1
|
Gao Y, Wang H, Shi L, Lu P, Dai G, Zhang M, Han B, Cao M, Li Y, Rui Y. Erroneous Differentiation of Tendon Stem/Progenitor Cells in the Pathogenesis of Tendinopathy: Current Evidence and Future Perspectives. Stem Cell Rev Rep 2025; 21:423-453. [PMID: 39579294 DOI: 10.1007/s12015-024-10826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Tendinopathy is a condition characterized by persistent tendon pain, structural damage, and compromised functionality. Presently, the treatment for tendinopathy remains a formidable challenge, partly because of its unclear pathogenesis. Tendon stem/progenitor cells (TSPCs) are essential for tendon homeostasis, regeneration, remodeling, and repair. An innovative theory has been previously proposed, with insufficient evidence, that the erroneous differentiation of TSPCs may constitute one of the fundamental mechanisms underpinning tendinopathy. Over the past few years, there has been accumulating evidence for plausibility of this theory. In this review, we delve into alterations in the differentiation potential of TSPCs and the underlying mechanisms in the context of injury-induced tendinopathy, diabetic tendinopathy, and age-related tendinopathy to provide updated evidence on the erroneous differentiation theory. Despite certain limitations inherent in the existing body of evidence, the erroneous differentiation theory emerges as a promising and highly pertinent avenue for understanding tendinopathy. In the future, advanced methodologies will be harnessed to further deepen comprehension of this theory, paving the way for prospective developments in clinical therapies targeting TSPCs for the management of tendinopathy.
Collapse
Affiliation(s)
- Yucheng Gao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Liu Shi
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Panpan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Guangchun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ming Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bowen Han
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Mumin Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yingjuan Li
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunfeng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
2
|
Mlawer SJ, Pinto FR, Sikes KJ, Connizzo BK. Coordination of Glucose and Glutamine Metabolism in Tendon is Lost in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629426. [PMID: 39763790 PMCID: PMC11702705 DOI: 10.1101/2024.12.19.629426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tendinopathy is an age-associated degenerative disease characterized by a loss in extracellular matrix (ECM). Since glucose and glutamine metabolism is critical to amino acid synthesis and known to be altered in aging, we sought to investigate if age-related changes in metabolism are linked to changes in ECM remodeling. We exposed young and aged tendon explants to various concentrations of glucose and glutamine to observe changes in metabolic processing (enzyme levels, gene expression, etc.) and matrix biosynthesis. Interestingly, we found that glutamine processing is affected by glucose levels, but this effect was lost with aging. ECM synthesis was altered in a protein-dependent manner by increased glucose and glutamine levels in young tendons. However, these changes were not conserved in aged tendons. Overall, our work suggests that glucose and glutamine metabolism is important for ECM homeostasis, and age-related changes in nutrient metabolism could be a key driver of tendon degeneration.
Collapse
Affiliation(s)
- Samuel J. Mlawer
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| | - Felicia R. Pinto
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| | - Katie J. Sikes
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brianne K. Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
3
|
Augustin G, Jeong JH, Kim M, Hur SS, Lee JH, Hwang Y. Stem Cell‐Based Therapies and Tissue Engineering Innovations for Tendinopathy: A Comprehensive Review of Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/06/2025]
Abstract
AbstractTendon diseases commonly lead to physical disability, exerting a profound impact on the routine of affected patients. These conditions respond poorly to existing treatments, presenting a substantial challenge for orthopedic scientists. Research into clinical translational therapy has yet to yield highly versatile interventions capable of effectively addressing tendon diseases, including tendinopathy. Stem cell‐based therapies have emerged as a promising avenue for modifying the biological milieu through the secretion of regenerative and immunomodulatory factors. The current review provides an overview of the intricate tendon microenvironment, encompassing various tendon stem progenitor cells within distinct tendon sublocations, gene regulation, and pathways pertinent to tendon development, and the pathology of tendon diseases. Subsequently, the advantages of stem cell‐based therapies are discussed that utilize distinct types of autologous and allogeneic stem cells for tendon regeneration at the translational level. Moreover, this review outlines the challenges, gaps, and future innovations to propose a consolidated stem cell‐based therapy to treat tendinopathy. Finally, regenerative soluble therapies, insoluble bio‐active therapies, along with insoluble bio‐active therapies, and implantable 3D scaffolds for tendon tissue engineering are discussed, thereby presenting a pathway toward enhanced tissue regeneration and engineering.
Collapse
Affiliation(s)
- George Augustin
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Biochemistry and Biophysics Oregon State University Corvallis OR 92331 USA
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| | - Min‐Kyu Kim
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Joon Ho Lee
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| |
Collapse
|
4
|
Lu P, Dai G, Shi L, Li Y, Zhang M, Wang H, Rui Y. HMGB1 Modulates High Glucose-Induced Erroneous Differentiation of Tendon Stem/Progenitor Cells through RAGE/ β-Catenin Pathway. Stem Cells Int 2024; 2024:2335270. [PMID: 38633380 PMCID: PMC11022503 DOI: 10.1155/2024/2335270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
The association of tendinopathy with diabetes has been well recognized. Tendon stem/progenitor cells (TSPCs) play critical roles in tendon repair, regeneration, and homeostasis maintenance. Diabetic TSPCs exhibit enhanced erroneous differentiation and are involved in the pathogenesis of diabetic tendinopathy, whereas the underlying mechanism of the erroneous differentiation of TSPCs remains unclear. Here, we showed that high glucose treatment promoted the erroneous differentiation of TSPCs with increased osteogenic differentiation capacity and decreased tenogenic differentiation ability, and stimulated the expression and further secretion of HMGB1 in TSPCs and. Functionally, exogenous HMGB1 significantly enhanced the erroneous differentiation of TSPCs, while HMGB1 knockdown mitigated high glucose-promoted erroneous differentiation of TSPCs. Mechanistically, the RAGE/β-catenin signaling was activated in TSPCs under high glucose, and HMGB1 knockdown inhibited the activity of RAGE/β-catenin signaling. Inhibition of RAGE/β-catenin signaling could ameliorate high glucose-induced erroneous differentiation of TSPCs. These results indicated that HMGB1 regulated high glucose-induced erroneous differentiation of TSPCs through the RAGE/β-catenin signaling pathway. Collectively, our findings suggest a novel essential mechanism of the erroneous differentiation of TSPCs, which might contribute to the pathogenesis of diabetic tendinopathy and provide a promising therapeutic target and approach for diabetic tendinopathy.
Collapse
Affiliation(s)
- Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Yingjuan Li
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Department of Geriatrics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- School of Medicine, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Orthopaedic Trauma Institute (OTI), Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
- Trauma Center, Zhongda Hospital, Southeast University, No 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, China
| |
Collapse
|
5
|
Lai C, Li R, Tang W, Liu J, Duan XDXF, Bao D, Liu H, Fu S. Metabolic Syndrome and Tendon Disease: A Comprehensive Review. Diabetes Metab Syndr Obes 2024; 17:1597-1609. [PMID: 38616994 PMCID: PMC11015851 DOI: 10.2147/dmso.s459060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Metabolic syndrome (MS) is a multifaceted pathological condition characterized by the atypical accumulation of various metabolic components such as central obesity or excess weight, hyperlipidemia, low-density lipoprotein (LDL), hypertension, and insulin resistance. Recently, MS has been recognized as a notable contributor to heart and circulatory diseases. In addition, with increasing research, the impact of MS on tendon repair and disease has gradually emerged. Recent studies have investigated the relationship between tendon healing and diseases such as diabetes, dyslipidemia, obesity, and other metabolic disorders. However, diabetes mellitus (DM), hypercholesterolemia, obesity, and various metabolic disorders often coexist and together constitute MS. At present, insulin resistance is considered the major pathological mechanism underlying MS, central obesity is regarded as the predominant factor responsible for it, and dyslipidemia and other metabolic diseases are known as secondary contributors to MS. This review aims to evaluate the current literature regarding the impact of various pathological conditions in MS on tendon recovery and illness, and to present a comprehensive overview of the effects of MS on tendon recovery and diseases, along with the accompanying molecular mechanisms.
