, Lin SH, Cao J, Qiu Y, Zhang T, Zhao Q, Niu Y, Jin Y, Huang HY, Wang X, Tan L, Thomas RK, Zhang H, Chen L, Wong KK, Hu L, Ji H. Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. NATURE CANCER 2022; 3:614-628. [PMID: 35449308 DOI: 10.1038/s43018-022-00358-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.
Collapse
Affiliation(s)
- Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruijie Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shu-Hai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tengfei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yujia Niu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Pathology, Medical Faculty, University Hospital Cologne, Cologne, Germany
- DKFZ, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
16
|
Tilija Pun N, Lee N, Song SH, Jeong CH. Pitavastatin Induces Cancer Cell Apoptosis by Blocking Autophagy Flux. Front Pharmacol 2022; 13:854506. [PMID: 35387352 PMCID: PMC8977529 DOI: 10.3389/fphar.2022.854506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Statins, a class of lipid-lowering drugs, are used in drug repositioning for treatment of human cancer. However, the molecular mechanisms underlying statin-induced cancer cell death and autophagy are not clearly defined. In the present study, we showed that pitavastatin could increase apoptosis in a FOXO3a-dependent manner in the oral cancer cell line, SCC15, and the colon cancer cell line, SW480, along with the blockade of autophagy flux. The inhibition of autophagy by silencing the LC3B gene reduced apoptosis, while blockade of autophagy flux using its inhibitor, Bafilomycin A1, further induced apoptosis upon pitavastatin treatment, which suggested that autophagy flux blockage was the cause of apoptosis by pitavastatin. Further, the FOXO3a protein accumulated due to the blockade of autophagy flux which in turn was associated with the induction of ER stress by transcriptional upregulation of PERK-CHOP pathway, subsequently causing apoptosis due to pitavastatin treatment. Taken together, pitavastatin-mediated blockade of autophagy flux caused an accumulation of FOXO3a protein, thereby leading to the induction of PERK, ultimately causing CHOP-mediated apoptosis in cancer cells. Thus, the present study highlighted the additional molecular mechanism underlying the role of autophagy flux blockade in inducing ER stress, eventually leading to apoptosis by pitavastatin.
Collapse
Affiliation(s)
- Nirmala Tilija Pun
- College of Pharmacy, Keimyung University, Daegu, South Korea.,Boston Children's Hospital, Boston, MA, United States
| | - Naeun Lee
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
17
|
Crosstalk between Statins and Cancer Prevention and Therapy: An Update. Pharmaceuticals (Basel) 2021; 14:ph14121220. [PMID: 34959621 PMCID: PMC8704600 DOI: 10.3390/ph14121220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
The importance of statins in cancer has been discussed in many studies. They are known for their anticancer properties against solid tumors of the liver or lung, as well as diffuse cancers, such as multiple myeloma or leukemia. Currently, the most commonly used statins are simvastatin, rosuvastatin and atorvastatin. The anti-tumor activity of statins is largely related to their ability to induce apoptosis by targeting cancer cells with high selectivity. Statins are also involved in the regulation of the histone acetylation level, the disturbance of which can lead to abnormal activity of genes involved in the regulation of proliferation, differentiation and apoptosis. As a result, tumor growth and its invasion may be promoted, which is associated with a poor prognosis. High levels of histone deacetylases are observed in many cancers; therefore, one of the therapeutic strategies is to use their inhibitors. Combining statins with histone deacetylase inhibitors can induce a synergistic anticancer effect.
Collapse
|
18
|
Nowakowska MK, Lei X, Thompson MT, Shaitelman SF, Wehner MR, Woodward WA, Giordano SH, Nead KT. Association of statin use with clinical outcomes in patients with triple-negative breast cancer. Cancer 2021; 127:4142-4150. [PMID: 34342892 PMCID: PMC11912801 DOI: 10.1002/cncr.33797] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have examined the association of statin therapy and breast cancer outcomes with mixed results. The objective of this study was to investigate the clinical effects of incident statin use among individuals with triple-negative breast cancer (TNBC). METHODS Data from the Surveillance, Epidemiology, and End Results-Medicare and Texas Cancer Registry-Medicare databases were used, and women aged ≥66 years who had stage I, II, and III breast cancer were identified. Multivariable Cox proportional hazards regression models were used to examine the association of new statin use in the 12 months after a breast cancer diagnosis with overall survival (OS) and breast cancer-specific survival (BCSS). RESULTS When examining incident statin use, defined as the initiation of statin therapy in the 12 months after breast cancer diagnosis, a significant association was observed between statin use and improved BCSS (standardized hazard ratio, 0.42; 95% confidence interval [CI], 0.20-0.88; P = .022) and OS (hazard ratio, 0.70; 95% CI, 0.50-0.99; P = .046) among patients with TNBC (n = 1534). No association was observed with BCSS (standardized hazard ratio, 0.99; 95% CI, 0.71-1.39; P = .97) or OS (hazard ratio, 1.04; 95% CI, 0.92-1.17; P = .55) among those without TNBC (n = 15,979). The results were consistent when examining statin exposure as a time-varying variable. CONCLUSIONS Among women with I, II, and III TNBC, initiation of statin therapy in the 12 months after breast cancer diagnosis was associated with an OS and BCSS benefit. Statins may have a role in select patients with breast cancer, and further investigation is warranted.
