1
|
Alshahrani AS, Saber S, Alruwaili OS, Al-Majdoub ZM, Hamad RS, Abdel-Reheim MA, Khaled BEA, Alibrahim A, Ramadan A, El-Kott AF, Alshehri AS, Negm S, Elmorsy EA, Khalifa AK, Abdelhady R. Modulation of FOXO3a Nuclear Localization by Linagliptin (BI-1356) reveals a new therapeutic target in chronic ulcerative colitis. Eur J Pharm Sci 2025; 209:107100. [PMID: 40221059 DOI: 10.1016/j.ejps.2025.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Globally, the incidence and prevalence rates of ulcerative colitis (UC) show a rising pattern. The limited efficacy and significant adverse effects associated with current treatment options underscore the need for novel therapeutic approaches. It has been found that linagliptin, a dipeptidyl peptidase-4 inhibitor, activates AMPK in different disease conditions. The main objective of the present work was to elucidate the potential implications of the AMPK/FOXO3a mediated by linagliptin in rats with chronic colitis. The findings of the current report revealed the first robust in-vivo evidence advocating the coloprotective effect of linagliptin against dextran sodium sulfate-induced chronic UC in rats. It has demonstrated potential beyond its antidiabetic effects by modulating FOXO3a localization. By shifting FOXO3a from the cytosol to the nucleus, linagliptin enhanced the transcription of genes involved in attenuation of pro-inflammatory events and restoration of redox homeostasis. Nuclear FOXO3a also impacted NFκB activity, reducing inflammation. This conclusion was fundamentally supported by the documented improvements in histopathological changes evidenced by reduced inflammation, edema, crypt atrophy, and submucosal fibrosis. Moreover, decreased colon weight/length ratio, as well as reduced scores of disease activity and macroscopic damage indices, were observed. Furthermore, it corrected body weight loss during the time frame of the experiment. These findings underscore the anti-inflammatory potential of therapies that promote the nuclear localization of FOXO3a in inflammatory conditions. Linagliptin's ability to modulate FOXO3a localization might be particularly useful for diabetic patients suffering from inflammatory bowel diseases. However, further molecular investigations are required to validate the findings and to assess the clinical application of this approach as a valid tool for alleviating UC.
Collapse
Affiliation(s)
- Abdulaziz Saad Alshahrani
- Department of Internal Medicine, Medicine and Gastroenterologist Consultant, Najran University Hospital, Najran University, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | | | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | | | - Bahaa Eldin Ali Khaled
- Anatomy Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa Alibrahim
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt.
| | - Ali S Alshehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.
| | - Sally Negm
- Applied College, Health Specialities, Basic Sciences and Their Applications Unit, Mahayil Asir, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Elsayed A Elmorsy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Nahda University, New Beni Suef 62521, Egypt.
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt.
| |
Collapse
|
2
|
Li X, Wu Z, Si X, Li J, Wu G, Wang M. The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease and future strategies for targeted therapy. Eur J Med Res 2025; 30:434. [PMID: 40450332 DOI: 10.1186/s40001-025-02699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/17/2025] [Indexed: 06/03/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, behavioral impairments, and psychiatric comorbidities. The pathogenesis of AD remains incompletely elucidated, despite advances in dominant hypotheses such as the β-amyloid (Aβ) cascade, tauopathy, cholinergic deficiency, and neuroinflammation mechanisms. However, these hypotheses inadequately explain the multifactorial nature of AD, which exposes limitations in our understanding of its mechanisms. Mitochondrial dysfunction is known to play a pivotal role in AD, and since patients exhibit intracellular mitochondrial dysfunction and structural changes in the brain at an early stage, correcting the imbalance of mitochondrial homeostasis and the cytopathological changes caused by it may be a potential target for early treatment of AD. Mitochondrial structural abnormalities accelerate AD pathogenesis. For instance, structural and functional alterations in the mitochondria-associated endoplasmic reticulum membrane (MAM) can disrupt intracellular Ca2⁺ homeostasis and cholesterol metabolism, consequently promoting Aβ accumulation. In addition, the overaccumulation of Aβ and hyperphosphorylated tau proteins can further damage neurons by disrupting mitochondrial integrity and mitophagy, thereby amplifying pathological aggregation and exacerbating neurodegeneration in AD. Furthermore, Aβ deposition and abnormal tau proteins can disrupt mitochondrial dynamics through dysregulation of fission/fusion proteins, leading to excessive mitochondrial fragmentation and subsequent dysfunction. Additionally, hyperphosphorylated tau proteins can impair mitochondrial transport, resulting in axonal dysfunction in AD. This article reviews the biological significance of mitochondrial structural morphology, dynamics, and mitochondrial DNA (mtDNA) instability in AD pathology, emphasizing mitophagy abnormalities as a critical contributor to AD progression. Additionally, mitochondrial biogenesis and proteostasis are critical for maintaining mitochondrial function and integrity. Impairments in these processes have been implicated in the progression of AD, further highlighting the multifaceted role of mitochondrial dysfunction in neurodegeneration. It further discusses the therapeutic potential of mitochondria-targeted strategies for AD drug development.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ziyang Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaying Si
- Department of Psychiatry, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jing Li
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Guode Wu
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Wu W, Zhang L, Chen Y, Huang C, Yang L, Lin D. Exercise Attenuates Skeletal Muscle Atrophy in Senescent SAMP8 Mice: Metabolic Insights from NMR-Based Metabolomics. Molecules 2025; 30:2003. [PMID: 40363810 PMCID: PMC12073869 DOI: 10.3390/molecules30092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Age-related skeletal muscle atrophy is a major health concern in the elderly, contributing to reduced mobility, increased risk of falls, and metabolic dysfunction. The senescence-accelerated prone 8 (SAMP8) mouse model, known for its rapid aging and early cognitive decline, serves as an essential model for studying age-related muscle degeneration. While previous studies have shown that exercise attenuates muscle atrophy by promoting regeneration and improving strength, the underlying metabolic mechanisms remain poorly understood. This study used the SAMP8 model to evaluate the effects of exercise on muscle atrophy and associated metabolic changes. Our results show that exercise promoted muscle growth by reducing body weight, increasing skeletal muscle mass, and decreasing fat accumulation. Furthermore, exercise improved grip strength, muscle tone, and muscle fiber cross-sectional area, thereby preserving muscle functionality. NMR-based metabolomic analysis identified key metabolic pathways modulated by exercise, including glycine, serine, and threonine metabolism; alanine, aspartate, and glutamate metabolism; pyruvate metabolism; and taurine and hypotaurine metabolism. These findings underscore the therapeutic potential of exercise in combating age-related muscle wasting and elucidate the metabolic pathways underlying its benefits.
Collapse
Affiliation(s)
- Wenfang Wu
- Key Laboratory for Chemical Biology of Fujian Province, High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.W.); (L.Z.); (Y.C.)
| | - Linglin Zhang
- Key Laboratory for Chemical Biology of Fujian Province, High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.W.); (L.Z.); (Y.C.)
| | - Yifen Chen
- Key Laboratory for Chemical Biology of Fujian Province, High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.W.); (L.Z.); (Y.C.)
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361021, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.W.); (L.Z.); (Y.C.)
| |
Collapse
|
4
|
Li E, Wang R, Li Y, Zan X, Wu S, Yin Y, Yang X, Yin L, Zhang Y, Li J, Zhao X, Zhang C. A Novel Research Paradigm for Sarcopenia of Limb Muscles: Lessons From the Perpetually Working Diaphragm's Anti-Aging Mechanisms. J Cachexia Sarcopenia Muscle 2025; 16:e13797. [PMID: 40223287 PMCID: PMC11994741 DOI: 10.1002/jcsm.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Skeletal muscle function and mass continuously decrease during aging. Most studies target limb muscles owing to their direct impact on mobility and falls risk. The diaphragm (DIA), also a type of skeletal muscle with different phenotype, has received less attention. Comparative research of the DIA and limb muscles can reveal their distinct aging characteristics. Critically, the potential endogenous anti-aging mechanisms of DIA that may provide new insights into the mechanisms of sarcopenia in limb muscles remain scarce. METHODS Treadmill and grip tests assessed limb muscle function, while a lung function system evaluated respiratory function in both adult (6-month-old) and old (22-month-old) mice. Histological assessments evaluated muscle mass in both the DIA and tibialis anterior (TA). Transcriptome sequencing identified differentially expressed genes (DEGs) between the DIA and TA with aging. Adeno-associated virus (AAV)-encoding short hairpin (sh) RNA targeting gene was injected into adult mice's TA muscles to knockdown target gene level in TA, and AAV-gene was injected into old mice's TA to overexpress target gene level. RESULTS Old mice displayed significantly reduced running distance (p = 0.0026), maximal speed (p = 0.0019), time to exhaustion (p = 0.0033) and grip strength (p = 0.0055) compared with adult mice, alongside TA's weight loss, decreased myofibre cross-sectional area (CSA) and autophagy deficiency. However, lung function indicators (respiratory rate, tidal volume, minute ventilation volume, forced vital capacity and ratio of forced expiratory volume in 100 or 200 ms to forced vital capacity), as well as DIA weight and morphology remained stable in old mice. Transcriptional analysis revealed 61 DEGs, with significant upregulation or downregulation observed in TA, but without changes in DIA during aging. Smox (spermine oxidase) is one of the DEGs, responsible for catalysing the conversion of spermine to spermidine. It was reported that in muscle atrophy models such as limb immobilisation, fasting and denervation, Smox's levels are positively correlated with muscle mass and function. Additionally, an increase in Smox also promotes mitochondrial biogenesis. In our study, AAV-shSmox adult mice decreased running distance, speed and time, myofibre CSA alongside mitochondrial function, compared with controls. In contrast, old mice with Smox overexpression showed enhanced mitochondrial function. CONCLUSIONS In conclusion, this study reveals aging diversities of TA and DIA, explores the sarcopenia of limb muscles based on the anti-aging properties of DIA, which offers a novel perspective on limb sarcopenia. Our findings suggest Smox as a potential target for developing strategies to mitigate sarcopenia progression.