Collapse
Affiliation(s)
- Canhao Lai
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Ruichen Li
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Weili Tang
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jinyu Liu
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xinfang D X F Duan
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Dingsu Bao
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huan Liu
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Shijie Fu
- Department of Bone and Joint, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
6
|
Trotta MC, Itro A, Lepre CC, Russo M, Guida F, Moretti A, Braile A, Tarantino U, D’Amico M, Toro G. Effects of adipose-derived mesenchymal stem cell conditioned medium on human tenocytes exposed to high glucose. Ther Adv Musculoskelet Dis 2024; 16:1759720X231214903. [PMID: 38204801 PMCID: PMC10775729 DOI: 10.1177/1759720x231214903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Diabetic tendinopathy is a common invalidating and challenging disease that may be treated using stem cells. However, the effects of adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) in diabetic tendinopathy have never been explored. OBJECTIVES The present study evaluated the effects of ASC-CM on morphology, cell viability, structure, and scratch wound closure of human tenocytes (HTNC) exposed to high glucose (HG). DESIGN Experimental study. METHODS HTNC were exposed to HG (25 mM) for 7, 14 and 21 days with or without ASC-CM for the last 24 h. CM was collected from 4 × 105 ASCs, centrifuged for 10 min at 200 g and sterilized with 0.22 μm syringe filter. RESULTS At 7 days, HG-HTNC had decreased cell viability [72 ± 2%, p < 0.01 versus normal glucose (NG)] compared to NG-HTNC (90 ± 5%). A further decrement was detected after 14 and 21 days (60 ± 4% and 60 ± 5%, both, p < 0.01 versus NG and p < 0.01 versus HG7). While NG-HTNC evidenced a normal fibroblast cell-like elongated morphology, HG-HTNC showed increased cell roundness. In contrast, HG-HTNC exposed to ASC-CM showed a significant increase in cell viability, an improved cell morphology and higher scratch wound closure at all HG time points. Moreover, the exposure to ASC-CM significantly increased thrombospondin 1 and transforming growth factor beta 1 (TGF-β1) content in HG-HTNC. The TGF-β1 elevation was paralleled by higher Collagen I and Vascular Endothelial Growth Factor in HG-HTNC. CONCLUSION ASC-CM may restore the natural morphology, cell viability and structure of HTNC, promoting their scratch wound closure through TGF-β1 increase.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Annalisa Itro
- PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Adriano Braile
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Caterina ClaudiaLepre is also affiliated to PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitell’, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giuseppe Toro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Via L. De Crecchio 6, Naples 80138, Italy
| |
Collapse
|
7
|
Yuan Z, Zhu X, Dai Y, Shi L, Feng Z, Li Z, Diao N, Guo A, Yin H, Ma L. Analysis of differentially expressed genes in torn rotator cuff tendon tissues in diabetic patients through RNA-sequencing. BMC Musculoskelet Disord 2024; 25:31. [PMID: 38172847 PMCID: PMC10763306 DOI: 10.1186/s12891-023-07149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Rotator cuff tears (RCT) is a common musculoskeletal disorder in the shoulder which cause pain and functional disability. Diabetes mellitus (DM) is characterized by impaired ability of producing or responding to insulin and has been reported to act as a risk factor of the progression of rotator cuff tendinopathy and tear. Long non-coding RNAs (lncRNAs) are involved in the development of various diseases, but little is known about their potential roles involved in RCT of diabetic patients. METHODS RNA-Sequencing (RNA-Seq) was used in this study to profile differentially expressed lncRNAs and mRNAs in RCT samples between 3 diabetic and 3 nondiabetic patients. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to annotate the function of the differentially expressed genes (DEGs). LncRNA-mRNA co-expression network and competing endogenous RNA (ceRNA) network were constructed to elucidate the potential molecular mechanisms of DM affecting RCT. RESULTS In total, 505 lncRNAs and 388 mRNAs were detected to be differentially expressed in RCT samples between diabetic and nondiabetic patients. GO functional analysis indicated that related lncRNAs and mRNAs were involved in metabolic process, immune system process and others. KEGG pathway analysis indicated that related mRNAs were involved in ferroptosis, PI3K-Akt signaling pathway, Wnt signaling pathway, JAK-STAT signaling pathway and IL-17 signaling pathway and others. LncRNA-mRNA co-expression network was constructed, and ceRNA network showed the interaction of differentially expressed RNAs, comprising 5 lncRNAs, 2 mRNAs, and 142 miRNAs. TF regulation analysis revealed that STAT affected the progression of RCT by regulating the apoptosis pathway in diabetic patients. CONCLUSIONS We preliminarily dissected the differential expression profile of lncRNAs and mRNAs in torn rotator cuff tendon between diabetic and nondiabetic patients. And the bioinformatic analysis suggested some important RNAs and signaling pathways regarding inflammation and apoptosis were involved in diabetic RCT. Our findings offer a new perspective on the association between DM and progression of RCT.
Collapse
Affiliation(s)
- Ziyang Yuan
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Xu Zhu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
- Department of Orthopaedics, Beijing Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Yike Dai
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ziyang Feng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhiyao Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
8
|
Van Gulick L, Saby C, Mayer C, Fossier E, Jaisson S, Okwieka A, Gillery P, Chenais B, Mimouni V, Morjani H, Beljebbar A. Biochemical and morpho-mechanical properties, and structural organization of rat tail tendon collagen in diet-induced obesity model. Int J Biol Macromol 2024; 254:127936. [PMID: 37939767 DOI: 10.1016/j.ijbiomac.2023.127936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
We have investigated the impact of obesity on the structural organization, morpho-mechanical properties of collagen fibers from rat tail tendon fascicles (RTTFs). Polarized Raman microspectroscopy showed that the collagen bands 855, 875, 938, and 960 cm-1 as well as those 1631 and 1660 cm-1 were affected by diet. Mechanical properties exhibited an increase in the yield strength from control (CTRL) to high fat (HF) diet (9.60 ± 1.71 and 13.09 ± 1.81 MPa) (p < 0.01) and ultimate tensile strength (13.12 ± 2.37 and 18.32 ± 2.83 MPa) (p < 0.05) with no significant change in the Young's Modulus. During mechanical, the band at 875 cm-1 exhibited the most relevant frequency shift (2 cm-1). The intensity of those at 855, 875, and 938 cm-1 in HF collagen displayed a comparable response to mechanical stress as compared to CTRL collagen with no significant diet-related changes in the Full Width at Half Maximum. Second harmonic generation technique revealed i) similar fiber straightness (0.963 ± 0.004 and 0.965 ± 0.003) and ii) significant changes in fibers diameter (1.48 ± 0.07 and 1.52 ± 0.08 μm) (p < 0.05) and length (22.06 ± 2.38 and 29.00 ± 3.76 μm) (p < 0.001) between CTRL and HF diet, respectively. The quantification of advanced glycation end products (AGEs) revealed an increase in both carboxymethyl-lysine and total fluorescence AGEs from CTRL to HF RTTFs.
Collapse
Affiliation(s)
- Laurence Van Gulick
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Charles Saby
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Claire Mayer
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France
| | - Emilie Fossier
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Stéphane Jaisson
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France; Centre Hospitalo-Universitaire, Service de Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Anaïs Okwieka
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France
| | - Philippe Gillery
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France; Centre Hospitalo-Universitaire, Service de Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Benoît Chenais
- BiOSSE, Biology of Organisms, Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, 72085 Le Mans, France
| | - Virginie Mimouni
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France
| | - Hamid Morjani
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Abdelilah Beljebbar
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France.
| |
Collapse
|
9
|
Lu J, Chen H, Lyu K, Jiang L, Chen Y, Long L, Wang X, Shi H, Li S. The Functions and Mechanisms of Tendon Stem/Progenitor Cells in Tendon Healing. Stem Cells Int 2023; 2023:1258024. [PMID: 37731626 PMCID: PMC10509002 DOI: 10.1155/2023/1258024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Tendon injury is one of the prevalent disorders of the musculoskeletal system in orthopedics and is characterized by pain and limitation of joint function. Due to the difficulty of spontaneous tendon healing, and the scar tissue and low mechanical properties that usually develops after healing. Therefore, the healing of tendon injury remains a clinical challenge. Although there are a multitude of approaches to treating tendon injury, the therapeutic effects have not been satisfactory to date. Recent studies have shown that stem cell therapy has a facilitative effect on tendon healing. In particular, tendon stem/progenitor cells (TSPCs), a type of stem cell from tendon tissue, play an important role not only in tendon development and tendon homeostasis, but also in tendon healing. Compared to other stem cells, TSPCs have the potential to spontaneously differentiate into tenocytes and express higher levels of tendon-related genes. TSPCs promote tendon healing by three mechanisms: modulating the inflammatory response, promoting tenocyte proliferation, and accelerating collagen production and balancing extracellular matrix remodeling. However, current investigations have shown that TSPCs also have a negative effect on tendon healing. For example, misdifferentiation of TSPCs leads to a "failed healing response," which in turn leads to the development of chronic tendon injury (tendinopathy). The focus of this paper is to describe the characteristics of TSPCs and tenocytes, to demonstrate the roles of TSPCs in tendon healing, while discussing the approaches used to culture and differentiate TSPCs. In addition, the limitations of TSPCs in clinical application and their potential therapeutic strategies are elucidated.
Collapse
Affiliation(s)
- Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houyin Shi
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Maffulli N, Cuozzo F, Migliorini F, Oliva F. The tendon unit: biochemical, biomechanical, hormonal influences. J Orthop Surg Res 2023; 18:311. [PMID: 37085854 PMCID: PMC10120196 DOI: 10.1186/s13018-023-03796-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
The current literature has mainly focused on the biology of tendons and on the characterization of the biological properties of tenocytes and tenoblasts. It is still not understood how these cells can work together in homeostatic equilibrium. We put forward the concept of the "tendon unit" as a morpho-functional unit that can be influenced by a variety of external stimuli such as mechanical stimuli, hormonal influence, or pathological states. We describe how this unit can modify itself to respond to such stimuli. We evidence the capability of the tendon unit of healing itself through the production of collagen following different mechanical stimuli and hypothesize that restoration of the homeostatic balance of the tendon unit should be a therapeutic target.
Collapse
Affiliation(s)
- Nicola Maffulli
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke On Trent, England
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Francesco Cuozzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, 52152, Simmerath, Germany.
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| |
Collapse
|
11
|
Vaidya R, Lake SP, Zellers JA. Effect of Diabetes on Tendon Structure and Function: Not Limited to Collagen Crosslinking. J Diabetes Sci Technol 2023; 17:89-98. [PMID: 35652696 PMCID: PMC9846394 DOI: 10.1177/19322968221100842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diabetes mellitus (DM) is associated with musculoskeletal complications-including tendon dysfunction and injury. Patients with DM show altered foot and ankle mechanics that have been attributed to tendon dysfunction as well as impaired recovery post-tendon injury. Despite the problem of DM-related tendon complications, treatment guidelines specific to this population of individuals are lacking. DM impairs tendon structure, function, and healing capacity in tendons throughout the body, but the Achilles tendon is of particular concern and most studied in the diabetic foot. At macroscopic levels, asymptomatic, diabetic Achilles tendons may show morphological abnormalities such as thickening, collagen disorganization, and/or calcific changes at the tendon enthesis. At smaller length scales, DM affects collagen sliding and discrete plasticity due to glycation of collagen. However, how these alterations translate to mechanical deficits observed at larger length scales is an area of continued investigation. In addition to dysfunction of the extracellular matrix, tendon cells such as tenocytes and tendon stem/progenitor cells show significant abnormalities in proliferation, apoptosis, and remodeling capacity in the presence of hyperglycemia and advanced glycation end-products, thus contributing to the disruption of tendon homeostasis and healing. Improving our understanding of the effects of DM on tendons-from molecular pathways to patients-will progress toward targeted therapies in this group at high risk of foot and ankle morbidity.
