1
|
Su W, Wang W, Zhang G, Yang L. Epigenetic regulatory protein chromobox family regulates multiple signalling pathways and mechanisms in cancer. Clin Epigenetics 2025; 17:48. [PMID: 40083014 PMCID: PMC11907984 DOI: 10.1186/s13148-025-01852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Signal transduction plays a pivotal role in modulating a myriad of critical processes, including the tumour microenvironment (TME), cell cycle arrest, proliferation and apoptosis of tumour cells, as well as their migration, invasion, and the epithelial-mesenchymal transition (EMT). Epigenetic mechanisms are instrumental in the genesis and progression of tumours. The Chromobox (CBX) family proteins, which serve as significant epigenetic regulators, exhibit tumour-specific expression patterns and biological functionalities. These proteins are influenced by a multitude of factors and could modulate the activation of diverse signalling pathways within tumour cells through alterations in epigenetic modifications, thereby acting as either oncogenic agents or tumour suppressors. This review aims to succinctly delineate the composition, structure, function, and expression of CBXs within tumour cells, with an emphasis on synthesizing and deliberating the CBXs-mediated activation of intracellular signalling pathways and the intricate mechanisms governing tumourigenesis and progression. Moreover, a plethora of contemporary studies have substantiated that CBXs might represent a promising target for the diagnosis and therapeutic intervention of tumour patients. We have also compiled and scrutinized the current research landscape concerning inhibitors targeting CBXs, aspiring to aid researchers in gaining a deeper comprehension of the biological roles and mechanisms of CBXs in the malignant evolution of tumours, and to furnish novel perspectives for the innovation of targeted tumour therapeutics.
Collapse
Affiliation(s)
- Weiyu Su
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Weiwen Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Guanghui Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
2
|
Qiu CJ, Hu LY, Yang J, Cao JJ, Pei BG, Dai RR, Pan SJ. A novel nanoplatform-based circCSNK1G3 affects CBX7 protein and promotes glioma cell growth. Int J Biol Macromol 2024; 276:134025. [PMID: 39033888 DOI: 10.1016/j.ijbiomac.2024.134025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Bioenvironmental and biological factors have the potential to contribute to the development of glioma, a type of brain tumor. Recent studies have suggested that a unique circular RNA called circCSNK1G3 could play a role in promoting the growth of glioma cells. It does this by stabilizing a specific microRNA called miR-181 and reducing the expression of a tumor-suppressor gene known as chromobox protein homolog 7 (CBX7). To further investigate circCSNK1G3 and its effects on glioma, we utilized a nanoplatform called adeno-associated virus (AAV)-RNAi.To explore the functional implications of circCSNK1G3, we employed siRNA to silence its expression. Along with these effects, the silencing of circCSNK1G3 led to a depletion of miR-181d and an upregulation of CBX7. When we introduced miR-181d mimics, which artificially increase the levels of miR-181d, the anti-glioma cell activity induced by circCSNK1G3 siRNA was almost completely reversed. Conversely, inhibiting miR-181d mimicked the effects of circCSNK1G3 silencing. Moreover, when we overexpressed circCSNK1G3 in glioma cells, we observed an elevation of miR-181d and a depletion of CBX7. We found that the growth of A172 xenografts (tumors) carrying circCSNK1G3 shRNA was significantly inhibited. In these xenograft tissues, we detected a depletion of circCSNK1G3 and miR-181d, as well as an upregulation of CBX7.
Collapse
Affiliation(s)
- Cheng-Jie Qiu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Liang-Yun Hu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Jin Yang
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jiao-Jiao Cao
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Ben-Gen Pei
- Department of Neurosurgery, Zhou-Pu Hospital, Shanghai Jian-Kang University, School of Medicine, Shanghai, China.
| | - Ran-Ran Dai
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Si-Jian Pan
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Cheng H, Hua L, Tang H, Bao Z, Xu X, Zhu H, Wang S, Jiapaer Z, Bhatia R, Dunn IF, Deng J, Wang D, Sun S, Luan S, Ji J, Xie Q, Yang X, Lei J, Li G, Wang X, Gong Y. CBX7 reprograms metabolic flux to protect against meningioma progression by modulating the USP44/c-MYC/LDHA axis. J Mol Cell Biol 2024; 15:mjad057. [PMID: 37791390 PMCID: PMC11195615 DOI: 10.1093/jmcb/mjad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Meningioma is one of the most common primary neoplasms in the central nervous system, but no specific molecularly targeted therapy has been approved for the clinical treatment of aggressive meningiomas. There is hence an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up studies of 445 meningioma patients, we uncovered that CBX7 expression progressively decreases with malignancy grade and neoplasia stage in meningioma, and a high CBX7 expression level predicts a favorable prognosis in meningioma patients. CBX7 restoration significantly induces cell cycle arrest and inhibits meningioma cell proliferation. iTRAQ-based proteomics analysis indicated that CBX7 restoration triggers the metabolic shift from glycolysis to oxidative phosphorylation. The mechanistic study demonstrated that CBX7 promotes the proteasome-dependent degradation of c-MYC protein by transcriptionally inhibiting the expression of a c-MYC deubiquitinase, USP44, consequently attenuates c-MYC-mediated transactivation of LDHA transcripts, and further inhibits glycolysis and subsequent cell proliferation. More importantly, the functional role of CBX7 was further confirmed in subcutaneous and orthotopic meningioma xenograft mouse models and meningioma patients. Altogether, our results shed light on the critical role of CBX7 in meningioma malignancy progression and identify the CBX7/USP44/c-MYC/LDHA axis as a promising therapeutic target against meningioma progression.