Collapse
Affiliation(s)
- Enhui Li
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Rui Wang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yanli Li
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xiang Zan
- The Neurosurgery Department of Shanxi Provincial People's HospitalShanxi Medical UniversityTaiyuanShanxiChina
| | - Shufen Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Yiru Yin
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Xiaorong Yang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Litian Yin
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Jianguo Li
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Xin Zhao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Ce Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
5
|
Zhang D, Liu J, Liu J, Fatima M, Yang L, Qin Y, Li W, Sun Z, Yang B. Exercise antagonizes cadmium-caused liver and intestinal injury in mice via Nrf2 and TLR2/NF-κB signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118100. [PMID: 40164036 DOI: 10.1016/j.ecoenv.2025.118100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/09/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Cadmium (Cd) causes a health risk to humans and animals. Exercise can prevent and treat a variety of diseases, but the effect and mechanism of exercise on cadmium poisoning are still unclear. The present research aims to investigate the antagonistic impacts of exercise on enterotoxicity and hepatotoxicity caused by Cd. The results indicated that exercise, both before and during Cd exposure, can reduce Cd caused pathological damages in the liver and duodenum of mice, suppressing the expression levels of the IL-1β, IL-6 and TNF-α genes. In mice exposed to Cd, exercise significantly decreased blood ALT and AST levels, alleviating oxidative stress in the liver by reducing MDA synthesis and enhancing SOD and GSH-PX activities. Exercise inhibited nuclear damage and hepatocyte apoptosis caused by Cd by increasing Bcl-2 protein expression and preventing the release of pro-apoptotic proteins such as caspase-3, Cytc, Bax, caspase-8and cleaved-caspase-3. Exercise before or during Cd exposure can increase the protein and gene expression of HO-1, NQO-1 and Nrf2 in the liver of mice exposed to Cd. These findings suggested that the Nrf2 signaling pathway may have contributed to the exercise-induced partial attenuation of Cd-induced hepatic injury. Exercise also promoted the expression of the occludin gene in the duodenum of Cd-exposed mice, decreasing the structural damage and inflammatory cell infiltration induced by Cd. NF-κB and TLR2 protein expression levels were elevated in mice exposed to Cd. However, exercise mitigated the increase in NF-κB and TLR2 expression in the duodenum of Cd-intoxicated mice, suggesting that the protective effects of exercise on the intestinal tract in Cd-exposed mice may be mediated through modulation of the NF-κB/TLR2 signaling pathway. In conclusion, this study elucidated the protective effects of exercise against Cd-induced hepatotoxicity and intestinal injury in mice. The protective mechanisms of exercise on Cd-exposed liver and intestinal tract were partially realized through the regulation of Nrf2 and NF-κB/TLR2 signaling pathways.
Collapse
Affiliation(s)
- Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jiayi Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jingru Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Maryam Fatima
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Lu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yingze Qin
- Second hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Wei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
6
|
Wang P, Guo Z, Kong C, Ma Y, Wang M, Zhang X, Yang Z. Danuglipron Ameliorates Pressure Overload-Induced Cardiac Remodelling Through the AMPK Pathway. J Cell Mol Med 2025; 29:e70488. [PMID: 40070049 PMCID: PMC11897056 DOI: 10.1111/jcmm.70488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/01/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
Cardiac remodelling, a pathological process induced by various cardiovascular diseases, remains a significant challenge in clinical practice. Here, we investigate the potential of Danuglipron (PF-06882961, PF), a novel oral glucagon-like peptide-1 (GLP-1) receptor agonist, in alleviating pressure overload (PO)-induced cardiac hypertrophy and fibrosis. Using both in vivo and in vitro models, we demonstrate that PF treatment (1 mg/kg/day, orally for 8 weeks) significantly attenuates aortic banding-induced cardiac dysfunction and pathological remodelling in mice. Mechanistically, we show that PF mitigates apoptotic responses and enhances autophagy by promoting AMPK phosphorylation and increasing HSP70 expression. Notably, the cardioprotective effects of PF are abolished in AMPKα2 knockout mice, with no observable increase in HSP70 levels. Our findings reveal a previously unrecognised role of PF in cardiac protection, mediated through the AMPKα-HSP70 signalling pathway, and suggest its potential as a therapeutic strategy for PO-induced cardiac remodelling.
Collapse
Affiliation(s)
- Pan Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Zhen Guo
- Department of CardiologyZhongnan Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Provincial Clinical Research Center for Cardiovascular InterventionWuhanP.R. China
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanP.R. China
| | - Chun‐Yan Kong
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Yu‐Lan Ma
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Ming‐Yu Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Xin‐Ru Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| | - Zheng Yang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanP.R. China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanP.R. China
| |
Collapse
|
7
|
Von Ruff ZD, Miller MJ, Moro T, Reidy PT, Ebert SM, Volpi E, Adams CM, Rasmussen BB. Resistance exercise training in older men reduces ATF4-activated and senescence-associated mRNAs in skeletal muscle. GeroScience 2025:10.1007/s11357-025-01564-2. [PMID: 40011348 DOI: 10.1007/s11357-025-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
Sarcopenia increases the risk of frailty, morbidity, and mortality in older adults. Resistance exercise training improves muscle size and function; however, the response to exercise training is variable in older adults. The objective of our study was to determine both the age-independent and age-dependent changes to the transcriptome following progressive resistance exercise training. Skeletal muscle biopsies were obtained before and after 12 weeks of resistance exercise training in 8 young (24 ± 3.3 years) and 10 older (72 ± 4.9 years) men. RNA was extracted from each biopsy and prepared for analysis via RNA sequencing. We performed differential mRNA expression, gene ontology, and gene set enrichment analyses. We report that when comparing post-training vs pre-training 226 mRNAs and 959 mRNAs were differentially expressed in the skeletal muscle of young and older men, respectively. Additionally, 94 mRNAs increased, and 17 mRNAs decreased in both young and old, indicating limited overlap in response to resistance exercise training. Furthermore, the differential gene expression was larger in older skeletal muscle. Finally, we report three novel findings: 1) resistance exercise training decreased the abundance of ATF4-activated and senescence-associated skeletal muscle mRNAs in older men; 2) resistance exercise-induced increases in lean mass correlate with increased mRNAs encoding mitochondrial proteins; and 3) increases in muscle strength following resistance exercise positively correlate with increased mRNAs involved in translation, rRNA processing, and polyamine metabolism. We conclude that resistance exercise training elicits a differential gene expression response in young and old skeletal muscle, including reduced ATF-4 activated and senescence-associated gene expression.
Collapse
Affiliation(s)
| | - Matthew J Miller
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- University of Iowa, Iowa City, IA, USA
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Paul T Reidy
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, USA
| | - Scott M Ebert
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Elena Volpi
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Blake B Rasmussen
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA.
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Iwata T, Shirai T, Tanimura R, Iwai R, Takemasa T. Effect of spermidine intake on overload-induced skeletal muscle hypertrophy in male mice. Physiol Rep 2025; 13:e70209. [PMID: 39910742 PMCID: PMC11798862 DOI: 10.14814/phy2.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
Skeletal muscles exhibit high plasticity, such as overload-induced hypertrophy or immobilization-induced atrophy. During sports, skeletal muscle hypertrophy is induced by training to improve performance. Spermidine is a type of polyamine and oral intake of spermidine exerts many beneficial effects on health through various mechanisms, such as promoting autophagy and improving mitochondrial function. In a recent study, we showed that spermidine intake activates mTOR signaling and significantly increases the mean fiber cross-sectional area (CSA) 14 days after injury. This suggests that spermidine promotes the anabolic growth of differentiated muscle (i.e., muscle hypertrophy); however, calorie restriction, which has been reported to have effects on the same molecular mechanisms as spermidine (promoting autophagy and improving mitochondrial function), promotes skeletal muscle regeneration, while inhibiting skeletal muscle hypertrophy. Therefore, we evaluated the effect of spermidine intake on skeletal muscle hypertrophy in mice using a synergistic ablation-induced muscle hypertrophy model. Our results showed that spermidine intake significantly decreased mean myofiber of CSA, but this was not consistent with the change in skeletal muscle wet weight. We also analyzed autophagy, mTOR signaling, inflammation, and mitochondria, but no significant effects of spermidine intake were observed at most protein expression levels. Therefore, spermidine intake does not affect overload-induced skeletal muscle hypertrophy, and even if it does, the effect is suppressive.