Collapse
Affiliation(s)
- Rachana Vaidya
- Washington University School of
Medicine, St. Louis, MO, USA
| | | | - Jennifer A. Zellers
- Washington University School of
Medicine, St. Louis, MO, USA
- Jennifer A. Zellers, PT, DPT, PhD,
Washington University School of Medicine, 4444 Forest Park Ave., Suite
1101, St. Louis, MO 63108, USA.
| |
Collapse
|
12
|
Ligament Alteration in Diabetes Mellitus. J Clin Med 2022; 11:jcm11195719. [PMID: 36233586 PMCID: PMC9572847 DOI: 10.3390/jcm11195719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Connective tissue ageing is accelerated by the progressive accumulation of advanced glycation end products (AGEs). The formation of AGEs is characteristic for diabetes mellitus (DM) progression and affects only specific proteins with relatively long half-lives. This is the case of fibrillar collagens that are highly susceptible to glycation. While collagen provides a framework for plenty of organs, the local homeostasis of specific tissues is indirectly affected by glycation. Among the many age- and diabetes-related morphological changes affecting human connective tissues, there is concurrently reduced healing capacity, flexibility, and quality among ligaments, tendons, bones, and skin. Although DM provokes a wide range of known clinical disorders, the exact mechanisms of connective tissue alteration are still being investigated. Most of them rely on animal models in order to conclude the patterns of damage. Further research and more well-designed large-cohort studies need to be conducted in order to answer the issue concerning the involvement of ligaments in diabetes-related complications. In the following manuscript, we present the results from experiments discovering specific molecules that are engaged in the degenerative process of connective tissue alteration. This review is intended to provide the report and sum up the investigations described in the literature concerning the topic of ligament alteration in DM, which, even though significantly decreasing the quality of life, do not play a major role in research.
Collapse
|
13
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Quercetin treatment protects the Achilles tendons of rats from oxidative stress induced by hyperglycemia. BMC Musculoskelet Disord 2022; 23:563. [PMID: 35689230 PMCID: PMC9188208 DOI: 10.1186/s12891-022-05513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Quercetin, a flavonoid abundantly in vegetables and fruits, exerts antioxidant and anti-inflammatory effects. We investigated the protective effects of quercetin against oxidative stress in the Achilles tendons of diabetic rats. Methods Cells were collected from the Achilles tendons of Sprague–Dawley rats and cultured under four conditions: regular glucose (RG) without quercetin (Quer-), RG with quercetin (Quer +), high-glucose (HG) Quer-, and HG Quer + . The expression of genes related to NADPH oxidase (NOX) and inflammation, reactive oxygen species accumulation, and apoptosis rates was analyzed. Additionally, diabetic rats were divided into two groups and subjected to quercetin (group Q) or no quercetin (group C) treatment. Histological evaluation and expression analysis of relevant genes in the Achilles tendon were performed. Results In rat tendon-derived cells, the expression of Nox1, Nox4, and Il6; reactive oxygen species accumulation; and apoptosis rates were significantly decreased by quercetin treatment in the HG group. The collagen fiber arrangement was significantly disorganized in the diabetic rat Achilles tendons in group C compared with that in group Q. The mRNA and protein expression levels of NOX1 and NOX4 were significantly decreased upon quercetin treatment. Furthermore, the expression of Il6, type III collagen, Mmp2, and Timp2 was significantly decreased, whereas that of type I collagen was significantly increased in group Q compared with that in group C. Conclusions Quercetin treatment decreases NOX expression and thus exerts antioxidant and anti-inflammatory effects in the Achilles tendons of diabetic rats. Quercetin treatment may be effective against diabetic tendinopathy.
Collapse
Affiliation(s)
- Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
14
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Influence of Diabetes-Induced Glycation and Oxidative Stress on the Human Rotator Cuff. Antioxidants (Basel) 2022; 11:antiox11040743. [PMID: 35453426 PMCID: PMC9032678 DOI: 10.3390/antiox11040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Most shoulder rotator cuff tears (RCTs) are caused by non-traumatic age-related rotator cuff degeneration, of which hyperglycemia is a risk factor due to its glycation reaction and oxidative stress. We aimed to identify the influence of diabetes-induced glycation and oxidative stress in patients with non-traumatic shoulder RCTs. Twenty patients, aged over 50 years, with non-traumatic shoulder RCTs participated in this study. Patients with a history of diabetes mellitus or preoperative HbA1c ≥ 6.5% were assigned to the diabetic group (n = 10), and the rest to the non-diabetic group (n = 10). Cell proliferation; expression of genes related to oxidative stress, glycation reaction, inflammation, and collagen; intracellular reactive oxygen species (ROS) levels; and apoptosis rates were analyzed. The diabetic group had significantly lower cell proliferation than the non-diabetic group. In the diabetic group, the mRNA expression levels of NOX1, NOX4, IL6, RAGE, type III collagen, MMP2, TIMP1, and TIMP2 were significantly higher; type I collagen expression was significantly lower; and the rate of ROS-positive cells and apoptotic cells, as well as the expression of advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE), was significantly higher. In conclusion, hyperglycemia caused by diabetes mellitus increased AGE and RAGE expression, and led to increased NOX expression, ROS production, and apoptosis in the human rotator cuff. This provides scope to find a preventive treatment for non-traumatic RCTs by inhibiting glycation and oxidative stress.
Collapse
Affiliation(s)
| | - Yutaka Mifune
- Correspondence: ; Tel.: +81-78-382-5985; Fax: +81-78-351-6944
| | | | | | | | | | | | | |
Collapse
|
15
|
Gallagher S, Barbe MF. The impaired healing hypothesis: a mechanism by which psychosocial stress and personal characteristics increase MSD risk? ERGONOMICS 2022; 65:573-586. [PMID: 34463204 PMCID: PMC9847256 DOI: 10.1080/00140139.2021.1974103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/23/2021] [Indexed: 05/09/2023]
Abstract
While the effects of physical risk factors on MSD development have been a primary focus of musculoskeletal research, psychological stressors, and certain personal characteristics (e.g. ageing, sex, and obesity) are also associated with increased MSD risk. The psychological and personal characteristics listed above share a common characteristic: all are associated with disruption of the body's neuroendocrine and immune responses resulting in an impaired healing process. An impaired healing response may result in reduced fatigue life of musculoskeletal tissues due to a diminished ability to keep pace with accumulating damage (perhaps reparable under normal circumstances), and an increased vulnerability of damaged tissue to further trauma owing to the prolonged healing process. Research in engineered self-healing materials suggests that decreased healing kinetics in the presence of mechanical loading can substantially reduce the fatigue life of materials. A model of factors influencing damage accrual and healing will be presented. Practitioner summary: This article provides a potential reason why musculoskeletal disorder risk is affected by psychosocial stress, age, sex, and obesity. The reason is that these factors are all associated with a slower than normal healing response. This may lead to faster damage development in musculoskeletal tissues resulting in higher MSD risk.
Collapse
Affiliation(s)
- Sean Gallagher
- Industrial and Systems Engineering Department, Auburn University, Auburn, AL, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Sikes KJ, McConnell A, Serkova N, Cole B, Frisbie D. Untargeted metabolomics analysis identifies creatine, myo-inositol, and lipid pathway modulation in a murine model of tendinopathy. J Orthop Res 2022; 40:965-976. [PMID: 34081345 PMCID: PMC8639838 DOI: 10.1002/jor.25112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
Tendinopathy has been broadly characterized as alterations in cell proliferation, extracellular matrix turnover/synthesis, and inflammatory alterations. However, the underlying glucose metabolism pathways which contribute to these responses have not been well explored. The potential link between glucose metabolism and tendon pathology is interesting from a global standpoint since the development of spontaneous tendinopathy is associated with systemic metabolic disorders including diabetes mellitus. Therefore, the overarching goal of this study was to understand the potential pathogenic role of glucose metabolism-driven mechanisms in the development of tendinopathy. To test this, we have utilized an untargeted metabolomics approach to discover pathways which may be altered following tendinopathic injury and treadmill running in an established murine model of TGF-β1 induced tendinopathy. While specific tendon glucose alterations were not observed via metabolomics or 18 F-fluoroeoxyglucose (FDG) positron emission tomography/microcomputed tomography imaging (18 F-FDG PET/CT), metabolites including creatinine, D-chiro-inositol, and lipids were dysregulated following tendon injury. As novel pathways for manipulation, the creatine pathway, myo-inositol pathway, and lipid signaling may lead to the development of enhanced preventative strategies and therapeutic options for all patients who suffer from tendon-related injuries.