Collapse
Affiliation(s)
- Haixia Cheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Hongguang Zhu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biology Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Roma Bhatia
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xinyu Yang
- Fangshan Hospital of Beijing, University of Traditional Chinese Medicine, Beijing 102400, China
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Tian P, Deng J, Ma C, Miershali A, Maimaitirexiati G, Yan Q, Liu Y, Maimaiti H, Li Y, Zhou C, Ren J, Ding L, Li R. CBX7 is involved in the progression of cervical cancer through the ITGβ3/TGFβ1/AKT pathway. Oncol Lett 2024; 27:14. [PMID: 38028179 PMCID: PMC10664064 DOI: 10.3892/ol.2023.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
The chromobox protein homolog 7 (CBX7) serves a tumor-suppressive role in human malignant neoplasias. The downregulation of CBX7 is associated with the poor prognosis and aggressiveness of various human cancers. However, the biological functions and underlying mechanisms of CBX7 in cervical cancer remain unclear. The present study investigated the role and mechanism of CBX7 in cervical cancer. Lentivirus and siRNA were used to construct cervical cancer cells with stable CBX7 knockdown and SiHa xenograft models. The cell growth, migration, invasion and apoptosis were observed through in vivo and in vitro experiments. The expression levels of CBX7, integrin β3 (ITGβ3), transforming growth factor β1 (TGFβ1), phosphatidylinositol-3-kinase (PI3K), AKT, E-cadherin (E-cad) and vimentin (VIM) were detected by western blot analysis and reverse transcription-quantitative PCR. The correlation between CBX7 and these genes was analyzed. TGFβ1 was also silenced through shRNA in cells with stable CBX7 knockdown to detect its effect on cell growth, invasion and apoptosis, and on pathway-related gene expression. It was revealed that knockdown of CBX7 promoted the proliferation, migration, and invasion of cervical cancer cells, and inhibited apoptosis. In addition, CBX7 knockdown promoted tumor growth in vivo. Correlation analysis demonstrated that CBX7 was negatively correlated with ITGβ3, TGFβ1, PI3K, AKT, phosphorylated AKT and VIM, but positively correlated with E-cad. Moreover, the knockdown of TGFβ1 reversed the promotion of cell proliferation and inhibition of apoptosis induced by CBX7 knockdown and attenuated the increase of ITGβ3, TGFβ1, PI3K, AKT and VIM caused by CBX7 knockdown. In conclusion, the findings of the present study indicated that the downregulation of CBX7 enhances cell migration and invasion while inhibiting cell apoptosis in cervical cancer by modulating the ITGβ3/TGFβ1/AKT signaling pathways.
Collapse
Affiliation(s)
- Ping Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Nosocomial Infection Management, The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Jinglan Deng
- College of Nursing, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Cailing Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Gynecology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Ainipa Miershali
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Gulikezi Maimaitirexiati
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Qi Yan
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Yating Liu
- College of Nursing, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Hatimihan Maimaiti
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Yuting Li
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Changhui Zhou
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Jingqin Ren
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Lu Ding
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Orthopaedics, Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Urumqi, Xinjiang Uyghur Autonomous Region 830000, P.R. China
| | - Rong Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- Department of Child, Adolescent and Maternal Hygiene, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| |
Collapse
|
6
|
Elfeky MA, Faraj Saad RH, Alabiad MA, Alorini M, Hemeda R, Ali RM, Gertallah LM, Negm M, Abdou AM, Alshaikh ABA, Elmaasrawy A. FABP4, GINS2 and CBX7 Expression in Cancer Cervix Tissues: Clinical, Pathological and Prognostic Implications. IRANIAN JOURNAL OF PATHOLOGY 2023; 19:10-21. [PMID: 38864083 PMCID: PMC11164314 DOI: 10.30699/ijp.2023.1971325.2944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/22/2023] [Indexed: 06/13/2024]
Abstract
Background & Objective Cervical cancer spreads to the pelvic lymph nodes, leading to a high incidence of cancer recurrence and unfavorable survival rates. Therefore, there is an urgent need to detect new predictive biomarkers for the early assessment of pelvic lymph node status in patients with cervical cancer. The current study aimed to assess the expression of FABP4, GINS2, and CBX7 in cervical cancer tissue to detect their prognostic and predictive roles in developing lymph node metastases in patients with that cancer type. Methods We collected the tissues from patients with cervical cancer and evaluated the expression of FABP4, GINS2, and CBX7 using immunohistochemistry. We evaluated the association between their expression and clinicopathological and prognostic parameters. Results A high expression of FABP4 and GINS2 and a low expression of CBX7 were found to be positively associated with the old age group, large tumor size, high grade and lymphovascular involvement, para-uterine organ infiltration, advanced FIGO stage, chemotherapeutic resistance, and tumor recurrence. Conclusion We demonstrated the oncogenic roles of FABP4 and GISN2 in addition to the on-co-suppressive roles of CBX7 in cervical cancer and their association with poor clinicopathological criteria and poor survival. Our results may indicate that FABP4, GISN2, and CBX7 could be considered predictive biomarkers of the occurrence of lymph node metastases in the cancer of the cervix preoperatively, which could be beneficial in the accurate preoperative design therapy.