Collapse
Affiliation(s)
- Tomohiro Iwata
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaIbarakiJapan
| | - Takanaga Shirai
- Research Fellow of Japan Society for Promotion ScienceTokyoJapan
- Department of Human SciencesKanagawa UniversityKanagawaJapan
| | - Riku Tanimura
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaIbarakiJapan
- Research Fellow of Japan Society for Promotion ScienceTokyoJapan
| | - Ryoto Iwai
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaIbarakiJapan
| | - Tohru Takemasa
- Institute of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| |
Collapse
|
9
|
Meng K, Jia H, Hou X, Zhu Z, Lu Y, Feng Y, Feng J, Xia Y, Tan R, Cui F, Yuan J. Mitochondrial Dysfunction in Neurodegenerative Diseases: Mechanisms and Corresponding Therapeutic Strategies. Biomedicines 2025; 13:327. [PMID: 40002740 PMCID: PMC11852430 DOI: 10.3390/biomedicines13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative disease (ND) refers to the progressive loss and morphological abnormalities of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Examples of neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Recent studies have shown that mitochondria play a broad role in cell signaling, immune response, and metabolic regulation. For example, mitochondrial dysfunction is closely associated with the onset and progression of a variety of diseases, including ND, cardiovascular diseases, diabetes, and cancer. The dysfunction of energy metabolism, imbalance of mitochondrial dynamics, or abnormal mitophagy can lead to the imbalance of mitochondrial homeostasis, which can induce pathological reactions such as oxidative stress, apoptosis, and inflammation, damage the nervous system, and participate in the occurrence and development of degenerative nervous system diseases such as AD, PD, and ALS. In this paper, the latest research progress of this subject is detailed. The mechanisms of oxidative stress, mitochondrial homeostasis, and mitophagy-mediated ND are reviewed from the perspectives of β-amyloid (Aβ) accumulation, dopamine neuron damage, and superoxide dismutase 1 (SOD1) mutation. Based on the mechanism research, new ideas and methods for the treatment and prevention of ND are proposed.
Collapse
Affiliation(s)
- Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| | - Haocheng Jia
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Xiaoqing Hou
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Ziming Zhu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yuguang Lu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yingying Feng
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Jingwen Feng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China;
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China;
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou 221004, China;
| | - Fen Cui
- Educational Institute of Behavioral Medicine, Jining Medical University, Jining 272067, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| |
Collapse
|
10
|
Zhang Y, Zhao Y, Liu YQ, Fang YP, Sun L, Wei SZ, Zhu XD, Zhang XL. High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux. Hum Cell 2025; 38:43. [PMID: 39789393 DOI: 10.1007/s13577-024-01156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence. We categorised 46 patients with DKD diagnosed by renal biopsy into classes I, IIa, IIb, III and IV and used four normal kidney specimens from patients with renal trauma as controls. We evaluated pathological changes, LC3 and p21. We used streptozotocin-induced DKD models in rats and 35 mM glucose-cultured human proximal tubular epithelial cells (HK-2) with or without 3-MA and CQ. We assessed p53, p21, LC3 and p62. We observed autophagosomes and detected senescence-associated galactosidase (SA-β-gal) activity. In patients with DKD, p21 and LC3 expression levels increased over time and correlated positively with blood creatinine and proteinuria. In DKD rats and HK-2 cells, p21, p53, LC3 and p62 expression levels were higher than in the controls, as were SA-β-gal-positive cells, renal tubular autophagosomes and co-expression of p21 and LC3. The 3-MA reduced p16, p21 and p53 expression compared with the high glucose group, whereas CQ had the opposite effect. These results suggest that renal tubular cell senescence is associated with the progression of DKD. Additionally, autophagic flux may play a role in mediating high-glucose-induced senescence in renal tubular cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Yu Zhao
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
| | - Yu-Qiu Liu
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Ya-Ping Fang
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Li Sun
- Department of Nephrology, Xuyi People's Hospital, Huaian, 223001, Jiangsu, China
| | - Shan-Zhai Wei
- Department of Nephrology, Shu Yang Hospital of TCM, Jiangsu, 223600, China
| | - Xiao-Dong Zhu
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| | - Xiao-Liang Zhang
- Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
- School of Medicine, Southeast University, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
11
|
Guan G, Chen Y, Dong Y. Unraveling the AMPK-SIRT1-FOXO Pathway: The In-Depth Analysis and Breakthrough Prospects of Oxidative Stress-Induced Diseases. Antioxidants (Basel) 2025; 14:70. [PMID: 39857404 PMCID: PMC11763278 DOI: 10.3390/antiox14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS) refers to the production of a substantial amount of reactive oxygen species (ROS), leading to cellular and organ damage. This imbalance between oxidant and antioxidant activity contributes to various diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative conditions. The body's antioxidant system, mediated by various signaling pathways, includes the AMPK-SIRT1-FOXO pathway. In oxidative stress conditions, AMPK, an energy sensor, activates SIRT1, which in turn stimulates the FOXO transcription factor. This cascade enhances mitochondrial function, reduces mitochondrial damage, and mitigates OS-induced cellular injury. This review provides a comprehensive analysis of the biological roles, regulatory mechanisms, and functions of the AMPK-SIRT1-FOXO pathway in diseases influenced by OS, offering new insights and methods for understanding OS pathogenesis and its therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; (G.G.); (Y.C.)
| |
Collapse
|
12
|
Zhou XH, Luo YX, Yao XQ. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res 2025:S2090-1232(24)00613-1. [PMID: 39756575 DOI: 10.1016/j.jare.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood. AIM OF REVIEW This review explores the molecular mechanisms of exercise-induced autophagy in various tissues, focusing on key transduction pathways. It examines how different types of exercise trigger specific autophagic responses, supporting cellular balance and addressing systemic dysfunctions. The review also highlights the signaling pathways involved, their roles in protecting organ function, reducing disease risk, and promoting longevity, offering a clear understanding of the link between exercise and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Exercise-induced autophagy is governed by highly coordinated and dynamic pathways integrating direct and indirect mechanical forces and biochemical signals, linking physical activity to cellular and systemic health across multiple organ systems. Its activation is influenced by exercise modality, intensity, duration, and individual biological characteristics, including age, sex, and muscle fiber composition. Aerobic exercises primarily engage AMPK and mTOR pathways, supporting mitochondrial quality and cellular homeostasis. Anaerobic training activates PI3K/Akt signaling, modulating molecules like FOXO3a and Beclin1 to drive muscle autophagy and repair. In pathological contexts, exercise-induced autophagy enhances mitochondrial function, proteostasis, and tissue regeneration, benefiting conditions like sarcopenia, neurodegeneration, myocardial ischemia, metabolic disorders, and cancer. However, excessive exercise may lead to autophagic overactivation, leading to muscle atrophy or pathological cardiac remodeling. This underscores the critical need for balanced exercise regimens to maximize therapeutic efficacy while minimizing risks. Future research should prioritize identifying reliable biomarkers, optimizing exercise protocols, and integrating exercise with pharmacological strategies to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
13
|
Wang K, Zeng H, Yang H. Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis. Chin Med 2024; 19:180. [PMID: 39741316 DOI: 10.1186/s13020-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Lovastatin, the main lipid-lowering component in red yeast rice, is a golden anti-lipid drug, but its long-term application is continuously challenged by potential skeletal muscle atrophy. Daidzein, an isoflavone derived from soybeans and many Chinese medicines, shows therapeutic potential in treating muscle-related diseases and metabolic disorders. However, whether daidzein can improve lovastatin-induced muscle atrophy and the specific mechanism needs to further study. METHODS Lovastatin-induced mice and zebrafish muscle atrophy models were used to validate the protective effect of daidzein in vivo. And the lovastatin-induced C2C12 myotube atrophy model was employed to validate the therapeutic efficacy and investigate the specific mechanism of daidzein in vitro. We combined specific siRNA targeting FOXO3a and AMPK-selective inhibitor, agonist to elucidate AMPK/FOXO3a-dependent muscle-protective mechanism of daidzein. The anti-atrophy effects of daidzein through blockage of abnormal activation of AMPK/FOXO3a was presented in Immunofluorescence, H&E staining, Western blot, qRT-PCR. Serum creatine kinase level was detected by ELISA and we used mouse muscle grip instrument to detect the strength of mouse muscles. RESULTS In this study, we demonstrated that daidzein could dose-dependently alleviate lovastatin-induced mice skeletal muscle atrophy, reduce serum creatine kinase, and improve muscle grip strength in mice. Mechanistically, daidzein inhibited lovastatin-induced FOXO3a phosphorylation caused by AMPK activation, thereby inhibiting FOXO3a nuclear translocation to restrain the expression of muscle-related proteins Atrogin-1 and MuRF-1. In C2C12 myotube, administration of AMPK-selective inhibitor Compound C recapitulated the therapeutic effects of daidzein against lovastatin-induced myotubes atrophy, while the anti-atrophy effects of daidzein were lost in the presence of AMPK-selective agonist MK-3903. In lovastatin-induced mice muscle atrophy models, Compound C elicited similar anti-atrophy effects as daidzein, but this effect was not potentiated when it was applied in combination with daidzein, suggesting that daidzein exerted therapeutic efficacy dependent on blockage of AMPK activity. CONCLUSIONS Our study identified daidzein as an effective component that ameliorated lovastatin-induced skeletal muscle atrophy through blockage of abnormal activation of AMPK/FOXO3a and transcriptional activation of genes encoding downstream muscle-related proteins. Our results also highlighted the therapeutic potential by regulating the AMPK/FOXO3a axis in management of statin-induced myotoxicity.