Collapse
Affiliation(s)
| | - Xiudong Lei
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mikayla T Thompson
- School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Simona F Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mackenzie R Wehner
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sharon H Giordano
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin T Nead
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Hu H, Zhang XW, Li L, Hu MN, Hu WQ, Zhang JY, Miao XK, Yang WL, Mou LY. Inhibition of autophagy by YC-1 promotes gefitinib induced apoptosis by targeting FOXO1 in gefitinib-resistant NSCLC cells. Eur J Pharmacol 2021; 908:174346. [PMID: 34270985 DOI: 10.1016/j.ejphar.2021.174346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/24/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Gefitinib, an inhibitor of EGFR tyrosine kinase, is highly effective in treating NSCLC patients with activating EGFR mutations (L858R or Ex19del). However, despite excellent disease control with gefitinib therapy, innate resistance and inevitable acquired resistance represent immense challenges in NSCLC therapy. Gefitinib potently induces cytoprotective autophagy, which has been implied to contribute to both innate and acquired resistance to gefitinib in NSCLC cells. Currently, abrogation of autophagy is considered a promising strategy for NSCLC therapy. In the present study, YC-1, an inhibitor of HIF-1α, was first found to significantly inhibit the autophagy induced by gefitinib by disrupting the fusion of autophagosomes and lysosomes and thereby enhancing the proapoptotic effect of gefitinib in gefitinib-resistant NSCLC cells. Furthermore, the combinational anti-autophagic and pro-apoptotic effect of gefitinib and YC-1 was demonstrated to be associated with an enhanced of forkhead box protein O1 (FOXO1) transcriptional activity which resulted from an increase in the p-FOXO1 protein level in gefitinib-resistant NSCLC cells. Our data suggest that inhibition of autophagy by targeting FOXO1 may be a feasible therapeutic strategy to overcome both innate and acquired resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Hui Hu
- School of Life Science Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao-Wei Zhang
- School of Life Science Lanzhou University, Lanzhou, 730000, PR China; Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| | - Lin Li
- School of Life Science Lanzhou University, Lanzhou, 730000, PR China; Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| | - Ming-Ning Hu
- School of Life Science Lanzhou University, Lanzhou, 730000, PR China; Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Qian Hu
- School of Life Science Lanzhou University, Lanzhou, 730000, PR China; Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| | - Jing-Ying Zhang
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao-Kang Miao
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Wen-Le Yang
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China
| | - Ling-Yun Mou
- School of Life Science Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
20
|
Su B, Lim D, Tian Z, Liu G, Ding C, Cai Z, Chen C, Zhang F, Feng Z. Valproic Acid Regulates HR and Cell Cycle Through MUS81-pRPA2 Pathway in Response to Hydroxyurea. Front Oncol 2021; 11:681278. [PMID: 34513672 PMCID: PMC8429838 DOI: 10.3389/fonc.2021.681278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the primary problem threatening women’s health. The combined application of valproic acid (VPA) and hydroxyurea (HU) has a synergistic effect on killing breast cancer cells, but the molecular mechanism remains elusive. Replication protein A2 phosphorylation (pRPA2), is essential for homologous recombination (HR) repair and cell cycle. Here we showed that in response to HU, the VPA significantly decreased the tumor cells survival, and promoted S-phase slippage, which was associated with the decrease of pCHK1 and WEE1/pCDK1-mediated checkpoint kinases phosphorylation pathway and inhibited pRPA2/Rad51-mediated HR repair pathway; the mutation of pRPA2 significantly diminished the above effect, indicating that VPA-caused HU sensitization was pRPA2 dependent. It was further found that VPA and HU combination treatment also resulted in the decrease of endonuclease MUS81. After MUS81 elimination, not only the level of pRPA2 was abolished in response to HU treatment, but also VPA-caused HU sensitization was significantly down-regulated through pRPA2-mediated checkpoint kinases phosphorylation and HR repair pathways. In addition, the VPA altered the tumor microenvironment and reduced tumor burden by recruiting macrophages to tumor sites; the Kaplan-Meier analysis showed that patients with high pRPA2 expression had significantly worse survival. Overall, our findings demonstrated that VPA influences HR repair and cell cycle through down-regulating MUS81-pRPA2 pathway in response to HU treatment.