Collapse
Affiliation(s)
- Mariem A Elfeky
- Department of Pathology, Zagazig University Faculty of Medicine, Zagazig, Egypt
| | - Rema H Faraj Saad
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Mohamed Ali Alabiad
- Department of Pathology, Zagazig University Faculty of Medicine, Zagazig, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Rehab Hemeda
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig, Egypt
| | - Ramadan M Ali
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Loay M. Gertallah
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Mohamed Negm
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Ahmed Mahmoud Abdou
- Department of Gynecology and Obstetrics, Zagazig University Faculty of Medicine, Zagazig, Egypt
| | - Ahmed Baker A Alshaikh
- Department of Obstetrics and Gynecology, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Ahmed Elmaasrawy
- Department of Gynecology and Obstetrics, Zagazig University Faculty of Medicine, Zagazig, Egypt
| |
Collapse
|
7
|
Touchaei AZ, Vahidi S, Samadani AA. Decoding the interaction between miR-19a and CBX7 focusing on the implications for tumor suppression in cancer therapy. Med Oncol 2023; 41:21. [PMID: 38112798 DOI: 10.1007/s12032-023-02251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Cancer is a complex and multifaceted disease characterized by uncontrolled cell growth, genetic alterations, and disruption of normal cellular processes, leading to the formation of malignant tumors with potentially devastating consequences for patients. Molecular research is important in the diagnosis and treatment, one of the molecular mechanisms involved in various cancers is the fluctuation of gene expression. Non-coding RNAs, especially microRNAs, are involved in different stages of cancer. MicroRNAs are small RNA molecules that are naturally produced within cells and bind to the 3'-UTR of target mRNA, repressing gene expression by regulating translation. Overexpression of miR-19a has been reported in human malignancies. Upregulation of miR-19a as a member of the miR-17-92 cluster is key to tumor formation, cell proliferation, survival, invasion, metastasis, and drug resistance. Furthermore. bioinformatics and in vitro data reveal that the miR-19a-3p isoform binds to the 3'UTR of CBX7 and was identified as the miR-19a-3p target gene. CBX7 is known as a tumor suppressor. This review initially describes the regulation of mir-19a in multiple cancers. Accordingly, the roles of miR-19 in affecting its target gene expression CBX7 in carcinoma also be discussed.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Wang J, Yang B, Zhang X, Liu S, Pan X, Ma C, Ma S, Yu D, Wu W. Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int J Oncol 2023; 62:36. [PMID: 36734270 PMCID: PMC9937689 DOI: 10.3892/ijo.2023.5484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Chromobox (CBX) proteins are important epigenetic regulatory proteins and are widely involved in biological processes, such as embryonic development, the maintenance of stem cell characteristics and the regulation of cell proliferation and apoptosis. Disorder and dysfunction of CBXs in cancer usually lead to the blockade or ectoptic activation of developmental pathways, promoting the occurrence, development and progression of cancer. In the present review, the characteristics and functions of CBXs were first introduced. Subsequently, the expression of CBXs in cancers and the relationship between CBXs and clinical characteristics (mainly cancer grade, stage, metastasis and relapse) and prognosis were discussed. Finally, it was described how CBXs regulate cell proliferation and self‑renewal, apoptosis and the acquisition of malignant phenotypes, such as invasion, migration and chemoresistance, through mechanisms involving epigenetic modification, nuclear translocation, noncoding RNA interactions, transcriptional regulation, posttranslational modifications, protein‑protein interactions, signal transduction and metabolic reprogramming. The study also focused on cancer therapies targeting CBXs. The present review provides new insight and a comprehensive basis for follow‑up research on CBXs and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiuhang Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuhan Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoqiang Pan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changkai Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shiqiang Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- Department of Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Professor Dehai Yu, Public Research Platform, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| | - Wei Wu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Wei Wu, Department of Neurovascular Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
9
|
Zheng ZQ, Yuan GQ, Kang NL, Nie QQ, Zhang GG, Wang Z. Chromobox 7/8 serve as independent indicators for glioblastoma via promoting proliferation and invasion of glioma cells. Front Neurol 2022; 13:912039. [PMID: 36034290 PMCID: PMC9403790 DOI: 10.3389/fneur.2022.912039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The chromobox family, a critical component of epigenetic regulators, participates in the tumorigenesis and progression of many malignancies. However, the roles of the CBX family members (CBXs) in glioblastoma (GBM) remain unclear. Methods The mRNA expression of CBXs was analyzed in tissues and cell lines by Oncomine and Cancer Cell Line Encyclopedia (CCLE). The differential expression of CBXs at the mRNA level was explored in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases with the “beeswarm” R package. The protein expression of CBXs in GBM was further examined on Human Protein Atlas (HPA). The correlations between CBXs and IDH mutation and between CBXs and GBM subtypes were investigated in the TCGA portal and CGGA database with the “survminer” R package. The alteration of CBXs and their prognostic value were further determined via the cBioPortal and CGGA database with the “survival” R package. The univariate and multivariate analyses were performed to screen out the independent prognostic roles of CBXs in the CGGA database. Cytoscape was used to visualize the functions and related pathways of CBXs in GBM. U251 and U87 glioma cells with gene intervention were used to validate the role of CBX7/8 in tumor proliferation and invasion. Proliferation/invasion-related markers were conducted by Western blot and immunostaining. Results CBXs presented significantly differential expressions in pan-cancers. CBX2/3/5/8 were upregulated, whereas CBX6/7 were downregulated at mRNA level in GBM of TCGA and CGGA databases. Similarly, high expression of CBX2/3/5 and low expression of CBX6/8 were further confirmed at the protein level in the HPA. CBX2/6/7 were positively correlated with IDH mutation and CBX1/2/4/5/8 were closely related to GBM subtypes. CBX7 and CBX8 presented the independent prognostic factors for GBM patient survival. GO and KEGG analyses indicated that CBXs were closely related to the histone H3-K36, PcG protein complex, ATPase, and Wnt pathway. The overexpression of CBX7 and underexpression of CBX8 significantly inhibited the proliferation and invasion of glioma cells in vivo and in vitro. Conclusion Our results suggested that CBX7 and CBX8 served as independent prognostic indicators that promoted the proliferation and invasion of glioma cells, providing a promising strategy for diagnosing and treating GBM.