Collapse
Affiliation(s)
- Keke Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
15
|
Trisal A, Singh AK. Clinical Insights on Caloric Restriction Mimetics for Mitigating Brain Aging and Related Neurodegeneration. Cell Mol Neurobiol 2024; 44:67. [PMID: 39412683 PMCID: PMC11485046 DOI: 10.1007/s10571-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Aging, an inevitable physiological process leading to a progressive decline in bodily functions, has been an abundantly researched domain with studies attempting to slow it down and reduce its debilitating effects. Investigations into the cellular and molecular pathways associated with aging have allowed the formulation of therapeutic strategies. Of these, caloric restriction (CR) has been implicated for its role in promoting healthy aging by modulating key molecular targets like Insulin/IGF-1, mTOR, and sirtuins. However, CR requires dedication and commitment to a strict regimen which poses a difficulty in maintaining consistency. To maneuver around cumbersome diets, Caloric Restriction Mimetics (CRMs) have emerged as promising alternatives by mimicking the beneficial effects of CR. This review elucidates the molecular foundations enabling CRMs like rapamycin, metformin, resveratrol, spermidine, and many more to function as suitable anti-aging molecules. Moreover, it explores clinical trials (retrieved from the clinicaltrials.gov database) aimed at demonstrating the efficacy of CRMs as effective candidates against age-related neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110 025, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnatak, Manipal, 576 104, India.
| |
Collapse
|
16
|
Iwata T, Shirai T, Uemichi K, Tanimura R, Takemasa T. Effect of spermidine intake on skeletal muscle regeneration after chemical injury in male mice. Physiol Rep 2024; 12:e70092. [PMID: 39448391 PMCID: PMC11502205 DOI: 10.14814/phy2.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Skeletal muscle has a high regenerative ability and maintains homeostasis by rapidly regenerating from frequent damage caused by intense exercise or trauma. In sports, skeletal muscle damage occurs frequently due to intense exercise, so practical methods to promote skeletal muscle regeneration are required. Recent studies have shown that it may be possible to promote skeletal muscle regeneration through new pathways, such as promoting autophagy and improving mitochondrial function. Spermidine is a type of polyamine, and oral intake of spermidine promotes autophagy and improves mitochondrial function without inhibiting mTOR. Therefore, we evaluate the effects of spermidine intake on skeletal muscle regeneration after injury using a mouse model of cardiotoxin-induced muscle injury. Our results showed no significant change in skeletal muscle wet weight with spermidine intake at all time points. In addition, although spermidine intake significantly increased the mean fiber cross-sectional area 14 days after injury, these effects were not observed at other time points. In addition, we analyzed stem cells, autophagy, mTOR signaling, inflammation, and mitochondria, but no significant effects of spermidine intake were observed at almost all time points and protein expression levels. Therefore, spermidine intake does not affect skeletal muscle regeneration after chemical injury, and if there is any, it is very limited.
Collapse
Affiliation(s)
- Tomohiro Iwata
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Takanaga Shirai
- Japan Society for Promotion ScienceChiyodaTokyoJapan
- Department of Human SciencesKanagawa UniversityYokohamaKanagawaJapan
| | - Kazuki Uemichi
- Japan Society for Promotion ScienceChiyodaTokyoJapan
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Riku Tanimura
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Japan Society for Promotion ScienceChiyodaTokyoJapan
| | - Tohru Takemasa
- Institute of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
17
|
Li J, Wang H, Guo M, Guo Q, Li Y. Combination of Exogenous Spermidine and Phosphocreatine Efficiently Improved the Quality and Antioxidant Capacity of Cryopreserved Boar Sperm and Reduced Apoptosis-Like Changes. Mol Reprod Dev 2024; 91:e70003. [PMID: 39445630 DOI: 10.1002/mrd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The low resistance of boar sperm to cryopreservation dictates that addition antioxidants and energetic substances to the diluent to improve sperm quality is necessary. This study evaluated the effect of spermidine and phosphocreatine in combination on the quality, antioxidant capacity, and antiapoptotic-like changes capacity of cryopreserved boar sperm based on previous reports. The results showed that the combined application of spermidine and phosphocreatine significantly enhanced the motility, average path velocity, straight-line velocity, curvilinear velocity, beat cross frequency, acrosome integrity, plasma membrane integrity, mitochondrial activity, and DNA integrity compared with the control group (p < 0.05). In addition, the combined application of spermidine and phosphocreatine significantly enhanced the total antioxidant capacity, superoxide dismutase activity, glutathione peroxidase activity, and catalase activity while significantly decreasing malondialdehyde content and hydrogen peroxide content (p < 0.05). Western Blot analysis further showed that spermidine and phosphocreatine significantly decreased the expression of CASP3 and BAX and significantly enhanced the expression of BCL2 (p < 0.05); therefore, the combination of spermidine and phosphocreatine has potentially positive implications for improving the quality of cryopreserved boar sperm.
Collapse
Affiliation(s)
- Jingchun Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Hechuan Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Minghui Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yanbing Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
18
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
19
|
Bao F, Zhao X, You J, Liu Y, Xu Z, Wu Y, Wu Y, Xu Z, Yu L, Li J, Wei Y. Aerobic exercise alleviates skeletal muscle aging in male rats by inhibiting apoptosis via regulation of the Trx system. Exp Gerontol 2024; 194:112523. [PMID: 39025384 DOI: 10.1016/j.exger.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Skeletal muscle aging in rats is a reduction in skeletal muscle mass caused by a decrease in the number or volume of skeletal muscle myofibers. Apoptosis has been recognized to play a key role in accelerating the process of skeletal muscle aging in rats. The thioredoxin (Trx) system is a widely expressed oxidoreductase system that controls the cellular reduction/oxidation state and has both potent anti-free radical damage and important pro-growth and apoptosis inhibitory functions. Previous studies have shown that exercise delays skeletal muscle aging. However, it is unclear whether exercise attenuates skeletal muscle aging via the Trx system. Therefore, the present study used the Trx system as an entry point to explore the effect of aerobic exercise to improve skeletal muscle aging in rats and its possible mechanisms, and to provide a theoretical basis for exercise to delay skeletal muscle aging in rats. It was shown that aerobic exercise in senescent rats resulted in increased gastrocnemius index, decreased body weight, increased endurance, decreased skeletal muscle cell apoptosis, increased activity and protein expression of the Trx system, and decreased expression of p38 and ASK1. Based on these findings, we conclude that 10 weeks of aerobic exercise may enhance the anti-apoptotic effect of Trx by up-regulating Trx and Trx reductase (TR) protein expression, which in turn increases Trx activity in rat skeletal muscle, and ultimately alleviates apoptosis in senescent skeletal muscle cells.
Collapse
Affiliation(s)
- Fenmiao Bao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Jiaqi You
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zheng Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yuqing Wu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yufeng Wu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Liang Yu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junping Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yan Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
20
|
Yang L, Liu D, Jiang S, Li H, Chen L, Wu Y, Essien AE, Opoku M, Naranmandakh S, Liu S, Ru Q, Li Y. SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets. Biomed Pharmacother 2024; 177:116917. [PMID: 38908209 DOI: 10.1016/j.biopha.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024] Open
Abstract
Sarcopenia is an aging-related skeletal disease characterized by decreased muscle mass, strength, and physical function, severely affecting the quality of life (QoL) of the elderly population. Sirtuin 1 (SIRT1), as a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in various aging-related signaling pathways and exert protective effect on many human diseases. SIRT1 functioned as an important role in the occurrence and progression of sarcopenia through regulating key pathways related to protein homeostasis, apoptosis, mitochondrial dysfunction, insulin resistance and autophagy in skeletal muscle, including SIRT1/Forkhead Box O (FoxO), AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor κB (NF-κB), SIRT1/p53, AMPK/SIRT1/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and SIRT1/live kinase B1 (LKB1)/AMPK pathways. However, the specific mechanisms of these processes have not been fully illuminated. Currently, several SIRT1-mediated interventions on sarcopenia have been preliminarily developed, such as SIRT1 activator polyphenolic compounds, exercising and calorie restriction. In this review, we summarized the predominant mechanisms of SIRT1 involved in sarcopenia and therapeutic modalities targeting the SIRT1 signaling pathways for the prevention and prognosis of sarcopenia.