Collapse
Affiliation(s)
- Benyu Su
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zhujun Tian
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Guochao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenxia Ding
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zuchao Cai
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihui Feng
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
21
|
Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin Cancer Biol 2021; 73:116-133. [DOI: 10.1016/j.semcancer.2020.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
|
22
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
23
|
Synergetic Action of Forskolin and Mevastatin Induce Normalization of Lipids Profile in Dyslipidemic Rats through Adenosine Monophosphate Kinase Upregulation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6687551. [PMID: 34104650 PMCID: PMC8159628 DOI: 10.1155/2021/6687551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/02/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
In the present study, we examined the synergetic effect of forskolin and mevastatin administration on lipid profile and lipid metabolism in omental adipose tissue in dyslipidemic rats. The study was conducted on forty male albino rats. The rats were randomly classified into four main groups of ten animals in each group as follows: group A, served as control nontreated; group B, rats that received Triton WR 1339 (500 mg/kg); group C, rats that received Triton WR 1339 with forskolin (100% FSK extract 0.5 mg/kg/day) for four weeks; and group D, dyslipidemic rats received both mevastatin and forskolin. At the end of the experimental period, blood and omental adipose tissue samples were collected, preserved, and used for biochemical determination of lipid profile and mRNA expression profile of adenylate cyclase (AC), hormone-sensitive lipase, respectively (HSL), and adenosine monophosphate-activated protein kinase (AMPK). The results showed a significant decline in the serum concentration of total cholesterol, LDL-cholesterol, and triglycerides, although there was a significant increase in serum levels of HDL-cholesterol and glycerol in rats received forskolin alone or with mevastatin when compared with control and dyslipidemic groups. The mRNA expression levels of AC, HSL, and AMPK were significantly increased in omental adipose tissue of rats received forskolin when compared with other groups. In conclusion, forskolin acts synergistically with mevastatin to lower lipid profile and improve lipid metabolism in dyslipidemic rats through upregulation of AMPK expression.
Collapse
|
24
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
25
|
Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Sahebkar A. New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms. Anticancer Agents Med Chem 2021; 21:679-691. [PMID: 32560613 DOI: 10.2174/1871520620666200619180716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is accounted as the fifth leading cause of mortality among the other cancers. Notwithstanding, Triple Negative Breast Cancer (TNBC) is responsible for 15-20% of breast cancer mortality. Despite many investigations, it remains incurable in part due to insufficient understanding of its exact mechanisms. METHODS A literature search was performed in PubMed, SCOPUS and Web of Science databases using the keywords autophagy, Endoplasmic Reticulum (ER) stress, apoptosis, TNBC and the combinations of these keywords. RESULTS It was found that autophagy plays a dual role in cancer, so that it may decrease the viability of tumor cells or act as a cytoprotective mechanism. It then appears that using compounds having modulatory effects on autophagy is of importance in terms of induction of autophagic cell death and diminishing the proliferation and metastasis of tumor cells. Also, ER stress can be modulated in order to stimulate apoptotic and autophagic cell death in tumor cells. CONCLUSION Perturbation in the signaling pathways related to cell survival leads to the initiation and progression of cancer. Regarding the advancement in the cancer pathology, it seems that modulation of autophagy and ER stress are promising.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | |
Collapse
|
26
|
Iannelli F, Roca MS, Lombardi R, Ciardiello C, Grumetti L, De Rienzo S, Moccia T, Vitagliano C, Sorice A, Costantini S, Milone MR, Pucci B, Leone A, Di Gennaro E, Mancini R, Ciliberto G, Bruzzese F, Budillon A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:213. [PMID: 33032653 PMCID: PMC7545949 DOI: 10.1186/s13046-020-01723-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Simona De Rienzo
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Angela Sorice
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy. .,Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via Ammiraglio Bianco, 83013, Mercogliano, AV, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
27
|
Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as Anticancer Agents in the Era of Precision Medicine. Clin Cancer Res 2020; 26:5791-5800. [PMID: 32887721 DOI: 10.1158/1078-0432.ccr-20-1967] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Statins are widely prescribed cholesterol-lowering drugs that inhibit HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate metabolic pathway. Multiple lines of evidence indicate that certain cancers depend on the mevalonate pathway for growth and survival, and, therefore, are vulnerable to statin therapy. However, these immediately available, well-tolerated, and inexpensive drugs have yet to be successfully repurposed and integrated into cancer patient care. In this review, we highlight recent advances and outline important considerations for advancing statins to clinical trials in oncology.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jenna E van Leeuwen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mohamad Elbaz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Emily Branchard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res 2020; 43:475-488. [PMID: 32458284 DOI: 10.1007/s12272-020-01239-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a self-degradation process in which the cytoplasmic cargoes are delivered to the lysosomes for degradation. As the cargoes are degraded/recycled, the autophagy process maintains the cellular homeostasis. Anti-cancer therapies induce apoptosis and autophagy concomitantly, and the induced autophagy normally prevents stress responses that are being induced. In such cases, the inhibition of autophagy can be a reasonable strategy to enhance the efficacy of anti-cancer therapies. However, recent studies have shown that autophagy induced by anti-cancer drugs causes cell death/apoptosis induction, indicating a controversial role of autophagy in cancer cell survival or death/apoptosis. Therefore, in the present review, we aimed to assess the signaling mechanisms involved in autophagy and cell death/apoptosis induction during anti-cancer therapies. This review summarizes the process of autophagy, autophagy flux and its blockade, and measurement and interpretation of autophagy flux. Further, it describes the signaling pathways involved in the blockade of autophagy flux and the role of signaling molecules accumulated by autophagy blockade in cell death/apoptosis in various cancer cells during anti-cancer therapies. Altogether, it implies that factors such as types of cancer, drug therapies, and characteristics of autophagy should be evaluated before targeting autophagy for cancer treatment.
Collapse
|
29
|
Epigenetic Control of Autophagy in Cancer Cells: A Key Process for Cancer-Related Phenotypes. Cells 2019; 8:cells8121656. [PMID: 31861179 PMCID: PMC6952790 DOI: 10.3390/cells8121656] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although autophagy is a well-known and extensively described cell pathway, numerous studies have been recently interested in studying the importance of its regulation at different molecular levels, including the translational and post-translational levels. Therefore, this review focuses on the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation was that researchers most often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs, based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results describing a link between epidrugs and autophagy were systematically reanalyzed to determine whether autophagy flux was indeed increased, or inhibited, following the use of these potentially new interesting treatments targeting the autophagy process. Altogether, these recent data strongly support the idea that the determination of autophagy status could be crucial for future anticancer therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently observed following the use of epidrugs, could lead to increased autophagy cell death.
Collapse
|
30
|
Fatehi Hassanabad A. Current perspectives on statins as potential anti-cancer therapeutics: clinical outcomes and underlying molecular mechanisms. Transl Lung Cancer Res 2019; 8:692-699. [PMID: 31737505 DOI: 10.21037/tlcr.2019.09.08] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Statins have been shown to inhibit cell proliferation in vitro and tumor growth in animal models. Various studies have also shown a decreased cancer-specific mortality rate in patients who were prescribed these medications. Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway. Statins induce tumour-specific apoptosis through mitochondrial apoptotic signaling pathways, which are activated by the suppression of mevalonate or geranylgeranyl pyrophosphate (GGPP) biosynthesis. However, there is no consensus on the molecular targets of statins for their anti-cancer effects. Several studies have been conducted to further assess the association between statin use and mortality in different types of cancer. In this review, current perspectives on clinical significance of statins in prevention and treatment of various types of cancers and proposed mechanisms are discussed.
Collapse
|
31
|
Small molecule HDAC inhibitors: Promising agents for breast cancer treatment. Bioorg Chem 2019; 91:103184. [PMID: 31408831 DOI: 10.1016/j.bioorg.2019.103184] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a heterogeneous disease, is the most frequently diagnosed cancer and the second leading cause of cancer-related death among women worldwide. Recently, epigenetic abnormalities have emerged as an important hallmark of cancer development and progression. Given that histone deacetylases (HDACs) are crucial to chromatin remodeling and epigenetics, their inhibitors have become promising potential anticancer drugs for research. Here we reviewed the mechanism and classification of histone deacetylases (HDACs), association between HDACs and breast cancer, classification and structure-activity relationship (SAR) of HDACIs, pharmacokinetic and toxicological properties of the HDACIs, and registered clinical studies for breast cancer treatment. In conclusion, HDACIs have shown desirable effects on breast cancer, especially when they are used in combination with other anticancer agents. In the coming future, more multicenter and randomized Phase III studies are expected to be conducted pushing promising new therapies closer to the market. In addition, the design and synthesis of novel HDACIs are also needed.