Collapse
Affiliation(s)
- Zong-Qing Zheng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gui-Qiang Yuan
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, Changshu Second People's Hospital, Suzhou, China
| | - Na-Ling Kang
- Liver Center, The First Affiliated Hospital, Fujian Medical University, Fujian, China
| | - Qian-Qian Nie
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Guo Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhong Wang
| |
Collapse
|
10
|
Chen J, Zhao Y, Zhang F, Li J, Boland JA, Cheng NC, Liu K, Tiffen JC, Bertolino P, Bowen DG, Krueger A, Lisowski L, Alexander IE, Vadas MA, El-Omar E, Gamble JR, McCaughan GW. Liver-specific deletion of miR-181ab1 reduces liver tumour progression via upregulation of CBX7. Cell Mol Life Sci 2022; 79:443. [PMID: 35867177 PMCID: PMC9307539 DOI: 10.1007/s00018-022-04452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
MiR-181 expression levels increased in hepatocellular carcinoma (HCC) compared to non-cancerous tissues. MiR-181 has been widely reported as a possible driver of tumourigenesis but also acts as a tumour suppressor. In addition, the miR-181 family regulates the development and function of immune and vascular cells, which play vital roles in the progression of tumours. More complicatedly, many genes have been identified as miR-181 targets to mediate the effects of miR-181. However, the role of miR-181 in the development of primary tumours remains largely unexplored. We aimed to examine the function of miR-181 and its vital mediators in the progression of diethylnitrosamine-induced primary liver cancers in mice. The size of liver tumours was significantly reduced by 90% in global (GKO) or liver-specific (LKO) 181ab1 knockout mice but not in hematopoietic and endothelial lineage-specific knockout mice, compared to WT mice. In addition, the number of tumours was significantly reduced by 50% in GKO mice. Whole-genome RNA-seq analysis and immunohistochemistry showed that epithelial-mesenchymal transition was partially reversed in GKO tumours compared to WT tumours. The expression of CBX7, a confirmed miR-181 target, was up-regulated in GKO compared to WT tumours. Stable CBX7 expression was achieved with an AAV/Transposase Hybrid-Vector System and up-regulated CBX7 expression inhibited liver tumour progression in WT mice. Hepatic CBX7 deletion restored the progression of LKO liver tumours. MiR-181a expression was the lowest and CBX7 expression the highest in iClust2 and 3 subclasses of human HCC compared to iClust1. Gene expression profiles of GKO tumours overlapped with low-proliferative peri-portal-type HCCs. Liver-specific loss of miR-181ab1 inhibited primary liver tumour progression via up-regulating CBX7 expression, but tumour induction requires both hepatic and non-hepatic miR-181. Also, miR-181ab1-deficient liver tumours may resemble low-proliferative periportal-type human HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Yang Zhao
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Fan Zhang
- UNSW Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine and Health, St George and Sutherland Clinical Campuses, Kogarah, NSW, 2217, Australia
| | - Jia Li
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jade A Boland
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ngan Ching Cheng
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ken Liu
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW, 2050, Australia
| | - Jessamy C Tiffen
- Melanoma Epigenetics Lab Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Patrick Bertolino
- Liver Immunology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - David G Bowen
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW, 2050, Australia.,Liver Immunology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Andreas Krueger
- Molecular Immunology, Faculty of Biology and Chemistry, Justus Liebig University Gießen, Schubertstr 81, 35392, Giessen, Germany.,Institute for Molecular Medicine, Frankfurt Cancer Institute, Goethe-University, Frankfurt, Germany
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, 2145, Australia.,Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, 2145, Australia
| | - Mathew A Vadas
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Emad El-Omar
- UNSW Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine and Health, St George and Sutherland Clinical Campuses, Kogarah, NSW, 2217, Australia
| | - Jennifer R Gamble
- Vascular Biology Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey W McCaughan
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia. .,Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
11
|
Hu CY, Li X, Zeng T, Ye DM, Li YK, Yan HX. Significance of chromobox protein (CBX) expression in diffuse LBCL. Gene 2021; 813:146092. [PMID: 34896523 DOI: 10.1016/j.gene.2021.146092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the main pathological type of non-Hodgkin lymphoma (NHL). Chromobox (CBX) family proteins are classical components of polycomb group (PcG) complexes in many cancer types, resulting in accelerated carcinogenesis. Nevertheless, the prognostic, functional and expression significance of these CBX family members in DLBCL remain unclear and elusive. METHODS CBX transcriptional levels were confirmed using Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA) and Cancer Cell Line Encyclopedia (CCLE) databases. The protein levels of CBX family members were analysed using The Human Protein Atlas (HPA) database. Information on the PPI network, functional enrichment, drug sensitivity, prognostic value, miRNA network, protein structure, genetic alteration and immune cell infiltration were generated using the GeneMANIA, Metascape, GSCALite, GEPIA, PDB, cBioPortal, and TIMER databases, and the correlation of these factors with CBX expression levels in DLBCL was assessed. RESULTS CBX1/2/3/5/6/8 mRNA levels were significantly enhanced in DLBCL tissues compared to corresponding normal tissues. CBX1/3/4/5/8 protein expression levels were obviously increased, whereas CBX7 was obviously decreased. This difference might be attributed to miRNA regulation based on the miRNA network. Overall survival (OS) analysis showed that CBX levels were not correlated with prognosis in DLBCL patients, indicating that CBXs are not good biomarkers for DLBCL patients. Furthermore, functional enrichment analyses indicated that CBXs were closely related to DNA duplex unwinding, covalent chromatin modification, and histone lysine methylation. The levels of CBXs were also significantly associated with diverse immune cell infiltration in DLBCL. CONCLUSIONS This study reveals that dysregulated CBXs are involved in DLBCL development and might represent potential therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Chun-Yan Hu