Collapse
Affiliation(s)
- Luning Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Anko Elijah Essien
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Michael Opoku
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - ShuGuang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
21
|
Li Z, Song Y, Lin Z, Zhang T, He A, Shi P, Zhang X, Cao Y, Zhu X. Hypoxia-initiated Cysteine-rich protein 61 secretion promotes chemoresistance of acute B lymphoblastic leukemia cells. Am J Cancer Res 2024; 14:3388-3403. [PMID: 39113880 PMCID: PMC11301291 DOI: 10.62347/ckmt4065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
The drug resistance is a major obstacle in acute B-lymphoblastic leukemia (B-ALL) treatment. Our previous study has indicated that increased levels of Cysteine-rich protein 61 (Cyr61) in the bone marrow can mitigate the chemosensitivity of B-ALL cells, though the specific source of Cyr61 in the bone marrow remains unknown. In this study, we aimed to investigate whether hypoxia can induce Cyr61 production in B-ALL cells, delineates the underlying mechanisms, and evaluates the effect of Cyr61 on the chemosensitivity of B-ALL cells under hypoxia conditions. The results indicate that hypoxia promotes Cyr61 production in B-ALL cells by activating the NF-κB pathway. Increased Cyr61 expression appears to reduce the chemosensitivity of B-ALL cell to vincristine (VCR) and daunorubicin (DNR) through autophagy under hypoxia. Notably, inhibition of Cyr61 restores the chemosensitivity of B-ALL cells to both chemotherapeutic agents. This study is the first time to report that hypoxia decreases the chemosensitivity of B-ALL cells by inducing Cyr61 production, suggesting that targeting Cyr61 or its associated pathways could potentially improve the clinical response of B-ALL patients.
Collapse
Affiliation(s)
- Zhaozhong Li
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yanfang Song
- Clinical Laboratory, The Affiliated People’s Hospital of Fujian University of Traditional Chinese MedicineNo. 602 Bayiqi Road, Fuzhou 350001, Fujian, China
| | - Zhen Lin
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Taigang Zhang
- Clinical Laboratory, The Affiliated People’s Hospital of Fujian University of Traditional Chinese MedicineNo. 602 Bayiqi Road, Fuzhou 350001, Fujian, China
| | - Aoyu He
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Pengcong Shi
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xiaoli Zhang
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yinping Cao
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union HospitalNo. 29 Xinquan Road, Fuzhou 350001, Fujian, China
| |
Collapse
|
22
|
Chen Y, Wu J. Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies. Aging Dis 2024; 16:1003-1022. [PMID: 38739945 PMCID: PMC11964442 DOI: 10.14336/ad.2024.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
The proportion of the elderly population is gradually increasing as a result of medical care advances, leading to a subsequent surge in geriatric diseases that significantly impact quality of life and pose a substantial healthcare burden. Sarcopenia, characterized by age-related decline in skeletal muscle mass and quality, affects a considerable portion of older adults, particularly the elderly, and can result in adverse outcomes such as frailty, fractures, bedridden, hospitalization, and even mortality. Skeletal muscle aging is accompanied by underlying metabolic changes. Therefore, elucidating these metabolic profiles and specific mechanisms holds promise for informing prevention and treatment strategies for sarcopenia. This review provides a comprehensive overview of the key metabolites identified in current clinical studies on sarcopenia and their potential pathophysiological alterations in metabolic activity. Besides, we examine potential therapeutic strategies for sarcopenia from a perspective focused on metabolic regulation.
Collapse
Affiliation(s)
| | - Jinhui Wu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Liu SZ, Chiao YA, Rabinovitch PS, Marcinek DJ. Mitochondrial Targeted Interventions for Aging. Cold Spring Harb Perspect Med 2024; 14:a041199. [PMID: 37788882 PMCID: PMC10910403 DOI: 10.1101/cshperspect.a041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Changes in mitochondrial function play a critical role in the basic biology of aging and age-related disease. Mitochondria are typically thought of in the context of ATP production and oxidant production. However, it is clear that the mitochondria sit at a nexus of cell signaling where they affect metabolite, redox, and energy status, which influence many factors that contribute to the biology of aging, including stress responses, proteostasis, epigenetics, and inflammation. This has led to growing interest in identifying mitochondrial targeted interventions to delay or reverse age-related decline in function and promote healthy aging. In this review, we discuss the diverse roles of mitochondria in the cell. We then highlight some of the most promising strategies and compounds to target aging mitochondria in preclinical testing. Finally, we review the strategies and compounds that have advanced to clinical trials to test their ability to improve health in older adults.
Collapse
Affiliation(s)
- Sophia Z Liu
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
24
|
El-Far AH, Elghaity MM, Mohamed SA, Noreldin AE, Elewa YHA, Al Jaouni SK, Alsenosy AA. Diosgenin alleviates D-galactose-induced oxidative stress in rats' brain and liver targeting aging and apoptotic marker genes. Front Mol Biosci 2024; 11:1303379. [PMID: 38463710 PMCID: PMC10922004 DOI: 10.3389/fmolb.2024.1303379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
The theory of aging is primarily concerned with oxidative stress caused by an imbalance in reactive oxygen species generation and cellular antioxidants. To alleviate the oxidative stress, we investigated the protective effect of diosgenin (DSG) for D-galactose (D-gal) using 20 and 40 mg of DSG/kg/day/orally for 42 days. The findings showed that D-gal caused brain and liver oxidative injuries by upregulating aging and oxidative markers. To counteract the oxidative stress caused by D-gal, DSG upregulated glutathione peroxidase-1, superoxide dismutase-1, and glutathione S-transferase-α. DSG also diminished the expression of p53, p21, Bcl-2-associated X protein, caspase-3, and mammalian target of rapamycin in brain and liver, as well as the build-up of β-galactosidase. DSG, in a dose-dependent manner, decreased the oxidative aging effects of D-gal in brain and liver tissues through targeting of aging and apoptotic marker genes. Finally, it should be noted that consuming DSG supplements is a suggesting natural preventative agent that may counteract aging and preserve health through improvement of body antioxidant status and control aging associated inflammation and cellular apoptosis.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mona M. Elghaity
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Shymaa A. Mohamed
- Molecular Biology Unit, Medical Technology Centre, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yaser H. A. Elewa
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
| | - Soad Khalil Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelwahab A. Alsenosy
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
25
|
Tang S, Geng Y, Lin Q. The role of mitophagy in metabolic diseases and its exercise intervention. Front Physiol 2024; 15:1339128. [PMID: 38348222 PMCID: PMC10859464 DOI: 10.3389/fphys.2024.1339128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Mitochondria are energy factories that sustain life activities in the body, and their dysfunction can cause various metabolic diseases that threaten human health. Mitophagy, an essential intracellular mitochondrial quality control mechanism, can maintain cellular and metabolic homeostasis by removing damaged mitochondria and participating in developing metabolic diseases. Research has confirmed that exercise can regulate mitophagy levels, thereby exerting protective metabolic effects in metabolic diseases. This article reviews the role of mitophagy in metabolic diseases, the effects of exercise on mitophagy, and the potential mechanisms of exercise-regulated mitophagy intervention in metabolic diseases, providing new insights for future basic and clinical research on exercise interventions to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
| | | | - Qinqin Lin
- School of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
26
|
Liu Q, Yan X, Li R, Yuan Y, Wang J, Zhao Y, Fu J, Su J. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs. Int J Mol Sci 2024; 25:996. [PMID: 38256070 PMCID: PMC10816144 DOI: 10.3390/ijms25020996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and, with increasing research on the tumor immune microenvironment (TIME), the immunosuppressive micro-environment of HCC hampers further application of immunotherapy, even though immunotherapy can provide survival benefits to patients with advanced liver cancer. Current studies suggest that polyamine metabolism is not only a key metabolic pathway for the formation of immunosuppressive phenotypes in tumor-associated macrophages (TAMs), but it is also profoundly involved in mitochondrial quality control signaling and the energy metabolism regulation process, so it is particularly important to further investigate the role of polyamine metabolism in the tumor microenvironment (TME). In this review, by summarizing the current research progress of key enzymes and substrates of the polyamine metabolic pathway in regulating TAMs and T cells, we propose that polyamine biosynthesis can intervene in the process of mitochondrial energy metabolism by affecting mitochondrial autophagy, which, in turn, regulates macrophage polarization and T cell differentiation. Polyamine metabolism may be a key target for the interactive dialog between HCC cells and immune cells such as TAMs, so interfering with polyamine metabolism may become an important entry point to break intercellular communication, providing new research space for developing polyamine metabolism-based therapy for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (Q.L.); (X.Y.); (R.L.); (Y.Y.); (J.W.); (Y.Z.); (J.F.)
| |
Collapse
|
27
|
Kang J, Benjamin DI, Kim S, Salvi JS, Dhaliwal G, Lam R, Goshayeshi A, Brett JO, Liu L, Rando TA. Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing. Nat Metab 2024; 6:153-168. [PMID: 38243132 PMCID: PMC10976122 DOI: 10.1038/s42255-023-00955-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM). We find that restoration of intracellular SAM in aged MuSCs restores heterochromatin content to youthful levels and rejuvenates age-associated features, including DNA damage accumulation, increased cell death, and defective muscle regeneration. SAM is not only a methyl group donor for transmethylation, but it is also an aminopropyl donor for polyamine synthesis. Excessive consumption of SAM in polyamine synthesis may reduce its availability for transmethylation. Consistent with this premise, we observe that perturbation of increased polyamine synthesis by inhibiting spermidine synthase restores intracellular SAM content and heterochromatin formation, leading to improvements in aged MuSC function and regenerative capacity in male and female mice. Together, our studies demonstrate a direct causal link between polyamine metabolism and epigenetic dysregulation during murine MuSC ageing.