Collapse
Affiliation(s)
- Katie J. Sikes
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Anna McConnell
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Natalie Serkova
- Department of Radiology, University of Colorado Denver, Denver, CO 80045
| | - Brian Cole
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - David Frisbie
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
17
|
A Hyperglycemic Microenvironment Inhibits Tendon-to-Bone Healing through the let-7b-5p/CFTR Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8268067. [PMID: 35126637 PMCID: PMC8813224 DOI: 10.1155/2022/8268067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Background Tendon-to-bone healing is a difficult process in treatment of rotator cuff tear (RCT). In addition, diabetes is an important risk factor for poor tendon-to-bone healing. Therefore, we investigated the specific mechanisms through which diabetes affects tendon-to-bone healing by regulating the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Methods Tendon-derived stem cells (TDSCs) were extracted from rats after which their proliferative capacities were evaluated by the MTT assay. The expression levels of CFTR and tendon-related markers were determined by qRT-PCR. Then, bioinformatics analyses and dual luciferase reporter gene assays were used to identify miRNAs with the ability to bind CFTR mRNA. Finally, CFTR was overexpressed in TDSCs to validate the specific mechanisms through which the high glucose microenvironment inhibits tendon-to-bone healing. Results The high glucose microenvironment downregulated mRNA expression levels of tendon-related markers and CFTR in TDSCs cultured with different glucose concentrations. Additionally, bioinformatics analyses revealed that let-7b-5p may be regulated by the high glucose microenvironment and can regulate CFTR levels. Moreover, a dual luciferase reporter gene assay was used to confirm that let-7b-5p targets and binds CFTR mRNA. Additional experiments also confirmed that overexpressed CFTR effectively reversed the negative effects of the hyperglycaemic microenvironment and upregulation of let-7b-5p on TDSC proliferation and differentiation. These findings imply that the hyperglycemic microenvironment inhibits CFTR transcription and, consequently, proliferation and differentiation of TDSCs in vitro by upregulating let-7b-5p. Conclusions A hyperglycemic microenvironment inhibits TDSC proliferation in vitro via the let-7b-5p/CFTR pathway, and this is a potential mechanism in diabetes-induced poor tendon-to-bone healing.
Collapse
|
18
|
Xu K, Zhang L, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Evaluating the role of type 2 diabetes mellitus in rotator cuff tendinopathy: Development and analysis of a novel rat model. Front Endocrinol (Lausanne) 2022; 13:1042878. [PMID: 36299460 PMCID: PMC9588920 DOI: 10.3389/fendo.2022.1042878] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To establish and validate an intact rotator cuff rat model for exploring the pathophysiological effects of type 2 diabetes on the rotator cuff tendon in vivo. METHODS A total of 45 adult male rats were randomly divided into a control group (n = 9) and type 2 diabetes group (n=36). The rats were sacrificed at 2 weeks (T2DM-2w group, n=9), 4 weeks (T2DM-4w group, n=9), 8 weeks (T2DM-8w group, n=9), and 12 weeks (T2DM-12w group, n=9) after successful modeling of type 2 diabetes. Bilateral shoulder samples were collected for gross observation and measurement, protein expression(enzyme-linked immunosorbent assay,ELISA), histological evaluation, biomechanical testing, and gene expression (real-time quantitative polymerase chain reaction, qRT-PCR). RESULTS Protein expression showed that the expression of IL-6 and Advanced glycation end products (AGEs)in serum increased in type 2 diabetic group compared with the non-diabetic group. Histologically, collagen fibers in rotator cuff tendons of type 2 diabetic rats were disorganized, ruptured, and with scar hyperplasia, neovascularization, and extracellular matrix disturbances, while Bonar score showed significant and continuously aggravated tendinopathy over 12 weeks. The biomechanical evaluation showed that the ultimate load of rotator cuff tendons in type 2 diabetic rats gradually decreased, and the ultimate load was negatively correlated with AGEs content. Gene expression analysis showed increased expression of genes associated with matrix remodeling (COL-1A1), tendon development (TNC), and fatty infiltration (FABP4) in tendon specimens from the type 2 diabetic group. CONCLUSION Persistent type 2 diabetes is associated with the rupture of collagen fiber structure, disturbance in the extracellular matrix, and biomechanical decline of the rotator cuff tendon. The establishment of this new rat model of rotator cuff tendinopathy provides a valuable research basis for studying the cellular and molecular mechanisms of diabetes-induced rotator cuff tendinopathy.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongkai Ren
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Traumatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Zhao
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xia Zhao, ; Tengbo Yu,
| | - Tengbo Yu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xia Zhao, ; Tengbo Yu,
| |
Collapse
|
19
|
Cannata F, Laudisio A, Ambrosio L, Vadalà G, Russo F, Zampogna B, Napoli N, Papalia R. The Association of Body Mass Index with Surgical Time Is Mediated by Comorbidity in Patients Undergoing Total Hip Arthroplasty. J Clin Med 2021; 10:jcm10235600. [PMID: 34884302 PMCID: PMC8658336 DOI: 10.3390/jcm10235600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Overweight represents a major issue in contemporary orthopaedic practice. A higher body mass index (BMI) is associated with an increase of perioperative complications following several orthopaedic procedures, in particular total hip arthroplasty (THA). However, the influence of overweight on THA surgical time is controversial. In this study, we investigated the association between BMI and surgical time analyzing the role of patients’ comorbidities. We conducted a retrospective study on 748 patients undergoing THA at our institutions between 2017 and 2018. Information regarding medical diseases was investigated and the burden of comorbidity was quantified using the Charlson score (CCI). Surgical time and blood loss were also recorded. Median surgical time was 76.5 min. Patients with surgical time above the median had both a higher BMI (28.3 vs. 27.1 kg/m2; p = 0.002); and CCI (1 vs. 0; p = 0.016). According to linear regression, surgical time was associated with BMI in the unadjusted model (p < 0.0001), after adjusting for age and sex (p < 0.0001), and in the multivariable model (p = 0.005). Furthermore, BMI was associated with increased surgical time only in patients with a Charlson score above the median, but not in others. Obesity is associated with increased surgical time during THA, especially in pluricomorbid patients, with a higher risk of perioperative complications.
Collapse
Affiliation(s)
- Francesca Cannata
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy; (F.C.); (N.N.)
| | - Alice Laudisio
- Unit of Geriatrics, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy
- Correspondence:
| | - Luca Ambrosio
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (F.R.); (B.Z.); (R.P.)
| | - Gianluca Vadalà
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (F.R.); (B.Z.); (R.P.)
| | - Fabrizio Russo
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (F.R.); (B.Z.); (R.P.)
| | - Biagio Zampogna
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (F.R.); (B.Z.); (R.P.)
| | - Nicola Napoli
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy; (F.C.); (N.N.)
| | - Rocco Papalia
- Department of Orthopaedics and Trauma Surgery, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (F.R.); (B.Z.); (R.P.)
| |
Collapse
|
20
|
Shi L, Lu PP, Dai GC, Li YJ, Rui YF. Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy. World J Stem Cells 2021; 13:1338-1348. [PMID: 34630866 PMCID: PMC8474716 DOI: 10.4252/wjsc.v13.i9.1338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tendinopathy is a challenging complication observed in patients with diabetes mellitus. Tendinopathy usually leads to chronic pain, limited joint motion, and even ruptured tendons. Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes, including disorganized arrangement of collagen fibers, microtears, calcium nodules, and advanced glycation end product (AGE) deposition. Tendon-derived stem/ progenitor cells (TSPCs) were found to maintain hemostasis and to participate in the reversal of tendinopathy. We also discovered the aberrant osteochondrogenesis of TSPCs in vitro. However, the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear. In this review, we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ying-Juan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
21
|
Ballasy NN, Jadli AS, Edalat P, Kang S, Fatehi Hassanabad A, Gomes KP, Fedak PWM, Patel VB. Potential role of epicardial adipose tissue in coronary artery endothelial cell dysfunction in type 2 diabetes. FASEB J 2021; 35:e21878. [PMID: 34469050 DOI: 10.1096/fj.202100684rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease is the most prevalent cause of morbidity and mortality in diabetes. Epicardial adipose tissue (EAT) lies in direct contact with the myocardium and coronary arteries and can influence cardiac (patho) physiology through paracrine signaling pathways. This study hypothesized that the proteins released from EAT represent a critical molecular link between the diabetic state and coronary artery endothelial cell dysfunction. To simulate type 2 diabetes-associated metabolic and inflammatory status in an ex vivo tissue culture model, human EAT samples were treated with a cocktail composed of high glucose, high palmitate, and lipopolysaccharide (gplEAT) and were compared with control EAT (conEAT). Compared to conEAT, gplEAT showed a markedly increased gene expression profile of proinflammatory cytokines, corroborating EAT inflammation, a hallmark feature observed in patients with type 2 diabetes. Luminex assay of EAT-secretome identified increased release of various proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interferon-alpha 2 (IFNA2), interleukin 1 beta (IL1B), interleukin 5 (IL5), interleukin 13 (IL13), and CCL5, among others, in response to high glucose, high palmitate, and lipopolysaccharide. Conditioned culture media was used to collect the concentrated proteins (CPs). In response to gplEAT-CPs, human coronary artery endothelial cells (HCAECs) exhibited an inflammatory endothelial cell phenotype, featuring a significantly increased gene expression of proinflammatory cytokines and cell surface expression of VCAM-1. Moreover, gplEAT-CPs severely decreased Akt-eNOS signaling, nitric oxide production, and angiogenic potential of HCAECs, when compared with conEAT-CPs. These findings indicate that EAT inflammation may play a key role in coronary artery endothelial cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Noura N Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ali Fatehi Hassanabad
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Cannata F, Vadalà G, Ambrosio L, Napoli N, Papalia R, Denaro V, Pozzilli P. The impact of type 2 diabetes on the development of tendinopathy. Diabetes Metab Res Rev 2021; 37:e3417. [PMID: 33156563 DOI: 10.1002/dmrr.3417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022]
Abstract
Tendinopathy is a chronic and often painful condition affecting both professional athletes and sedentary subjects. It is a multi-etiological disorder caused by the interplay among overload, ageing, smoking, obesity (OB) and type 2 diabetes (T2D). Several studies have identified a strong association between tendinopathy and T2D, with increased risk of tendon pain, rupture and worse outcomes after tendon repair in patients with T2D. Moreover, consequent immobilization due to tendon disorder has a strong impact on diabetes management by reducing physical activity and worsening the quality of life. Multiple investigations have been performed to analyse the causal role of the individual metabolic factors occurring in T2D on the development of tendinopathy. Chronic hyperglycaemia, advanced glycation end-products, OB and insulin resistance have been shown to contribute to the development of diabetic tendinopathy. This review aims to explore the relationship between tendinopathy and T2D, in order to define the contribution of metabolic factors involved in the degenerative process and to discuss possible strategies for the clinical management of diabetic tendinopathy.