Collapse
|
32
|
Vescovo T, Refolo G, Manuelli MC, Tisone G, Piacentini M, Fimia GM. The Impact of Mevastatin on HCV Replication and Autophagy of Non-Transformed HCV Replicon Hepatocytes Is Influenced by the Extracellular Lipid Uptake. Front Pharmacol 2019; 10:718. [PMID: 31316383 PMCID: PMC6611414 DOI: 10.3389/fphar.2019.00718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Statins efficiently inhibit cholesterol synthesis by blocking 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase in the mevalonate pathway. However, the effect of statins on intracellular cholesterol is partially counterbalanced by a consequent increased uptake of extracellular lipid sources. Hepatitis C virus (HCV) infection induces intracellular accumulation of cholesterol by promoting both new synthesis and uptake of circulating lipoproteins, which is required for HCV replication and release. Hepatocytes respond to the increase in intracellular cholesterol levels by inducing lipophagy, a selective type of autophagy mediating the degradation of lipid deposits within lysosomes. In a cellular system of HCV replication based on HuH7 hepatoma cells, statin treatment was shown to be sufficient to decrease intracellular cholesterol, which is accompanied by reduced HCV replication and decreased lipophagy, and has no apparent impact on endocytosis-mediated cholesterol uptake. To understand whether these results were influenced by an altered response of cholesterol influx in hepatoma cells, we analyzed the effect of statins in non-transformed murine hepatocytes (MMHD3) harboring subgenomic HCV replicons. Notably, we found that total amount of cholesterol is increased in MMHD3 cells upon mevastatin treatment, which is associated with increased HCV replication and lipophagy. Conversely, mevastatin is able to reduce cholesterol amounts only when cells are grown in the presence of delipidated serum to prevent extracellular lipid uptake. Under this condition, HCV replication is reduced and autophagy flux is severely impaired. Altogether, these results indicate that both de novo synthesis and extracellular uptake have to be targeted in non-transformed hepatocytes in order to decrease intracellular cholesterol levels and consequently limit HCV replication.
Collapse
Affiliation(s)
- Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | - Giuseppe Tisone
- Liver Unit, Polyclinic Tor Vergata Foundation, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
33
|
Bojková B, Kubatka P, Qaradakhi T, Zulli A, Kajo K. Melatonin May Increase Anticancer Potential of Pleiotropic Drugs. Int J Mol Sci 2018; 19:E3910. [PMID: 30563247 PMCID: PMC6320927 DOI: 10.3390/ijms19123910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is not only a pineal hormone, but also an ubiquitary molecule present in plants and part of our diet. Numerous preclinical and some clinical reports pointed to its multiple beneficial effects including oncostatic properties, and as such, it has become one of the most aspiring goals in cancer prevention/therapy. A link between cancer and inflammation and/or metabolic disorders has been well established and the therapy of these conditions with so-called pleiotropic drugs, which include non-steroidal anti-inflammatory drugs, statins and peroral antidiabetics, modulates a cancer risk too. Adjuvant therapy with melatonin may improve the oncostatic potential of these drugs. Results from preclinical studies are limited though support this hypothesis, which, however, remains to be verified by further research.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 54 Košice, Slovak Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic.
| | - Tawar Qaradakhi
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Karol Kajo
- St. Elisabeth Oncology Institute, Heydukova 10, 811 08 Bratislava, Slovak Republic.