Collapse
Affiliation(s)
- Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayesh S Salvi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Gurkamal Dhaliwal
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Lam
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Zhang M, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Inhibition of the NF-κB and mTOR targets by urolithin A attenuates D-galactose-induced aging in mice. Food Funct 2023; 14:10375-10386. [PMID: 37921630 DOI: 10.1039/d3fo03847e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Urolithin A (Uro-A), an intestinal microbiota metabolite of ellagitannin, has anti-aging properties. Through the direct intake of ellagitannin (or ellagic acid) and strains capable of producing Uro-A, the transformation of Uro-A in vivo is a potential method to develop anti-aging preparations. Therefore, this study aimed to investigate the dose-response relationship between the colonic infusion of Uro-A and its anti-aging effects. Results indicated that Uro-A exhibited a dose-dependent anti-aging effect in the colon, and the minimum effective dose might be 3.0 mg kg-1 day-1. The main manifestations were that, compared with the model group, 3.0 mg kg-1 day-1 and 15.0 mg kg-1 day-1 of Uro-A can increase forelimb grip strength by 11.87% and 16.72%, respectively, and increase the discrimination index by 92.14% and 238.11%, respectively. Both doses effectively inhibited the D-galactose-induced increase in oxidative stress levels in the body, muscle atrophy, and neuronal apoptosis. Additionally, Uro-A released through the colon could alleviate D-galactose-induced aging in mice by inhibiting NF-κB and mTOR targets, providing significant protection for motor and cognitive functions. These findings provide a theoretical basis for future application and development of ellagitannin (or ellagic acid) in combination with strains capable of producing Uro-A.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
29
|
Lee R, Lee WY, Park HJ. Effects of Melatonin on Liver of D-Galactose-Induced Aged Mouse Model. Curr Issues Mol Biol 2023; 45:8412-8426. [PMID: 37886973 PMCID: PMC10604925 DOI: 10.3390/cimb45100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Melatonin, a hormone secreted by the pineal gland of vertebrates, regulates sleep, blood pressure, and circadian and seasonal rhythms, and acts as an antioxidant and anti-inflammatory agent. We investigated the protective effects of melatonin against markers of D-galactose (D-Gal)-induced hepatocellular aging, including liver inflammation, hepatocyte structural damage, and non-alcoholic fatty liver. Mice were divided into four groups: phosphate-buffered saline (PBS, control), D-Gal (200 mg/kg/day), melatonin (20 mg/kg), and D-Gal (200 mg/kg) and melatonin (20 mg) cotreatment. The treatments were administered once daily for eight consecutive weeks. Melatonin treatment alleviated D-Gal-induced hepatocyte impairment. The AST level was significantly increased in the D-Gal-treated groups compared to that in the control group, while the ALT level was decreased compared to the melatonin and D-Gal cotreated group. Inflammatory genes, such as IL1-β, NF-κB, IL-6, TNFα, and iNOS, were significantly increased in the D-Gal aging model, whereas the expression levels of these genes were low in the D-Gal and melatonin cotreated group. Interestingly, the expression levels of hepatic steatosis-related genes, such as LXRα, C/EBPα, PPARα, ACC, ACOX1, and CPT-1, were markedly decreased in the D-Gal and melatonin cotreated group. These results suggest that melatonin suppresses hepatic steatosis and inflammation in a mouse model of D-Gal-induced aging.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Yong Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
30
|
Ghamry HI, Shukry M, Kassab MA, Farrag FA, El-Shafai NM, Elgendy E, Ibrahim AN, Elgendy SA, Behairy A, Ibrahim SF, Imbrea F, Florin C, Abdo M, Ahmed IA, Muhammad MH, Anwer H, Abdeen A. Arthrospira platensis Nanoparticles Mitigate Aging-Related Oxidative Injured Brain Induced by D-galactose in Rats Through Antioxidants, Anti-Inflammatory, and MAPK Pathways. Int J Nanomedicine 2023; 18:5591-5606. [PMID: 37808455 PMCID: PMC10558002 DOI: 10.2147/ijn.s416202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Background Loss of normal function is an inevitable effect of aging. Several factors contribute to the aging process, including cellular senescence and oxidative stress. Methods We investigate how Arthrospira platensis Nanoparticles (NSP) protect against aging injury induced by d-galactose (D-gal) in the rat. So, we subcutaneously (S/C) injected D-gal at 200 mg/kg BW to see if Arthrospira platensis Nanoparticles (NSP) might protect against the oxidative changes generated by D-gal. NSP (0.5 mg/kg body weight once daily by gastric gavage) was given to all groups apart from the control and D-gal groups. The d-gal + NSP group was supplemented with 200 mg of D-gal per kg BW once a day and NSP 0.5 mg/kg BW given orally for 45 days. Biochemical, mRNA expression, and histological investigations of brain tissues were used to evaluate the oxidative alterations caused by d-gal and the protective role of NSP. Results Our data demonstrated that d-gal was causing significant reductions in relative brain and body weight with increased malondialdehyde (MDA) and redox oxygen species (ROS) levels and increases in serum creatine phosphokinase (CPK) and creatine phosphokinase isoenzyme BB (CPK-BB) with marked decreases in the level of antioxidant enzyme activity in the brain and acetylcholinesterase activity augmented with a phosphorylated H2A histone family member X (γ-H2AX) level increased. The D-gal group had considerably higher phosphorylated p38 mitogen-activated protein kinases (P38MAPK) and C-Jun N-terminal (JNK) kinases. The d-gal administration stimulates the apoptotic gene expression by downregulating the brain superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid 2-related factor 2 (Nrf2). The NSP administration saved these parameters in the direction of the control. The brain histopathologic and immunohistochemistry analysis findings support our findings on NSP's protective role. Conclusion The NSP may be a promising natural protective compound that can prevent aging and preserve health.
Collapse
Affiliation(s)
- Heba I Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed A Kassab
- Department of Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Foad A Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Enas Elgendy
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Amany N Ibrahim
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Florin Imbrea
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timisoara, 300645, Romania
| | - Crista Florin
- Department of Soil Science, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timisoara, 300645, Romania
| | - Mohamed Abdo
- Department of Animal Histology and anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Marwa H Muhammad
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hala Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
31
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
32
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Li J, Fu R, Guo X, Pan Z, Xie J. Acupuncture improves immunity and fatigue after chemotherapy in breast cancer patients by inhibiting the Leptin/AMPK signaling pathway. Support Care Cancer 2023; 31:506. [PMID: 37542585 PMCID: PMC10404187 DOI: 10.1007/s00520-023-07967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE Acupuncture has become a popular complementary treatment in oncology. This study is based on RNA-Seq transcriptome sequencing technology to investigate the molecular mechanisms underlying the effect of acupuncture-mediated regulation of the Leptin/AMPK signaling pathway on mitochondrial dysfunction-induced fatigue in breast cancer patients after chemotherapy. METHODS Peripheral blood samples from 10 patients with post-operative chemotherapy for breast cancer were selected for transcriptome sequencing to screen the key molecular pathways involved in fatigue after chemotherapy in breast cancer patients. Besides, peripheral blood samples were collected from 138 post-operative chemotherapy patients with breast cancer to study the composite fatigue and quality of life scores. Flow cytometry was used to detect T lymphocyte subsets in peripheral blood-specific immune cells. In addition, a blood cell analyzer was used to measure peripheral blood leukocyte counts, and MSP-PCR was used to detect mitochondrial DNA mutations in peripheral blood leukocytes. RESULTS Transcriptome bioinformatics analysis screened 147 up-regulated mRNAs and 160 down-regulated mRNAs. Leptin protein was confirmed as the key factor. Leptin was significantly higher in the peripheral blood of breast cancer patients who developed fatigue after chemotherapy. Acupuncture treatment effectively improved post-chemotherapy fatigue and immune status in breast cancer patients, suppressed the expression of Leptin/AMPK signaling pathway-related factor and leukocyte counts, and significantly reduced the rate of mitochondrial DNA mutations in peripheral blood leukocytes. CONCLUSION The Leptin/AMPK signaling pathway may be the key molecular pathway affecting the occurrence of fatigue after chemotherapy in breast cancer patients. Leptin may improve post-chemotherapy fatigue in breast cancer patients by activating AMPK phosphorylation and alleviating mitochondrial functional impairment.