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xuan Li
- Department of Embryo Laboratory, Changsha Reproductive Medical Hospital, Changsha, Hunan 410000, PR China
| | - Tian Zeng
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, PR China
| | - Dong-Mei Ye
- Department of Pathology, The First Hospital of Nanchang City, Nanchang, Jiangxi 330008, PR China
| | - Yu-Kun Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Hong-Xia Yan
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
12
|
Li J, Ouyang T, Li M, Hong T, Alriashy M, Meng W, Zhang N. CBX7 is Dualistic in Cancer Progression Based on its Function and Molecular Interactions. Front Genet 2021; 12:740794. [PMID: 34659360 PMCID: PMC8517511 DOI: 10.3389/fgene.2021.740794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chromobox protein homolog 7 (CBX7) is a member of the Chromobox protein family and participates in the formation of the polycomb repressive complex 1(PRC1). In cells, CBX7 often acts as an epigenetic regulator to regulate gene expression. However, pathologically, abnormal expression of CBX7 can lead to an imbalance of gene expression, which is closely related to the occurrence and progression of cancers. In cancers, CBX7 plays a dual role; On the one hand, it contributes to cancer progression in some cancers by inhibiting oncosuppressor genes. On the other hand, it suppresses cancer progression by interacting with different molecules to regulate the synthesis of cell cycle-related proteins. In addition, CBX7 protein may interact with different RNAs (microRNAs, long noncoding RNAs, circular RNAs) in different cancer environments to participate in a variety of pathways, affecting the development of cancers. Furthermore, CBX7 is involved in cancer-related immune response and DNA repair. In conclusion, CBX7 expression is a key factor in the occurrence and progression of cancers.
Collapse
Affiliation(s)
- Jun Li
- Department of the Second Clinical Medical College of Nanchang University, Jiangxi Province, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Mhs Alriashy
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
13
|
Tian P, Zhang C, Ma C, Ding L, Tao N, Ning L, Wang Y, Yong X, Yan Q, Lin X, Wang J, Li R. Decreased chromobox homologue 7 expression is associated with epithelial-mesenchymal transition and poor prognosis in cervical cancer. Open Med (Wars) 2021; 16:410-418. [PMID: 33748425 PMCID: PMC7957191 DOI: 10.1515/med-2021-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to evaluate the association of the chromobox homologue 7 (CBX7) expression with the epithelial–mesenchymal transition in cervical cancer (CC), as well as with the disease prognosis. CBX7, E-cadherin (E-cad), and vimentin (VIM) expression levels were detected with immunohistochemistry. The relationship between the expression of CBX7, E-cad, and VIM expression and conventional clinicopathological characteristics of CC were evaluated. The positive expression rates of CBX7 and E-cad in the CC tissues were lower than the adjacent non-tumorous cervical tissues. Moreover, the VIM expression level was higher. The CBX7 expression was positively correlated with the E-cad expression, whereas was negatively correlated with the VIM expression. Furthermore, CBX7 was associated with the disease clinical staging, histological differentiation, lymph node metastasis, and vascular invasion. Patients with negative CBX7 expression showed decreased overall survival rates compared with those with low or high CBX7 expression. Multivariate Cox regression analysis indicated that the decreased CBX7 expression was an independent predictor for the poor prognosis of CC. In conclusion, the absence of CBX7 is associated with the histologic differentiation, lymphatic metastasis, vascular invasion, and poor prognosis of CC. CBX7 may be an independent prognostic factor for the prognosis of CC patients.
Collapse
Affiliation(s)
- Ping Tian
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China.,The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Chen Zhang
- The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Cailing Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Xinjiang Medical University, Urumqi 830054, Xinjiang, China.,Department of Gynecology, The First Affiliated Hospital, Urumqi, Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Lu Ding
- The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Ning Tao
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Li Ning
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Yan Wang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Xianting Yong
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Qi Yan
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Xin Lin
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Xinjiang Medical University, Urumqi 830054, Xinjiang, China.,Department of Gynecology, The First Affiliated Hospital, Urumqi, Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Rong Li
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China.,Postdoctoral Research Center on Clinical Medicine, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| |
Collapse
|
14
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
15
|
Zhang Y, Zhang JJ, Liu XH, Wang L. CBX7 suppression prevents ischemia-reperfusion injury-induced endoplasmic reticulum stress through the Nrf-2/HO-1 pathway. Am J Physiol Renal Physiol 2020; 318:F1531-F1538. [PMID: 32390514 DOI: 10.1152/ajprenal.00088.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Renal ischemia-reperfusion injury (I/R) usually occurs in renal transplantation and partial nephrectomy, which could lead to acute kidney injury. However, the effective treatment for renal I/R still remains limited. In the present study, we investigated whether inhibition of chromobox 7 (CBX7) could attenuate renal I/R injury in vivo and in vitro as well as the potential mechanisms. Adult male mice were subjected to right renal ischemia and reperfusion for different periods, both with and without the CBX7 inhibitor UNC3866. In addition, human kidney cells (HK-2) were subjected to a hypoxia/reoxygenation (H/R) process for different periods, both with or without the CBX7 inhibitor or siRNA for CBX7. The results showed that expression of CBX7, glucose regulator protein-78 (GRP78), phosphorylated eukaryotic translation initiation factor-2α (p-eIF2α), and C/EBP homologous protein (CHOP) were increased after extension of I/R and H/R periods. Moreover, overexpression of CBX7 could elevate the expression of CBX7, GRP78, p-eIF2α, and CHOP. However, CBX7 inhibition with either UNC3866 or genetic knockdown led to reduced expression of GRP78, p-eIF2α, and CHOP through nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 activation in I/R and H/R injury. Furthermore, ML385, the Nrf2 inhibitor, could elevate endoplasmic reticulum stress levels, abrogating the protective effects of UNC3866 against renal I/R injury. In conclusion, our results demonstrated that CBX7 inhibition alleviated acute kidney injury by preventing endoplasmic reticulum stress via the Nrf2/HO-1 pathway, indicating that CBX7 inhibitor could be a potential therapeutic target for renal I/R injury.