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| |
Collapse
|
34
|
Kou X, Jiang X, Liu H, Wang X, Sun F, Han J, Fan J, Feng G, Lin Z, Jiang L, Yang Y. Simvastatin functions as a heat shock protein 90 inhibitor against triple-negative breast cancer. Cancer Sci 2018; 109:3272-3284. [PMID: 30039622 PMCID: PMC6172049 DOI: 10.1111/cas.13748] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023] Open
Abstract
Acetylation plays an important role in regulating the chaperone activity of heat shock protein 90 (Hsp90) during malignant transformation through the stabilization and conformational maturation of oncogenic proteins. However, the functional acetylation sites, potential anticancer drug targets, are still emerging. We found that acetylation at K292 in Hsp90α is critical for the development and treatment of breast cancer. Acetylation at K292 not only augments the affinity of Hsp90 to ATP, cochaperones, and client proteins but it also promotes cancer cell colony formation, migration, and invasion in vitro as well as tumor growth in vivo. Importantly, K292‐acetylated Hsp90 has been validated as an exciting anticancer drug target by interfering with the complex formation between K292‐acetylated Hsp90 and cochaperone Cdc37, leading to diminishment of kinase client maturation and proteasome‐dependent degradation of kinase substrates. Furthermore, we showed that simvastatin prevented, whereas LBH589 promoted, the progression of Hsp90 chaperone cycling and client maturation, resulting in an increment of cell apoptosis by the combination of simvastatin and LBH589 in a mouse xenograft model. These data suggest that simvastatin is a novel Hsp90 inhibitor to disrupt the formation of the K292‐acetylated Hsp90/Cdc37 complex in triple‐negative breast cancer cells. The combination of simvastatin with LBH589 could be used as a novel therapeutic strategy for triple‐negative breast cancer.
Collapse
Affiliation(s)
- Xinhui Kou
- Department of Endocrine and Department of Pharmacy, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.,Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoxiao Jiang
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Huijuan Liu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Fanghui Sun
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiami Han
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaxing Fan
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhaohu Lin
- Chemical Biology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Yonghua Yang
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Huang Y, Deng X, Lang J, Liang X. Modulation of quantum dots and clearance of Helicobacter pylori with synergy of cell autophagy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:849-861. [PMID: 29309908 DOI: 10.1016/j.nano.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (Hp) is one type of Gram-negative pathogenic bacterium that colonizes and causes a wide range of gastric diseases. Once Hp penetrates into cells, the currently recognized triple or quadruple therapy often loses effectiveness. Recent evidence suggests that autophagy is closely associated with Hp infection, and can play an important role in the eradication of Hp. More importantly, certain types of quantum dots (QDs) can induce and modulate cellular autophagy, and can be developed into conjugates making QDs potential candidates as new anti-Hp agents.
Collapse
Affiliation(s)
- Yu Huang
- Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xin Deng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Jian Lang
- Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xingqiu Liang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China
| |
Collapse
|
36
|
Li HH, Lin CL, Huang CN. Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen Res 2018; 13:198-206. [PMID: 29557360 PMCID: PMC5879882 DOI: 10.4103/1673-5374.226379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD). In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ) levels by affecting amyloid precursor protein (APP) cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK) in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, China
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| |
Collapse
|
37
|
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:287-313. [DOI: 10.1007/978-981-10-6020-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Kornelius E, Li HH, Peng CH, Hsiao HW, Yang YS, Huang CN, Lin CL. Mevastatin promotes neuronal survival against Aβ-induced neurotoxicity through AMPK activation. Metab Brain Dis 2017; 32:1999-2007. [PMID: 28840430 DOI: 10.1007/s11011-017-0091-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/11/2017] [Indexed: 01/26/2023]
Abstract
Statins or HMG-CoA reductase inhibitors have been shown to be effective at lowering cholesterol levels, and the application of these molecules has gradually emerged as an attractive therapeutic strategy for neurodegenerative diseases. Epidemiological studies suggest that statin use is associated with a decreased incidence of Alzheimer's disease (AD). Thus, statins may play a beneficial role in reducing amyloid β (Aβ) toxicity, the most relevant pathological feature and pathogenesis of AD. However, the precise mechanisms involved in statin-inhibited Aβ toxicity remain unclear. In the present study, we report that mevastatin significantly protects against Aβ-induced neurotoxicity in SK-N-MC neuronal cells by restoring impaired insulin signaling. This protection appears to be associated with the activation of AMP-activated protein kinase (AMPK), which has long been known to increase insulin sensitivity. Our results also indicate that high levels of cholesterol likely underlie Aβ-induced neurotoxicity and that activation of AMPK by mevastatin alleviates insulin resistance. Signaling through the insulin receptor substrate-1/Akt pathway appears to lead to cell survival. These findings demonstrate that mevastatin plays a potential therapeutic role in targeting Aβ-mediated neurotoxicity. The molecule presents a novel therapeutic strategy for further studies in AD prevention and therapeutics.
Collapse
Affiliation(s)
- Edy Kornelius
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
| | - Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, Taichung, Taiwan
| | - Hui-Wen Hsiao
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Sun Yang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan.
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|