Collapse
Affiliation(s)
- Jinxia Li
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Ruiyang Fu
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Xiaoqing Guo
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Zhongqiang Pan
- Department of Acupuncture, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Jingjun Xie
- Department of Rehabilitation Medicine, The First People's Hospital of Huzhou, No. 158, Guangchang Hou Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| |
Collapse
|
34
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
35
|
Yu L, Pan J, Guo M, Duan H, Zhang H, Narbad A, Zhai Q, Tian F, Chen W. Gut microbiota and anti-aging: Focusing on spermidine. Crit Rev Food Sci Nutr 2023; 64:10419-10437. [PMID: 37326367 DOI: 10.1080/10408398.2023.2224867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
36
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
37
|
Jiang D, Guo Y, Niu C, Long S, Jiang Y, Wang Z, Wang X, Sun Q, Ling W, An X, Ji C, Zhao H, Kang B. Exploration of the Antioxidant Effect of Spermidine on the Ovary and Screening and Identification of Differentially Expressed Proteins. Int J Mol Sci 2023; 24:ijms24065793. [PMID: 36982867 PMCID: PMC10051986 DOI: 10.3390/ijms24065793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Spermidine is a naturally occurring polyamine compound that has many biological functions, such as inducing autophagy and anti-inflammatory and anti-aging effects. Spermidine can affect follicular development and thus protect ovarian function. In this study, ICR mice were fed exogenous spermidine drinking water for three months to explore the regulation of ovarian function by spermidine. The results showed that the number of atretic follicles in the ovaries of spermidine-treated mice was significantly lower than that in the control group. Antioxidant enzyme activities (SOD, CAT, T-AOC) significantly increased, and MDA levels significantly decreased. The expression of autophagy protein (Beclin 1 and microtubule-associated protein 1 light chain 3 LC3 II/I) significantly increased, and the expression of the polyubiquitin-binding protein p62/SQSTM 1 significantly decreased. Moreover, we found 424 differentially expressed proteins (DEPs) were upregulated, and 257 were downregulated using proteomic sequencing. Gene Ontology and KEGG analyses showed that these DEPs were mainly involved in lipid metabolism, oxidative metabolism and hormone production pathways. In conclusion, spermidine protects ovarian function by reducing the number of atresia follicles and regulating the level of autophagy protein, antioxidant enzyme activity, and polyamine metabolism in mice.
Collapse
Affiliation(s)
- Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongni Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyang Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyun Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yilong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zelong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Weikang Ling
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoguang An
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengweng Ji
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
38
|
Makarov M, Korkotian E. Differential Role of Active Compounds in Mitophagy and Related Neurodegenerative Diseases. Toxins (Basel) 2023; 15:202. [PMID: 36977093 PMCID: PMC10058020 DOI: 10.3390/toxins15030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.
Collapse
Affiliation(s)
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7630031, Israel
| |
Collapse
|
39
|
Kalani K, Chaturvedi P, Chaturvedi P, Kumar Verma V, Lal N, Awasthi SK, Kalani A. Mitochondrial mechanisms in Alzheimer's disease: Quest for therapeutics. Drug Discov Today 2023; 28:103547. [PMID: 36871845 DOI: 10.1016/j.drudis.2023.103547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mitochondrial function is essential for maintaining neuronal integrity, because neurons have a high energy demand. Neurodegenerative diseases, such as Alzheimer's disease (AD), are exacerbated by mitochondrial dysfunction. Mitochondrial autophagy (mitophagy) attenuates neurodegenerative diseases by eradicating dysfunctional mitochondria. In neurodegenerative disorders, there is disruption of the mitophagy process. High levels of iron also interfere with the mitophagy process and the mtDNA released after mitophagy is proinflammatory and triggers the cGAS-STING pathway that aids AD pathology. In this review, we critically discuss the factors that affect mitochondrial impairment and different mitophagy processes in AD. Furthermore, we discuss the molecules used in mouse studies as well as clinical trials that could result in potential therapeutics in the future.
Collapse
Affiliation(s)
- Komal Kalani
- Department of Chemistry, The University of Texas at San Antonio, San Antonio 78249, TX, USA; Regulatory Scientist, Vestaron Cooperation, Durham 27703, NC, USA
| | - Poonam Chaturvedi
- Department of Physiotherapy, Lovely Professional University, Phagwara 144402, Punjab, India
| | - Pankaj Chaturvedi
- Department of Physiology, University of Louisville, Louisville 40202, KY, USA
| | - Vinod Kumar Verma
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Nand Lal
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Sudhir K Awasthi
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Anuradha Kalani
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India.
| |
Collapse
|
40
|
Osthole Alleviates D-Galactose-Induced Liver Injury In Vivo via the TLR4/MAPK/NF-κB Pathways. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010443. [PMID: 36615637 PMCID: PMC9824625 DOI: 10.3390/molecules28010443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023]
Abstract
Osthole, a coumarin derivative, is found in several medicinal herbs. However, the protective effects of osthole against D-galactose (D-Gal)-induced liver injury still remain unclear. In this study, osthole treatment effectively reversed D-Gal-induced liver injury, according to the results of liver HE staining, and improved ALT and AST activities. Feeding with D-Gal significantly increased MDA content, and reduced the level or activity of SOD, CAT and GSH-Px, which were all alleviated by osthole intervention. Meanwhile, osthole treatment significantly inhibited the D-Gal-induced secretion of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, in both serum and liver tissue. Investigations revealed that osthole ameliorated the D-Gal-induced activation of TLR4, MYD88 and its downstream signaling pathways of MAPK (p38 and JNK) and NF-κB (nucleus p65). Therefore, osthole mediates a protective effect against D-Gal-induced liver injury via the TLR4/MAPK/NF-κB pathways, and this coumarin derivative could be developed as a candidate bioactive component for functional food.
Collapse
|
41
|
Chen JC, Wang R, Wei CC. Anti-aging effects of dietary phytochemicals: From Caenorhabditis elegans, Drosophila melanogaster, rodents to clinical studies. Crit Rev Food Sci Nutr 2023; 64:5958-5983. [PMID: 36597655 DOI: 10.1080/10408398.2022.2160961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Anti-aging research has become critical since the elderly population is increasing dramatically in this era. With the establishment of frailty phenotype and frailty index, the importance of anti-frailty research is concurrently enlightened. The application of natural phytochemicals against aging or frailty is always intriguing, and abundant related studies have been published. Various models are designed for biological research, and each model has its strength and weakness in deciphering the complex aging mechanisms. In this article, we attempt to show the potential of Caenorhabditis elegans in the study of phytochemicals' effects on anti-aging by comparing it to other animal models. In this review, the lifespan extension and anti-aging effects are demonstrated by various physical, cellular, or molecular biomarkers of dietary phytochemicals, including resveratrol, curcumin, urolithin A, sesamin, fisetin, quercetin, epigallocatechin-3-gallate, epicatechin, spermidine, sulforaphane, along with extracts of broccoli, cocoa, and blueberry. Meanwhile, the frequency of phytochemicals and models studied or presented in publications since 2010 were analyzed, and the most commonly mentioned animal models were rats, mice, and the nematode C. elegans. This up-to-date summary of the anti-aging effect of certain phytochemicals has demonstrated powerful potential for anti-aging or anti-frailty in the human population.
Collapse
Affiliation(s)
- Ju-Chi Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Han X, Goh KY, Lee WX, Choy SM, Tang HW. The Importance of mTORC1-Autophagy Axis for Skeletal Muscle Diseases. Int J Mol Sci 2022; 24:297. [PMID: 36613741 PMCID: PMC9820406 DOI: 10.3390/ijms24010297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 1, mTORC1, integrates nutrient and growth factor signals with cellular responses and plays critical roles in regulating cell growth, proliferation, and lifespan. mTORC1 signaling has been reported as a central regulator of autophagy by modulating almost all aspects of the autophagic process, including initiation, expansion, and termination. An increasing number of studies suggest that mTORC1 and autophagy are critical for the physiological function of skeletal muscle and are involved in diverse muscle diseases. Here, we review recent insights into the essential roles of mTORC1 and autophagy in skeletal muscles and their implications in human muscle diseases. Multiple inhibitors targeting mTORC1 or autophagy have already been clinically approved, while others are under development. These chemical modulators that target the mTORC1/autophagy pathways represent promising potentials to cure muscle diseases.