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian-Jian Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Gorski JW, Ueland FR, Kolesar JM. CCNE1 Amplification as a Predictive Biomarker of Chemotherapy Resistance in Epithelial Ovarian Cancer. Diagnostics (Basel) 2020; 10:diagnostics10050279. [PMID: 32380689 PMCID: PMC7277958 DOI: 10.3390/diagnostics10050279] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is the most-deadly gynecologic malignancy, with greater than 14,000 women expected to succumb to the disease this year in the United States alone. In the front-line setting, patients are treated with a platinum and taxane doublet. Although 40–60% of patients achieve complete clinical response to first-line chemotherapy, 25% are inherently platinum-resistant or refractory with a median overall survival of about one year. More than 80% of women afflicted with ovarian cancer will recur. Many attempts have been made to understand the mechanism of platinum and taxane based chemotherapy resistance. However, despite decades of research, few predictive markers of chemotherapy resistance have been identified. Here, we review the current understanding of one of the most common genetic alterations in epithelial ovarian cancer, CCNE1 (cyclin E1) amplification, and its role as a potential predictive marker of cytotoxic chemotherapy resistance. CCNE1 amplification has been identified as a primary oncogenic driver in a subset of high grade serous ovarian cancer that have an unmet clinical need. Understanding the interplay between cyclin E1 amplification and other common ovarian cancer genetic alterations provides the basis for chemotherapeutic resistance in CCNE1 amplified disease. Exploration of the effect of cyclin E1 amplification on the cellular machinery that causes dysregulated proliferation in cancer cells has allowed investigators to explore promising targeted therapies that provide the basis for emerging clinical trials.
Collapse
Affiliation(s)
- Justin W. Gorski
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Chandler Medical Center, 800 Rose Street, Lexington, KY 40536-0263, USA;
- Correspondence:
| | - Frederick R. Ueland
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Chandler Medical Center, 800 Rose Street, Lexington, KY 40536-0263, USA;
| | - Jill M. Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky College of Pharmacy, 567 TODD Building, 789 South Limestone Street, Lexington, KY 40539-0596, USA;
| |
Collapse
|
17
|
Demirkol Canlı S, Dedeoğlu E, Akbar MW, Küçükkaraduman B, İşbilen M, Erdoğan ÖŞ, Erciyas SK, Yazıcı H, Vural B, Güre AO. A novel 20-gene prognostic score in pancreatic adenocarcinoma. PLoS One 2020; 15:e0231835. [PMID: 32310997 PMCID: PMC7170253 DOI: 10.1371/journal.pone.0231835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers. Known risk factors for this disease are currently insufficient in predicting mortality. In order to better prognosticate patients with PDAC, we identified 20 genes by utilizing publically available high-throughput transcriptomic data from GEO, TCGA and ICGC which are associated with overall survival and event-free survival. A score generated based on the expression matrix of these genes was validated in two independent cohorts. We find that this “Pancreatic cancer prognostic score 20 –PPS20” is independent of the confounding factors in multivariate analyses, is dramatically elevated in metastatic tissue compared to primary tumor, and is higher in primary tumors compared to normal pancreatic tissue. Transcriptomic analyses show that tumors with low PPS20 have overall more immune cell infiltration and a higher CD8 T cell/Treg ratio when compared to those with high PPS20. Analyses of proteomic data from TCGA PAAD indicated higher levels of Cyclin B1, RAD51, EGFR and a lower E-cadherin/Fibronectin ratio in tumors with high PPS20. The PPS20 score defines not only prognostic and biological sub-groups but can predict response to targeted therapy as well. Overall, PPS20 is a stronger and more robust transcriptomic signature when compared to similar, previously published gene lists.
Collapse
Affiliation(s)
- Seçil Demirkol Canlı
- Molecular Pathology Application and Research Center, Hacettepe University, Ankara, Turkey
- * E-mail:
| | - Ege Dedeoğlu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Muhammad Waqas Akbar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Barış Küçükkaraduman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Murat İşbilen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Özge Şükrüoğlu Erdoğan
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Seda Kılıç Erciyas
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Hülya Yazıcı
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Burçak Vural
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Osmay Güre
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
18
|
Li R, Yan Q, Tian P, Wang Y, Wang J, Tao N, Ning L, Lin X, Ding L, Liu J, Ma C. CBX7 Inhibits Cell Growth and Motility and Induces Apoptosis in Cervical Cancer Cells. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:108-116. [PMID: 31709304 PMCID: PMC6834976 DOI: 10.1016/j.omto.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022]
Abstract
The chromobox protein homolog 7 (CBX7), one member of the polycomb group family, has been characterized mainly to play a tumor-suppressive role in human malignant neoplasias. Moreover, downregulation of CBX7 is correlated with poor prognosis and aggressiveness in a variety of human cancers. However, the biological functions and role of CBX7 in cervical cancer have not been elucidated. In the present study, we explore whether CBX7 exerts its tumor-suppressive function in cervical cancer. To achieve this goal, molecular approaches were used to upregulate the expression of CBX7 or downregulation of CBX7 in cervical cancer cell lines. We observed that overexpression of CBX7 inhibited cell growth and induced apoptosis in cervical cancer cells. CBX7 overexpression retarded cell migration and invasion in cervical cancer cells. In line with this, downregulation of CBX7 promoted cell growth and migration as well as invasion in cervical cancer cells. Our findings suggest that CBX7 might be a tumor suppressor and could be a potential target in cervical cancer.