Collapse
Affiliation(s)
- Francesca Cannata
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Nicola Napoli
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
23
|
Wei B, Lu J. Characterization of Tendon-Derived Stem Cells and Rescue Tendon Injury. Stem Cell Rev Rep 2021; 17:1534-1551. [PMID: 33651334 DOI: 10.1007/s12015-021-10143-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
The natural healing ability of tendon is limited, and it cannot restore the native structure and function of tendon injuries. Tendon-derived stem cells (TDSCs) are a new type of pluripotent stem cells with multi-directional differentiation potential and are expected to become a promising cell-seed for the treatment of tendon injuries in the future. In this review, we outline the latest advances in the culture and identification of TDSCs. In addition, the influencing factors on the differentiation of TDSCs are discussed. Moreover, we aim to discuss recent studies to enhance TDSCs treatment of injured tendons. Finally, we identify the limitations of the current understanding of TDSCs biology, the main challenges of using their use, and potential therapeutic strategies to inform cell-based tendon repair.
Collapse
Affiliation(s)
- Bing Wei
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Ackerman JE, Best KT, Muscat SN, Loiselle AE. Metabolic Regulation of Tendon Inflammation and Healing Following Injury. Curr Rheumatol Rep 2021; 23:15. [PMID: 33569739 DOI: 10.1007/s11926-021-00981-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function, tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis. RECENT FINDINGS Recent advances in the field include a substantial improvement in our understanding of tendon cell biology, including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro. In addition, the mechanisms by which altered systemic metabolism, such as diabetes, disrupts tendon homeostasis continue to be better understood. A central conclusion of this review is the critical need to better define fundamental cellular and signaling mechanisms of inflammation and metabolism during tendon homeostasis, tendinopathy, and tendon healing in order to identify therapies to enhance or maintain tendon function.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Katherine T Best
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Samantha N Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Kh S, Haider KH. Stem Cells: A Renewable Source of Pancreatic β-Cells and Future for Diabetes Treatment. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Lu PP, Chen MH, Dai GC, Li YJ, Shi L, Rui YF. Understanding cellular and molecular mechanisms of pathogenesis of diabetic tendinopathy. World J Stem Cells 2020; 12:1255-1275. [PMID: 33312397 PMCID: PMC7705468 DOI: 10.4252/wjsc.v12.i11.1255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence of an increased incidence of tendon disorders in people with diabetes mellitus. Diabetic tendinopathy is an important cause of chronic pain, restricted activity, and even tendon rupture in individuals. Tenocytes and tendon stem/progenitor cells (TSPCs) are the dominant cellular components associated with tendon homeostasis, maintenance, remodeling, and repair. Some previous studies have shown alterations in tenocytes and TSPCs in high glucose or diabetic conditions that might cause structural and functional variations in diabetic tendons and even accelerate the development and progression of diabetic tendinopathy. In this review, the biomechanical properties and histopathological changes in diabetic tendons are described. Then, the cellular and molecular alterations in both tenocytes and TSPCs are summarized, and the underlying mechanisms involved are also analyzed. A better understanding of the underlying cellular and molecular pathogenesis of diabetic tendinopathy would provide new insight for the exploration and development of effective therapeutics.
Collapse
Affiliation(s)
- Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Min-Hao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ying-Juan Li
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China.
| |
Collapse
|
27
|
Kichenbrand C, Grossin L, Menu P, Moby V. Behaviour of human dental pulp stem cell in high glucose condition: impact on proliferation and osteogenic differentiation. Arch Oral Biol 2020; 118:104859. [PMID: 32768712 DOI: 10.1016/j.archoralbio.2020.104859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the changes of human dental pulp stem cell (hDPSC) viability, proliferation and osteogenic differentiation in high glucose condition. DESIGN After 21 days of culture in low (5.5 mM) and high (20 mM) glucose medium, hDPSC viability and proliferation were assessed with respectively the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Hoechst assays. To investigate the influence of glucose on osteogenic differentiation hDPSCs were cultured for 28 days in low or high glucose medium with osteoinductive cocktail. Mineralization was examined by alizarin red staining/quantification and the expression of osteogenic-related genes [Runt-related transcription factor 2 (RUNX2), Osteocalcin (OCN), Collagen 1A1 (COL1A1)] analyzed by RT-qPCR. RESULTS We observed no significant difference (p > 0.05) on hDPSC proliferation or cell viability between low or high glucose groups. We did not highlight a significant difference after alizarin red staining and quantification between hDPSCs cultured with high or low glucose concentration in the culture medium. In the same manner, high glucose concentration did not appear to modify osteogenic gene expression: there was no significant difference in osteogenic-related gene expression between high or low glucose groups. CONCLUSION Proliferation, viability, and osteogenic differentiation of hDPSCs were not changed by high glucose environment.
Collapse
Affiliation(s)
- Charlene Kichenbrand
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France; CHRU Nancy, Service Odontologie, F-54000 Nancy, France; Faculté d'Odontologie, Université de Lorraine, F-54000 Nancy, France.
| | - Laurent Grossin
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France.
| | - Patrick Menu
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France; Faculté de Pharmacie, Université de Lorraine, F-54000 Nancy, France.
| | - Vanessa Moby
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France; CHRU Nancy, Service Odontologie, F-54000 Nancy, France; Faculté d'Odontologie, Université de Lorraine, F-54000 Nancy, France.
| |
Collapse
|
28
|
Tan HY, Tan SL, Teo SH, Roebuck MM, Frostick SP, Kamarul T. Development of a novel in vitro insulin resistance model in primary human tenocytes for diabetic tendinopathy research. PeerJ 2020; 8:e8740. [PMID: 32587790 PMCID: PMC7304430 DOI: 10.7717/peerj.8740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) had been reported to be associated with tendinopathy. However, the underlying mechanisms of diabetic tendinopathy still remain largely to be discovered. The purpose of this study was to develop insulin resistance (IR) model on primary human tenocytes (hTeno) culture with tumour necrosis factor-alpha (TNF-α) treatment to study tenocytes homeostasis as an implication for diabetic tendinopathy. Methods hTenowere isolated from human hamstring tendon. Presence of insulin receptor beta (INSR-β) on normal tendon tissues and the hTeno monolayer culture were analyzed by immunofluorescence staining. The presence of Glucose Transporter Type 1 (GLUT1) and Glucose Transporter Type 4 (GLUT4) on the hTeno monolayer culture were also analyzed by immunofluorescence staining. Primary hTeno were treated with 0.008, 0.08, 0.8 and 8.0 µM of TNF-α, with and without insulin supplement. Outcome measures include 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assay to determine the glucose uptake activity; colourimetric total collagen assay to quantify the total collagen expression levels; COL-I ELISA assay to measure the COL-I expression levels and real-time qPCR to analyze the mRNA gene expressions levels of Scleraxis (SCX), Mohawk (MKX), type I collagen (COL1A1), type III collagen (COL3A1), matrix metalloproteinases (MMP)-9 and MMP-13 in hTeno when treated with TNF-α. Apoptosis assay for hTeno induced with TNF-α was conducted using Annexin-V FITC flow cytometry analysis. Results Immunofluorescence imaging showed the presence of INSR-β on the hTeno in the human Achilles tendon tissues and in the hTeno in monolayer culture. GLUT1 and GLUT4 were both positively expressed in the hTeno. TNF-α significantly reduced the insulin-mediated 2-NBDG uptake in all the tested concentrations, especially at 0.008 µM. Total collagen expression levels and COL-I expression levels in hTeno were also significantly reduced in hTeno treated with 0.008 µM of TNF-α. The SCX, MKX and COL1A1 mRNA expression levels were significantly downregulated in all TNF-α treated hTeno, whereas the COL3A1, MMP-9 and MMP-13 were significantly upregulated in the TNF–α treated cells. TNF-α progressively increased the apoptotic cells at 48 and 72 h. Conclusion At 0.008 µM of TNF-α, an IR condition was induced in hTeno, supported with the significant reduction in glucose uptake, as well as significantly reduced total collagen, specifically COL-I expression levels, downregulation of candidate tenogenic markers genes (SCX and MKX), and upregulation of ECM catabolic genes (MMP-9 and MMP-13). Development of novel IR model in hTeno provides an insight on how tendon homeostasis could be affected and can be used as a tool for further discovering the effects on downstream molecular pathways, as the implication for diabetic tendinopathy.
Collapse
Affiliation(s)
- Hui Yee Tan
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Sik Loo Tan
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Seow Hui Teo
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Margaret M Roebuck
- Musculoskeletal Science Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Other, United Kingdom
| | - Simon P Frostick
- Musculoskeletal Science Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Other, United Kingdom
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| |
Collapse
|
29
|
Torgutalp ŞŞ, Babayeva N, Taş S, Dönmez G, Korkusuz F. Effects of hyperlipidemia on patellar tendon stiffness: A shear wave elastography study. Clin Biomech (Bristol, Avon) 2020; 75:104998. [PMID: 32335470 DOI: 10.1016/j.clinbiomech.2020.104998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies presented that increased adiposity and hyperlipidemia may cause tendon pathology. The aim of this study was to evaluate the effect of hyperlipidemia on the patellar tendon stiffness by shear wave elastography. METHODS A total of 51 participants (19 female, 32 male) were included. Participants were divided into two groups, according to their low-density lipoprotein levels, as the study group (hyperlipidemia, n = 24) and the control group (non-hyperlipidemia, n = 27). The patellar tendon and rectus femoris muscle shear wave velocities were measured by shear wave elastography. FINDINGS Patellar tendon shear wave velocities was 5.02 (SD: 0.78) m/s in the control group and 5.98 (SD: 1.19) m/s in the hyperlipidemia group (ES = 0.95, P = .001). There was a positive moderate statistically significant correlation between patellar tendon shear wave velocity and low-density lipoprotein (r = 0.432, p < .002). In the multiple linear regression analysis, only low-density lipoprotein was found as a significant predictor of patellar tendon shear wave velocity (CI: 0.005-0.028, P = .007). INTERPRETATION We evaluated the effects of hyperlipidemia and body mass index on patellar tendon mechanical properties with shear wave elastography. We found that the blood low-density lipoprotein level had an impact on patellar tendon stiffness independently of body mass index. Accordingly, it is important to evaluate individuals' low-density lipoprotein levels when examining risk factors for tendon pathology.