Collapse
Affiliation(s)
- Xujun Han
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
43
|
Ichii S, Matsuoka I, Okazaki F, Shimada Y. Zebrafish Models for Skeletal Muscle Senescence: Lessons from Cell Cultures and Rodent Models. Molecules 2022; 27:molecules27238625. [PMID: 36500717 PMCID: PMC9739860 DOI: 10.3390/molecules27238625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Human life expectancy has markedly increased over the past hundred years. Consequently, the percentage of elderly people is increasing. Aging and sarcopenic changes in skeletal muscles not only reduce locomotor activities in elderly people but also increase the chance of trauma, such as bone fractures, and the incidence of other diseases, such as metabolic syndrome, due to reduced physical activity. Exercise therapy is currently the only treatment and prevention approach for skeletal muscle aging. In this review, we aimed to summarize the strategies for modeling skeletal muscle senescence in cell cultures and rodents and provide future perspectives based on zebrafish models. In cell cultures, in addition to myoblast proliferation and myotube differentiation, senescence induction into differentiated myotubes is also promising. In rodents, several models have been reported that reflect the skeletal muscle aging phenotype or parts of it, including the accelerated aging models. Although there are fewer models of skeletal muscle aging in zebrafish than in mice, various models have been reported in recent years with the development of CRISPR/Cas9 technology, and further advancements in the field using zebrafish models are expected in the future.
Collapse
Affiliation(s)
- Shogo Ichii
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Izumi Matsuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan
| | - Fumiyoshi Okazaki
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +81-592-31-5411
| |
Collapse
|
44
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
45
|
Wang Q, Xue H, Yue Y, Hao S, Huang SH, Zhang Z. Role of mitophagy in the neurodegenerative diseases and its pharmacological advances: A review. Front Mol Neurosci 2022; 15:1014251. [PMID: 36267702 PMCID: PMC9578687 DOI: 10.3389/fnmol.2022.1014251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are a class of incurable and debilitating diseases characterized by progressive degeneration and death of cells in the central nervous system. They have multiple underlying mechanisms; however, they all share common degenerative features, such as mitochondrial dysfunction. According to recent studies, neurodegenerative diseases are associated with the accumulation of dysfunctional mitochondria. Selective autophagy of mitochondria, called mitophagy, can specifically degrade excess or dysfunctional mitochondria within cells. In this review, we highlight recent findings on the role of mitophagy in neurodegenerative disorders. Multiple studies were collected, including those related to the importance of mitochondria, the mechanism of mitophagy in protecting mitochondrial health, and canonical and non-canonical pathways in mitophagy. This review elucidated the important function of mitophagy in neurodegenerative diseases, discussed the research progress of mitophagy in neurodegenerative diseases, and summarized the role of mitophagy-related proteins in neurological diseases. In addition, we also highlight pharmacological advances in neurodegeneration.
Collapse
|
46
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
47
|
The Impact of Spermidine on C2C12 Myoblasts Proliferation, Redox Status and Polyamines Metabolism under H2O2 Exposure. Int J Mol Sci 2022; 23:ijms231910986. [PMID: 36232289 PMCID: PMC9569770 DOI: 10.3390/ijms231910986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts’ cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts’ viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.
Collapse
|
48
|
Plasma Polyamines Decrease in Patients with Obstructive Cholecystitis. LIVERS 2022. [DOI: 10.3390/livers2030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyamines (PAs), endogenous metabolites with a wide range of biological activities, are synthesized at a high rate in liver supporting hepatocyte proliferation and survival. The liver appears as an important regulator of plasma PAs; however, the perspective to exploit plasma PA measurements as indicators for liver function was not explored. This study aimed to evaluate the value of the plasma levels of PAs as a biomarker of pathological changes in the liver in patients with obstructive cholecystitis. The levels of polyamines and their acetylated forms were measured using HPLC/UV in the plasma of patients with obstructive cholecystitis and in healthy subjects. PA turnover was assessed by the ratio between an acetylated form of PA and PA. An effect of diet preference of cheese or meat, the major exogenous sources of PAs, smoking, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in anamnesis was also evaluated in healthy subjects. We found that the plasma levels of spermine and acetylated spermidine decreased in patients with obstructive cholecystitis without a concurring increase in the total plasma bilirubin and amylase levels. The turnover of spermine and spermidine was also changed, suggesting a decrease in the rate of PA degradation in the liver. In healthy subjects, the PA levels tended to mirror chronic smoking and recent SARS-CoV-2 infection but were not relevant to diet factors. A number of observations indicated the role of physical exercise in the regulation of the plasma pool of PA. The decrease in plasma PA levels and index of PA turnover in the cholestasis syndrome indicate the liver’s metabolic function reduction. A conceivable effect of lung-related conditions on plasma PA, while indicating low specificity, nonetheless, speaks favorably about the high sensitivity of plasma PA measurement as an early diagnostic test in the clinic.
Collapse
|
49
|
Li X, Zhou X, Liu X, Li X, Jiang X, Shi B, Wang S. Spermidine protects against acute kidney injury by modulating macrophage NLRP3 inflammasome activation and mitochondrial respiration in an eIF5A hypusination-related pathway. Mol Med 2022; 28:103. [PMID: 36058905 PMCID: PMC9441050 DOI: 10.1186/s10020-022-00533-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Acute kidney injury (AKI) is still a critical problem in clinical practice, with a heavy burden for national health system around the world. It is notable that sepsis is the predominant cause of AKI for patients in the intensive care unit and the mortality remains considerably high. The treatment for AKI relies on supportive therapies and almost no specific treatment is currently available. Spermidine is a naturally occurring polyamine with pleiotropic effects. However, the renoprotective effect of spermidine and the underlying mechanism remain elusive. Methods We employed mice sepsis-induced AKI model and explored the potential renoprotective effect of spermidine in vivo with different administration time and routes. Macrophage depleting was utilized to probe the role of macrophage. In vitro experiments were conducted to examine the effect of spermidine on macrophage cytokine secretion, NLRP3 inflammasome activation and mitochondrial respiration. Results We confirmed that spermidine improves AKI with different administration time and routes and that macrophages serves as an essential mediator in this protective effect. Meanwhile, spermidine downregulates NOD-like receptor protein 3 (NLRP3) inflammasome activation and IL-1 beta production in macrophages directly. Mechanically, spermidine enhances mitochondrial respiration capacity and maintains mitochondria function which contribute to the NLRP3 inhibition. Importantly, we showed that eukaryotic initiation factor 5A (eIF5A) hypusination plays an important role in regulating macrophage bioactivity. Conclusions Spermidine administration practically protects against sepsis-induced AKI in mice and macrophages serve as an essential mediator in this protective effect. Our study identifies spermidine as a promising pharmacologic approach to prevent AKI. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00533-1.
Collapse
Affiliation(s)
- Xianzhi Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, China
| | - Xigao Liu
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaoyun Li
- Department of Otolaryngology, Qingdao Eighth People's Hospital, Qingdao, 266121, China
| | - Xianzhou Jiang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shuo Wang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
50
|
Hou J, Ma R, Zhu S, Wang Y. Revealing the Therapeutic Targets and Mechanism of Ginsenoside Rg1 for Liver Damage Related to Anti-Oxidative Stress Using Proteomic Analysis. Int J Mol Sci 2022; 23:ijms231710045. [PMID: 36077440 PMCID: PMC9455996 DOI: 10.3390/ijms231710045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Ginsenoside Rg1 is an important active substance isolated from the root of ginseng. In previous studies, Rg1 has shown excellent therapeutic effects in antioxidant, anti-inflammatory, and metabolic modulation. However, the therapeutic targets of Rg1 are still unknown. In this study, we investigated the therapeutic effects of Rg1 on oxidative stress-related liver damage. The oxidative stress damage model was achieved by intraperitoneal injection of D-galactose (D-gal) for 42 consecutive days in C57BL/6J mice. Rg1 treatment started on Day 16. Body weight, liver weight, degree of hepatic oxidative stress damage, serum lipid levels, and hepatic lipid and glucose metabolism were measured. Proteomics analysis was used to measure liver protein expression. The differential expression proteins were analyzed with bioinformatics. The results showed that Rg1 treatment attenuated liver damage from oxidative stress, reduced hepatic fat accumulation, promoted hepatic glycogen synthesis, and attenuated peripheral blood low-density lipoprotein (LDL), cholesterol (CHO), and triglycerides (TG) levels. Proteomic analysis suggested that Rg1 may regulate hepatocyte metabolism through ECM-Receptor, the PI3K-AKT pathway. The epidermal growth factor receptor (EGFR) and activator of transcription 1 (STAT1) may be the key protein. In conclusion, this study provides an experimental basis for further clarifying the specific mechanism of Rg1 in the treatment of oxidative stress damage-related liver disease.
Collapse
Affiliation(s)
- Jiying Hou
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Ruoxiang Ma
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- Correspondence: (S.Z.); (Y.W.)
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (S.Z.); (Y.W.)
| |
Collapse
|