Collapse
Affiliation(s)
- Rong Li
- Postdoctoral Research Center on Clinical Medicine, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China.,Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China
| | - Qi Yan
- Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinjiang, China
| | - Ping Tian
- Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yan Wang
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Department of Gynecology, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Ning Tao
- Postdoctoral Research Center on Clinical Medicine, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Li Ning
- Postdoctoral Research Center on Clinical Medicine, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Xin Lin
- Postdoctoral Research Center on Clinical Medicine, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Lu Ding
- Postdoctoral Research Center on Public Health and Preventive Medicine, Xinjiang Medical University, Xinjiang, China.,Fifth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Jiwen Liu
- Postdoctoral Research Center on Clinical Medicine, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - Cailing Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Department of Gynecology, First Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
19
|
Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Füllgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM. Common and distinct transcriptional signatures of mammalian embryonic lethality. Nat Commun 2019; 10:2792. [PMID: 31243271 PMCID: PMC6594971 DOI: 10.1038/s41467-019-10642-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.
Collapse
Affiliation(s)
- John E Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Richard J White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicole Staudt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Ian M Sealy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ian Packham
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Cecilia Mazzeo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Angela Green
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Emma Siragher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Irene Papatheodoru
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Amy Tang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Anja Füllgrabe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Antonella Galli
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Myriam Hemberger
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Derek L Stemple
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Camena Bioscience, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Elizabeth Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - James C Smith
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Timothy Mohun
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
20
|
Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep 2019; 39:BSR20190381. [PMID: 31072916 PMCID: PMC6549211 DOI: 10.1042/bsr20190381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
A novel oncogene CCNE1 (cyclin E) is considered to be associated with the development of various tumor types, its role in gastric carcinoma (GC) is little studied and the effect of CCNE1 on chemotherapy also remains unclear. We recruited 55 cases of GC tissues and corresponding normal tissues. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the expression of CCNE1. We also examined the expression of CCNE1 in gastric mucosal GES-1 cells and five GC cell lines. Silencing CCNE1 was used to assess its effect on proliferation and cell cycle in MGC-803 and NCI-N87 cells, as performed by Cell counting kit-8 (CCK-8) and flow cytometry assay. Meanwhile, cell cycle related genes were also detected through qRT-PCR and Western blot. The results showed CCNE1 up-regulation mainly expressed in GC tissues and GC cell lines, also was associated with tumor node metastasis (TNM) stage and lymphatic invasion. Three-year survival curve analysis showed CCNE1 with high expression had a poor prognosis. Silencing CCNE1 significantly reduced cell viability in 48 h, cultured and arrested cell cycle in G1 phase, moreover, Cyclin A, D1 and C-myc all revealed down-regulation in both MGC-803 and NCI-N87 cells. CCNE1 expression was significantly increased at low and moderate concentrations of Cisplatin. Down-regulation of CCNE1 expression would remarkably promote cell apoptosis induced by Cisplatin, and regulate the rate of Bax/Bcl-2. Down-regulation of CCNE1 expression could inhibit cell proliferation and enhance GC cells sensibility to Cisplatin, possibly involving the regulation of Bcl-2 family.
Collapse
|
21
|
Federico A, Sepe R, Cozzolino F, Piccolo C, Iannone C, Iacobucci I, Pucci P, Monti M, Fusco A. The complex CBX7-PRMT1 has a critical role in regulating E-cadherin gene expression and cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:509-521. [PMID: 30826432 DOI: 10.1016/j.bbagrm.2019.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The Chromobox protein homolog 7 (CBX7) belongs to the Polycomb Group (PcG) family, and, as part of the Polycomb repressive complex (PRC1), contributes to maintain transcriptional gene repression. Loss of CBX7 expression has been reported in several human malignant neoplasias, where it often correlates with an advanced cancer state and poor survival, proposing CBX7 as a candidate tumor-suppressor gene in cancer progression. Indeed, CBX7 is able to positively or negatively regulate the expression of genes involved in cell proliferation and cancer progression, such as E-cadherin, cyclin E, osteopontin, EGR1. To understand the molecular mechanisms that underlie the involvement of CBX7 in cancer progression, we designed a functional proteomic experiment based on CHIP-MS to identify novel CBX7 protein partners. Among the identified CBX7-interacting proteins we focused our attention on the Protein Arginine Methyltransferase 1 (PRMT1) whose critical role in epithelial-mesenchymal transition (EMT), cancer cell migration and invasion has been already reported. We confirmed the interaction between CBX7 and PRMT1 and demonstrated that this interaction is crucial for PRMT1 enzymatic activity both in vitro and in vivo and for the regulation of E-cadherin expression, an important hallmark of EMT. These results suggest a general mechanism by which CBX7 interacting with histone modification enzymes like HDAC2 and PRMT1 enhances E-cadherin expression. Therefore, disruption of this equilibrium may induce impairment of E-cadherin expression and increased cell migration eventually leading to EMT and, then, cancer progression.