Collapse
Affiliation(s)
- Şerife Şeyma Torgutalp
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey.
| | - Naila Babayeva
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey
| | - Serkan Taş
- Toros University, School of Health Sciences, Department of Physiotherapy and Rehabilitation, 33140, Mersin, Turkey
| | - Gürhan Dönmez
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey
| | - Feza Korkusuz
- Hacettepe University, Faculty of Medicine, Department of Sports Medicine, 06100 Ankara, Turkey
| |
Collapse
|
30
|
Borton Z, Shivji F, Simeen S, Williams R, Tambe A, Espag M, Cresswell T, Clark D. Diabetic patients are almost twice as likely to experience complications from arthroscopic rotator cuff repair. Shoulder Elbow 2020; 12:109-113. [PMID: 32313560 PMCID: PMC7153207 DOI: 10.1177/1758573219831691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/25/2019] [Indexed: 11/15/2022]
Abstract
AIMS Large population-based studies have demonstrated increased prevalence of rotator cuff disease amongst diabetics. Recent studies have suggested comparable clinical outcomes from rotator cuff repair despite suggestions of increased complication rates amongst diabetics. However, there is a relative paucity of studies considering the effect of diabetes upon complication rate. We aim to report and quantify the effect of diabetes on complication rates following arthroscopic rotator cuff repair. MATERIALS AND METHODS A retrospective review of a consecutive series of patients undergoing arthroscopic rotator cuff repair between January 2011 and December 2014 was performed. Diabetic status and complication data defined as infection, frozen shoulder, re-tear or re-operation were collected and interrogated. RESULTS A total of 462 patients were included at median follow-up of 5.6 years. Diabetics were significantly more likely to experience frozen shoulder (15.8% vs. 4.4%, p = 0.001), re-tear (26.3% vs. 15.6%, p = 0.042) or at least one complication following surgery (35.1% vs. 22.7%, p = 0.041) compared to non-diabetics. These equated to odds ratios of 4.03, 1.94 and 1.84, respectively. CONCLUSIONS Diabetic patients are almost twice as likely to experience complications following arthroscopic rotator cuff repair, including double the risk of repair failure and more than four times the risk of frozen shoulder.
Collapse
Affiliation(s)
- Z Borton
- Z Borton, C/o Mr D Clark, Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3NE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Havis E, Duprez D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int J Mol Sci 2020; 21:ijms21051664. [PMID: 32121305 PMCID: PMC7084410 DOI: 10.3390/ijms21051664] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.
Collapse
|
32
|
Abstract
Biomechanical changes to the lower extremity in patients with diabetes mellitus are typically greatest with peripheral neuropathy, although peripheral arterial disease also impacts limb function. Changes to anatomic structures can impact daily function. These static changes, coupled with kinetic and kinematic changes of gait, lead to increased vertical and shear ground reactive forces, resulting in ulcerations. Unsteadiness secondary to diminished postural stability and increased sway increase fall risk. These clinical challenges and exacerbation of foot position and dynamic changes associated with limb salvage procedures, amputations, and prostheses are necessary and can impact daily function, independence, quality of life, and mortality.
Collapse
Affiliation(s)
- Jonathan M Labovitz
- Clinical Education and Graduate Services, College of Podiatric Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA.
| | - Dana Day
- College of Podiatric Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; Chino Valley Medical Center, Chino, CA 91710, USA
| |
Collapse
|
33
|
Kwan CK, Fu SC, Yung PSH. A high glucose level stimulate inflammation and weaken pro-resolving response in tendon cells - A possible factor contributing to tendinopathy in diabetic patients. Asia Pac J Sports Med Arthrosc Rehabil Technol 2020; 19:1-6. [PMID: 31871896 PMCID: PMC6915841 DOI: 10.1016/j.asmart.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tendinopathy is a chronic disorder that affects a huge population, and is causing high socioeconomical impacts worldwide. Tendinopathy was reported to be more prevalent in diabetic patients, and chronic inflammation was proposed to play an important role in its development. It was also known that diabetic patients present in a pro-inflammatory state. There is a possibility that the high glucose environment in diabetic patients lead to chronic inflammation in the tendon, and eventually the development of tendinopathy. In this study, we would simulate the diabetic environment in an in vitro setup, to assess the effect of a high glucose level on cultured tendinopathic and healthy tendon derived stem cells (TDSCs) under inflammatory stress. We would first like to assess whether there are differences between the inflammatory response in tendinopathic and healthy TDSCs. We would then investigate whether a high glucose level may lead to changes in the inflammatory response in healthy tendon cells. METHODS Tendinopathic TDSCs were cultured from 2 torn rotator cuff tendons and 1 ruptured patellar tendon. Healthy TDSCs were cultured from 3 gender matched healthy hamstring tendons. Cells were stimulated by either 2ng/ml IL-1B for 24 hours, 11.1 mmol/L glucose for 24 hours, or both. mRNA was collected and processed for qPCR targeting B-actin, ALOX12, ALOX15, FPR1, FPR2, ChemR23, and COX2. RESULTS Upregulation of FPR1 (p=0.050) ChemR23 (p=0.050), ALOX15 (p=0.050) was significantly weakened when comparing tendinopathic and healthy TDSCs stimulated with IL-1b. The upregulation of ALOX15 (p=0.050), was significantly lower in stimulated healthy TDSCs in a high glucose environment when comparing with those stimulated under a regular glucose level. A high glucose level also induced upregulation of COX2 (p=0.046) in healthy TDSCs and tendinopathic TDSCs (p=0.050). CONCLUSION The results of this study provide a possible explanation to the increased risk to develop tendinopathy in diabetic patients. Chronic inflammation observed in tendinopathy may be due to the weakening of pro-resolving responses in tendinopathic TDSCs, and a high glucose environment may lead to chronic inflammation and ultimately tendinopathy by persistent stimulation and weakening of pro-resolving response in healthy TDSCs.
Collapse
Affiliation(s)
- Cheuk-Kin Kwan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Sai-Chuen Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick Shu-hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
34
|
Nichols AE, Oh I, Loiselle AE. Effects of Type II Diabetes Mellitus on Tendon Homeostasis and Healing. J Orthop Res 2020; 38:13-22. [PMID: 31166037 PMCID: PMC6893090 DOI: 10.1002/jor.24388] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Over 300,000 tendon repairs are performed annually in the United States to repair damage to tendons as a result of either acute trauma or chronic tendinopathy. Individuals with type II diabetes mellitus (T2DM) are four times more likely to experience tendinopathy, and up to five times more likely to experience a tendon tear or rupture than non-diabetics. As nearly 10% of the US population is diabetic, with an additional 33% pre-diabetic, this is a particularly problematic health care challenge. Tendon healing in general is challenging and often unsatisfactory due to the formation of mechanically inferior scar-tissue rather than regeneration of native tendon structure. In T2DM tendons, there is evidence of an amplified scar tissue response, which may be associated with the increased the risk of rupture or impaired restoration of range of motion. Despite the dramatic effect of T2DM on tendon function and outcomes following injury, there are few therapies available to promote improved healing in these patients. Several recent studies have enhanced our understanding of the pro-inflammatory environment of T2DM healing and have assessed potential treatment approaches to mitigate pathological progression in pre-clinical models of diabetic tendinopathy. This review discusses the current state of knowledge of diabetic tendon healing from molecular to mechanical disruptions and identifies promising approaches and critical knowledge gaps as the field moves toward identification of novel therapeutic strategies to maintain or restore tendon function in diabetic patients. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:13-22, 2020.
Collapse
Affiliation(s)
- Anne E.C. Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642
| | - Irvin Oh
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642,Corresponding Author Alayna E. Loiselle, PhD, Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, Phone: (585) 275-7239, Fax: (585) 276-2177,
| |
Collapse
|
35
|
Insulin Enhances the In Vitro Osteogenic Capacity of Flexor Tendon-Derived Progenitor Cells. Stem Cells Int 2019; 2019:1602751. [PMID: 31949435 PMCID: PMC6948345 DOI: 10.1155/2019/1602751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022] Open
Abstract
There is increased incidence of tendon disorders and decreased tendon healing capacity in people with diabetes mellitus (DM). Recent studies have also suggested pathological ossification in repair tendon of people with DM. Therefore, the objective of this study is to investigate the effects of insulin supplementation, an important pathophysiologic stimulus of DM, on tendon progenitor cell (TPC) proliferation and in vitro osteogenic capacity. Passage 3 TPCs were isolated from collagenase-digested, equine superficial digital flexor tendons. TPC proliferation was measured via MTT assay after 3 days of monolayer culture in medium supplemented with 0, 0.007, 0.07, and 0.7 nM insulin. In vitro osteogenic capacity of TPCs (Alizarin Red staining, osteogenic mRNA expression, and alkaline phosphatase bioactivity) was assessed with 0, 0.07, and 0.7 nM insulin-supplemented osteogenic induction medium. Insulin (0.7 nM) significantly increased TPC proliferation after 3 days of monolayer culture. Alizarin Red staining of insulin-treated TPC osteogenic cultures demonstrated robust cell aggregation and mineralized matrix secretion, in a dose-dependent manner. Runx2, alkaline phosphatase, and Osteonectin mRNA and alkaline phosphatase bioactivity of insulin-treated TPC cultures were significantly higher at day 14 of osteogenesis compared to untreated controls. Addition of picropodophyllin (PPP), a selective IGF-I receptor inhibitor, mitigated the increased osteogenic capacity of TPCs, indicating that IGF-I signaling plays an important role. Our findings indicate that hyperinsulinemia may alter TPC phenotype and subsequently impact the quality of repair tendon tissue.