Collapse
Affiliation(s)
- Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Romina Sepe
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Flora Cozzolino
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II" and CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Claudia Piccolo
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Carla Iannone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II" and CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Ilaria Iacobucci
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II" and CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Piero Pucci
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II" and CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Maria Monti
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II" and CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.
| |
Collapse
|
22
|
CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep 2019; 9:197. [PMID: 30655550 PMCID: PMC6336801 DOI: 10.1038/s41598-018-36560-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Chromobox 6 (CBX6) is a subunit of Polycomb Repressive Complex 1 (PRC1) that mediates epigenetic gene repression and acts as an oncogene or tumor suppressor in a cancer type-dependent manner. The specific function of CBX6 in breast cancer is currently undefined. In this study, a comprehensive analysis of The Cancer Genome Atlas (TCGA) dataset led to the identification of CBX6 as a consistently downregulated gene in breast cancer. We provided evidence showing enhancer of zeste homolog 2 (EZH2) negatively regulated CBX6 expression in a Polycomb Repressive Complex 2 (PRC2)-dependent manner. Exogenous overexpression of CBX6 inhibited cell proliferation and colony formation, and induced cell cycle arrest along with suppression of migration and invasion of breast cancer cells in vitro. Microarray analyses revealed that CBX6 governs a complex gene expression program. Moreover, CBX6 induced significant downregulation of bone marrow stromal cell antigen-2 (BST2), a potential therapeutic target, via interactions with its promoter region. Our collective findings support a tumor suppressor role of CBX6 in breast cancer.
Collapse
|
23
|
Waker CA, Lober RM. Brain Tumors of Glial Origin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:281-297. [PMID: 31760651 DOI: 10.1007/978-981-32-9636-7_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gliomas are a heterogeneous group of tumors with evolving classification based on genotype. Isocitrate dehydrogenase (IDH) mutation is an early event in the formation of some diffuse gliomas, and is the best understood mechanism of their epigenetic dysregulation. Glioblastoma may evolve from lower-grade lesions with IDH mutations, or arise independently from copy number changes in platelet-derived growth factor receptor alpha (PDGFRA) and phosphatase and tensin homolog (PTEN). Several molecular subtypes of glioblastoma arise from a common proneural precursor with a tendency toward transition to a mesenchymal subtype. Following oncogenic transformation, gliomas escape growth arrest through a distinct step of aberrant telomere reverse transcriptase (TERT) expression, or mutations in either alpha thalassemia/mental retardation syndrome (ATRX) or death-domain associated protein (DAXX) genes. Metabolic reprogramming allows gliomas to thrive in harsh microenvironments such as hypoxia, acidity, and nutrient depletion, which contribute to tumor initiation, maintenance, and treatment resistance.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA.,Department of Neurosurgery, Dayton Children's Hospital, One Children's Plaza, Dayton, OH, USA
| | - Robert M Lober
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA. .,Department of Neurosurgery, Dayton Children's Hospital, One Children's Plaza, Dayton, OH, USA. .,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
24
|
Yu T, Wang X, Zhi T, Zhang J, Wang Y, Nie E, Zhou F, You Y, Liu N. Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolomide resistance phenotype. Cancer Lett 2018; 433:210-220. [PMID: 30008386 DOI: 10.1016/j.canlet.2018.06.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/18/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
The glioma-astrocyte interaction plays an important role in tumor microenvironment remodeling; however, the underlying mechanism has not been completely clarified. In this study, we show that glioma cells stimulate normal human astrocyte (NHA) into reactive astrocyte (RAS) in a non-contact manner. Additionally, the amount of O6-alkylguanine DNA alkyltransferase (MGMT) mRNA in exosomes (EXOs) released by RAS was significantly increased compared with that in non-reactive NHA. Importantly, MGMT-negative glioma cells can take up RAS-EXOs and acquire a temozolomide (TMZ)-resistant phenotype via the translation of exogenous exosomal MGMT mRNA both in vitro and in vivo. Our findings illuminate a novel phenomenon that may be a potent mechanism underlying glioma recurrence in which glioma-associated NHAs protect MGMT-negative glioma cells from TMZ-induced apoptosis by the functional intercellular transfer of exosomal MGMT mRNA.
Collapse
Affiliation(s)
- Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - XieFeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongle Zhi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221000, China
| | - Fengqi Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
25
|
Live-cell single-molecule dynamics of PcG proteins imposed by the DIPG H3.3K27M mutation. Nat Commun 2018; 9:2080. [PMID: 29802243 PMCID: PMC5970213 DOI: 10.1038/s41467-018-04455-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Over 80% of diffuse intrinsic pontine gliomas (DIPGs) harbor a point mutation in histone H3.3 where lysine 27 is substituted with methionine (H3.3K27M); however, how the mutation affects kinetics and function of PcG proteins remains elusive. We demonstrate that H3.3K27M prolongs the residence time and search time of Ezh2, but has no effect on its fraction bound to chromatin. In contrast, H3.3K27M has no effect on the residence time of Cbx7, but prolongs its search time and decreases its fraction bound to chromatin. We show that increasing expression of Cbx7 inhibits the proliferation of DIPG cells and prolongs its residence time. Our results highlight that the residence time of PcG proteins directly correlates with their functions and the search time of PcG proteins is critical for regulating their genomic occupancy. Together, our data provide mechanisms in which the cancer-causing histone mutation alters the binding and search dynamics of epigenetic complexes. Diffuse intrinsic pontine gliomas exhibit a characteristic mutation of lysine 27 to methionine (K27M) in genes encoding histone H3.3. Here the authors show that the H3.3K27M mutation imposes a specific pattern of H3.3K27 methylation by altering the target search dynamics of PcG proteins.
Collapse
|