Collapse
|
36
|
Lin Y, Zhang L, Liu NQ, Yao Q, Van Handel B, Xu Y, Wang C, Evseenko D, Wang L. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Int J Nanomedicine 2019; 14:5831-5848. [PMID: 31534327 PMCID: PMC6680086 DOI: 10.2147/ijn.s210509] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose In order to accelerate the tendon-bone healing processes and achieve the efficient osteointegration between the tendon graft and bone tunnel, we aim to design bioactive electrospun nanofiber membranes combined with tendon stem/progenitor cells (TSPCs) to promote osteogenic regeneration of the tendon and bone interface. Methods In this study, nanofiber membranes of polycaprolactone (PCL), PCL/collagen I (COL-1) hybrid nanofiber membranes, poly(dopamine) (PDA)-coated PCL nanofiber membranes and PDA-coated PCL/COL-1 hybrid nanofiber membranes were successfully fabricated by electrospinning. The biochemical characteristics and nanofibrous morphology of the membranes, as well as the characterization of rat TSPCs, were defined in vitro. After co-culture with different types of electrospun nanofiber membranes in vitro, cell proliferation, viability, adhesion and osteogenic differentiation of TSPCs were evaluated at different time points. Results Among all the membranes, the performance of the PCL/COL-1 (volume ratio: 2:1 v/v) group was superior in terms of its ability to support the adhesion, proliferation, and osteogenic differentiation of TSPCs. No benefit was found in this study to include PDA coating on cell adhesion, proliferation and osteogenic differentiation of TSPCs. Conclusion The PCL/COL-1 hybrid electrospun nanofiber membranes are biocompatible, biomimetic, easily fabricated, and are capable of supporting cell adhesion, proliferation, and osteogenic differentiation of TSPCs. These bioactive electrospun nanofiber membranes may act as a suitable functional biomimetic scaffold in tendon-bone tissue engineering applications to enhance tendon-bone healing abilities.
Collapse
Affiliation(s)
- Yucheng Lin
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Lu Zhang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, University of Southern California (USC), Los Angeles, CA, USA
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ben Van Handel
- Department of Orthopaedic Surgery, University of Southern California (USC), Los Angeles, CA, USA
| | - Yan Xu
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Chen Wang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Denis Evseenko
- Department of Orthopaedic Surgery, University of Southern California (USC), Los Angeles, CA, USA
| | - Liming Wang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
High Glucose Enhances the Odonto/Osteogenic Differentiation of Stem Cells from Apical Papilla via NF-KappaB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5068258. [PMID: 31080819 PMCID: PMC6476152 DOI: 10.1155/2019/5068258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 01/14/2023]
Abstract
Objective The transport and metabolism of glucose are important during mammalian development. High glucose can mediate the biological characteristics of mesenchymal stem cells (MSCs). However, the role of high glucose in the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) is unclear. Materials and Methods SCAPs were isolated and identified in vitro. Then, SCAPs were cultured in normal α-MEM and high glucose α-MEM separately. MTT assay was applied to observe the proliferation of SCAPs. ALP activity, alizarin red staining, real-time RT-PCR, and western blot were used to detect the odonto/osteogenic capacity of SCAPs as well as the participation of NF-κB pathway. Results SCAPs in 25mmol/L glucose group expressed the maximum proteins of RUNX2 and ALP as compared with those in 5, 10, and 15 mmol/L groups. MTT assay showed that 25 mmol/L glucose suppressed the proliferation of SCAPs. ALP assay, alizarin red staining, real-time RT-PCR, and western blot showed 25 mmol/L high glucose can obviously enhance the odonto/osteogenic capacity of SCAPs. Moreover, the NF-κB pathway was activated in 25mmol/L glucose-treated SCAPs and the odonto/osteogenic differentiation was inhibited following the inhibition of NF-κB signaling pathway. Conclusions High glucose can enhance the odonto/osteogenic capacity of SCAPs via NF-κB pathway.
Collapse
|
38
|
Izumi S, Otsuru S, Adachi N, Akabudike N, Enomoto-Iwamoto M. Control of glucose metabolism is important in tenogenic differentiation of progenitors derived from human injured tendons. PLoS One 2019; 14:e0213912. [PMID: 30883580 PMCID: PMC6422258 DOI: 10.1371/journal.pone.0213912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Glucose metabolism is altered in injured and healing tendons. However, the mechanism by which the glucose metabolism is involved in the pathogenesis of tendon healing process remains unclear. Injured tendons do not completely heal, and often induce fibrous scar and chondroid lesion. Because previous studies have shown that tendon progenitors play roles in tendon repair, we asked whether connective tissue progenitors appearing in injured tendons alter glucose metabolism during tendon healing process. We isolated connective tissue progenitors from the human injured tendons, obtained at the time of primary surgical repair of rupture or laceration. We first characterized the change in glucose metabolism by metabolomics analysis using [1,2-13C]-glucose using the cells isolated from the lacerated flexor tendon. The flux of glucose to the glycolysis pathway was increased in the connective tissue progenitors when they proceeded toward tenogenic and chondrogenic differentiation. The influx of glucose to the tricarboxylic acid (TCA) cycle and biosynthesis of amino acids from the intermediates of the TCA cycle were strongly stimulated toward chondrogenic differentiation. When we treated the cultures with 2-deoxy-D-glucose (2DG), an inhibitor of glycolysis, 2DG inhibited chondrogenesis as characterized by accumulation of mucopolysaccharides and expression of AGGRECAN. Interestingly, 2DG strongly stimulated expression of tenogenic transcription factor genes, SCLERAXIS and MOHAWK under both chondrogenic and tenogenic differentiation conditions. The findings suggest that control of glucose metabolism is beneficial for tenogenic differentiation of connective tissue progenitors.
Collapse
Affiliation(s)
- Soutarou Izumi
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- Department of Orthopaedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Hiroshima University, Hiroshima, Japan
| | - Ngozi Akabudike
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- * E-mail: (MEI); (NA)
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland, Baltimore, Baltimore, Maryland, United States of America
- * E-mail: (MEI); (NA)
| |
Collapse
|
39
|
Zhang L, Zhou R, Zhang W, Yao X, Li W, Xu L, Sun X, Zhao L. Cysteine-rich intestinal protein 1 suppresses apoptosis and chemosensitivity to 5-fluorouracil in colorectal cancer through ubiquitin-mediated Fas degradation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:120. [PMID: 30850009 PMCID: PMC6408822 DOI: 10.1186/s13046-019-1117-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/22/2019] [Indexed: 12/24/2022]
Abstract
Background Cysteine-rich intestinal protein 1 (CRIP1) is highly expressed in human intestine and aberrantly expressed in several types of tumor. However, studies on CRIP1 are limited and its role on tumor development and progression remains controversial and elusive. Methods Immunohistochemistry was performed to evaluate the expression of CRIP1 in paired normal and colorectal tumor specimens, as well as colorectal cell lines. Functional assays, such as CCK8, TUNEL assay and in vivo tumor growth assay, were used to detect the proliferation, apoptosis and response to 5-FU of CRIP1. Western blot was used to analyze Fas-mediated pathway induced by CRIP1. Rescue experiments were performed to evaluate the essential role of CRIP1 for Fas-mediated apoptosis. Results We demonstrated that CRIP1 is overexpressed in CRC tissues compared with adjacent normal mucosa. CRIP1 could dramatically recover the 5-Fluorouracil (5-FU) inhibited CRC cell proliferation in vitro and stimulate the tumor formation of CRC in vivo, probably through inhibiting CRC cell apoptosis. Moreover, CRIP1 also dramatically recovered the 5-Fluorouracil (5-FU) induced tumor cell apoptosis in vitro. Further study demonstrated that CRIP1 down-regulated the expression of Fas protein and proteins related to Fas-mediated apoptosis. CRIP1 could interact with Fas protein and stimulate its ubiquitination and degradation. In addition, a negative correlation was detected between the expression of CRIP1 and Fas protein in most of the clinical human CRC samples. Conclusion The current research reveals a vital role of CRIP1 in CRC progression, which provide a novel target for clinical drug resistance of colorectal cancer and undoubtedly contributing to the therapeutic strategies in CRC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1117-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lanzhi Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Weibin Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Xueqing Yao
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China
| | - Weidong Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijun Xu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
SHI L, LI YJ, DAI GC, LIN YC, LI G, WANG C, CHEN H, RUI YF. Impaired function of tendon-derived stem cells in experimental diabetes mellitus rat tendons: implications for cellular mechanism of diabetic tendon disorder. Stem Cell Res Ther 2019; 10:27. [PMID: 30646947 PMCID: PMC6332703 DOI: 10.1186/s13287-018-1108-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with diabetes mellitus (DM) often suffered with many musculoskeletal disorders, such as tendon rupture and tendinopathy. However, the understanding of the pathogenesis of these alternations is limited. This study was designed to investigate the role of tendon-derived stem cells (TDSCs) in histopathological alterations of DM tendons. METHODS Forty-two SD rats were randomly and equally divided into a diabetes group (DG) and control group (CG). DM was induced by streptozotocin (65 mg/kg). The patellar tendons were isolated at weeks 1, 2, and 4 for histological analysis. TDSCs were isolated at week 2 for osteo-chondrogenic differentiation analysis. Mann-Whitney U test was used with SPSS. p < 0.050 was statistically significant. RESULTS Micro-tears of collagen fibers and altered appearance of tendon cells were observed in DG tendons. DG tendons exhibited significantly higher expression of OPN, OCN, SOX9, and Col II and decreased expression of Col I and tenomodulin (TNMD) at week 2. Diabetic TDSCs (dTDSCs) demonstrated significantly decreased proliferation ability and increased osteogenic and chondrogenic differentiation ability. Osteo-chondrogenic markers BMP2, ALP, OPN, OCN, Col II, and SOX9 were also significantly increased while tenogenic markers Col I and TNMD were decreased in dTDSCs. CONCLUSION These results suggested the erroneous differentiation of dTDSCs might account for the structural and non-tenogenic alternations in DM tendons, which provided new cues for the pathogenesis of tendon disorders in DM.
Collapse
Affiliation(s)
- Liu SHI
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
| | - Ying-juan LI
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009 People’s Republic of China
| | - Guang-chun DAI
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
| | - Yu-cheng LIN
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
| | - Gang LI
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chen WANG
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Department of Orthopaedics, Xishan People’s Hospital, 588 Guang Rui Road, Wuxi, 214011 Jiangsu People’s Republic of China
| | - Hui CHEN
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
| | - Yun-feng RUI
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009 Jiangsu People’s Republic of China
- Department of Orthopaedics, Xishan People’s Hospital, 588 Guang Rui Road, Wuxi, 214011 Jiangsu People’s Republic of China
- China Orthopedic Regenerative Medicine Group, Hangzhou, 310000 Zhejiang People’s Republic of China
| |
Collapse
|
41
|
Patel SH, Sabbaghi A, Carroll CC. Streptozotocin-induced diabetes alters transcription of multiple genes necessary for extracellular matrix remodeling in rat patellar tendon. Connect Tissue Res 2018; 59:447-457. [PMID: 29745261 DOI: 10.1080/03008207.2018.1470168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OVERVIEW Tendon collagen fibril degradation is commonly seen in tendons of diabetics, but the mechanisms responsible for these changes remain to be elucidated. We have demonstrated that streptozotocin (STZ)-induced diabetes increases tendon cell proliferation and collagen content. In the present study, we evaluated that impact of STZ-induced diabetes on mRNA transcripts involved with collagen fibril organization, extracellular matrix (ECM) remodeling, apoptosis, and proliferation. MATERIALS AND METHODS Rats were divided into four groups: nondiabetic (control, n = 9), 1 week (acute, n = 8) or 10 weeks of diabetes (chronic, n = 7), and 10 weeks of diabetes with insulin (insulin, n = 8). RNA was isolated from the patellar tendon for determination of mRNA transcripts using droplet digital PCR (ddPCR). RESULTS Transcripts for Col1a1, Col3a1, Mmp2, Timp1, Scx, Tnmd, Casp3, Casp8, and Ager were lower in acute relative to control and insulin rats (p ≤ 0.05). With the exception of Scx, transcripts for Col1a1, Col3a1, Mmp2, Timp1, Tnmd, Casp3, Casp8, and Ager were also lower in chronic when compared to control (p < 0.05). Transcripts for Col1a1, Col3a1, Mmp2, Timp1, Tnmd, Casp3, Casp8, and Ager were not different between control and insulin (p > 0.05). Transcripts for Dcn, Mmp1a, Mmp9, Pcna, Tgfbr3, Ptgs2, Ptger2, Ptges, and iNos were not altered by diabetes or insulin (p > 0.05). CONCLUSION Our findings indicated that STZ-induced diabetes results in rapid and large changes in the expression of several genes that are key to ECM remodeling, maintenance, and maturation.
Collapse
Affiliation(s)
- Shivam H Patel
- a Department of Health and Kinesiology , Purdue University , West Lafayette , IN , USA
| | - Arman Sabbaghi
- b Department of Statistics , Purdue University , West Lafayette , IN , USA
| | - Chad C Carroll
- a Department of Health and Kinesiology , Purdue University , West Lafayette , IN , USA.,c Department of Physiology , Midwestern University , Glendale , AZ , USA.,d Indiana Center for Musculoskeletal Health , Indiana University School of Medicine , Indianapolis , USA
| |
Collapse
|
42
|
|
43
|
Zhang K, Hast MW, Izumi S, Usami Y, Shetye S, Akabudike N, Philp NJ, Iwamoto M, Nissim I, Soslowsky LJ, Enomoto-Iwamoto M. Modulating Glucose Metabolism and Lactate Synthesis in Injured Mouse Tendons: Treatment With Dichloroacetate, a Lactate Synthesis Inhibitor, Improves Tendon Healing. Am J Sports Med 2018; 46:2222-2231. [PMID: 29927623 PMCID: PMC6510478 DOI: 10.1177/0363546518778789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tendon injuries are common problems among athletes. Complete recovery of the mechanical structure and function of ruptured tendons is challenging. It has been demonstrated that upregulation of glycolysis and lactate production occurs in wounds, inflammation sites, and cancerous tumors, and these metabolic changes also control growth and differentiation of stem and progenitor cells. Similar metabolic changes have been reported in human healing tendons. In addition, lactate production has increased in progenitors isolated from injured tendons after treatment with IL-1β. It is thought that the metabolic changes play a role in tendon healing after injury. HYPOTHESIS Glucose metabolism is altered during tendon injury and healing, and modulation of this altered metabolism improves tendon repair. STUDY DESIGN Controlled laboratory study. METHODS The authors used the tendon injury model involving a complete incision of the Achilles tendon in C57BL/6J female mice and studied alterations of glucose metabolism in injured tendons with [U-13C]glucose and metabolomics analysis 1 and 4 weeks after surgery. They also examined the effects of dichloroacetate (DCA; an indirect lactate synthesis inhibitor) treatment on the recovery of structure and mechanical properties of injured tendons 4 weeks after surgery in the same mouse model. RESULTS Significant changes in glucose metabolism in tendons after injury surgery were detected. 13C enrichment of metabolites and intermediates, flux through glycolysis, and lactate synthesis, as well as tricarboxylic acid cycle activity, were acutely increased 1 week after injury. Increased glycolysis and lactate generation were also found 4 weeks after injury. DCA-treated injured tendons showed decreased cross-sectional area and higher values of modulus, maximum stress, and maximum force when compared with vehicle-treated injured tendons. Improved alignment of the collagen fibers was also observed in the DCA group. Furthermore, DCA treatment reduced mucoid accumulation and ectopic calcification in injured tendons. CONCLUSION The findings indicate that injured tendons acutely increase glycolysis and lactate synthesis after injury and that the inhibition of lactate synthesis by DCA is beneficial for tendon healing. CLINICAL RELEVANCE Changing metabolism in injured tendons may be a therapeutic target for tendon repair.
Collapse
Affiliation(s)
- Kairui Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael W Hast
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Soutarou Izumi
- Department of Orthopaedics, University of Maryland, Baltimore, Maryland, USA
| | - Yu Usami
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Oral Pathology, Osaka University, Osaka, Japan
| | - Snehal Shetye
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ngozi Akabudike
- Department of Orthopaedics, University of Maryland, Baltimore, Maryland, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Masahiro Iwamoto
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Orthopaedics, University of Maryland, Baltimore, Maryland, USA
| | - Itzhak Nissim
- Division of Metabolism and Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Motomi Enomoto-Iwamoto
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Orthopaedics, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Ueda Y, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, Takase F, Kataoka T, Kokubu T, Kuroda R. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018; 7:362-372. [PMID: 29922457 PMCID: PMC5987694 DOI: 10.1302/2046-3758.75.bjr-2017-0126.r2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2
Collapse
Affiliation(s)
- Y Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - A Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Y Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - F Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - T Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
45
|
Stolarczyk A, Sarzyńska S, Gondek A, Cudnoch-Jędrzejewska A. Influence of diabetes on tissue healing in orthopaedic injuries. Clin Exp Pharmacol Physiol 2018; 45:619-627. [PMID: 29570835 DOI: 10.1111/1440-1681.12939] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/15/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Diabetes is a group of metabolic diseases characterized by hyperglycaemia resulting from the defective action or secretion of insulin. Chronic hyperglycaemia can lead to the damage, dysfunction and failure of various organs. In the context of complications of healing and orthopaedic rehabilitation, vascular (microangiopathy) and nerve (neuropathy) disorders deserve particular attention. About 12% of the patients admitted to orthopaedic departments have diabetes. Studies indicate that there is an indisputable link between diabetes and: an increased risk of fractures, the difficult healing of injuries of bones, ligaments and musculotendinous. It appears that one of the main reasons for this is non-enzymatic glycosylation (glycation) of collagen molecules, a phenomenon observed in the elderly and diabetic populations, as it leads to the formation of advanced glycation end products (AGEs). Collagen is one of the major connective tissue components, and is therefore part of ligaments, tendons and bones. AGEs affect the weakening of its structure and biomechanical properties, and thus also affects the weakening of the structure and properties of the above-mentioned tissues. The aim of the study is to undertake an overview of the current knowledge of the impact of diabetes on the risk of some injuries and subsequent healing and rehabilitation of patients following orthopaedic injuries.
Collapse
Affiliation(s)
- Artur Stolarczyk
- Department of Clinical Rehabilitation, Second Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Sarzyńska
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| | - Agata Gondek
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch. Int J Mol Sci 2017; 19:ijms19010090. [PMID: 29283422 PMCID: PMC5796040 DOI: 10.3390/ijms19010090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPARγ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy. Furthermore, the beneficial effects of mechanical stretch on tenocytes suggest that an appropriate physical load possesses therapeutic potential for diabetic tendinopathy.
Collapse
|